
1

Landau Levels

Particle in Magnetic Field

With an external magnetic field the free Hamiltonian Ho = p2

2m
becomes
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=
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where ~A is the vector potential that defines the magnetic field ~B = ~∇× ~A.
Choosing the Landau gauge ~A = Boxŷ for ~B = Boẑ, we have
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If the particles are constraint to move in the x− y plane, the ansatz

ψpy = e
ipyy

~ φpy(x), py = ~ky (3)

is valid since H is translationally invariant in the y direction. Thus by
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φpy = E(py)φpy (4)

Define `2B ≡ ~
qB

, ωc ≡ |qBo|
m

and complete the square
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φpy = E(py)φpy (5)

This is a harmonic oscillator at x = ky`
2
B with energy levels

En = ~ωc(n+
1

2
) (6)

And the final wave function

ψn,py = eikyyHn(x− ky`2B)e
− (x−ky`2B)2

4`2
B (7)

where Hn are the Hermite polynomials. The energy levels (6) are called
Landau levels. There are many quantum states for every Landau level i.e.
for a given n, every py corresponds to a state with the same energy En.
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Number of States

Suppose the system is of size Lx×Ly, then the separation between harmonic
oscillators

∆x = ∆ky`
2
B = (

2π

Ly

)`2B (8)

Thus the number of oscillators we can fit into the system

N =
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Had we chosen a different gauge, say ~A = −Boyx̂, then we would have had

N =
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Plugging in `2B ≡ ~
qB

we see that for electrons
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N is the number of flux quanta, which is a measurable quantity. It is com-
forting that N is gauge invariance, since physical quantities should obey the
same physics regardless of description. The choice of gauge is a choice of de-
scription of the physics (much like coordinates), but this choice of description
should not affect the result of the underlying physics.


