Integral Transform

Various integral transforms such as Fourier transform and Laplace transform
are our best friends when trying to solve integral equations. Fourier transform
solves Type I inhomogeneous Fredholm equations whereas Laplace transform
solves Type I inhomogeneous Volterra problems, but the integral kernel must
be translation invariant (K (z,y) = K(x —y)) aka the integral equation takes
the form of a convolution

Fourier Transform

Consider a Type II inhomogeneous Fredholm equation
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we can rewrite it as Type I using a delta function
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If the integral kernel
K(z,y) = d(z —y) — K(z,y) (3)

satisfies K(z,y) = K(x —y), we may Fourier transform both sides of (2)
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and the solution can be obtained from an inverse Fourier transform
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Laplace Transform

Consider a Type II inhomogeneous Volterra equation rewritten as
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If K(x,y) = K(x —y), we can Laplace transform both sides
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make the change of variable £ = x — y,n = y then (7) becomes
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K(p)u(p) = f(p) (8)
and the solution can be obtained through an inverse transform
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This is an ugly contour integral that tends to be difficult to evaluate. For-
tunately, the given Volterra equation (6) satisfies f(0) = 0, thus laplace
transform can change a derivative to multiplication by p
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Thus (9) becomes
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with any luck, the fomula for K(p) will give us —:— and we can do the
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inverse transform by inspection.
Example Generalized Abel’s equation has K(§) =+
fl@)=Jy(@—y) ™ uly)dy 0<p<1 (12)
Knowing the formula for K (p)
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we can solve (10) with a Laplace transform
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subtituting g — 2 — p in (13) we have
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Thus we can do (14) by inspection
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Interestingly, using the fact that f/ = pf we can write the same solution as
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subtituting 4 — 1 — p in (13) we have
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