Heat Equation

The stereotypical form of a 1D Heat/Diffusion equation is
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with some known initial heat distribution at time ¢, = n, ¢(z, 7).

Homogeneous Solution

The homogeneous equation
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can be solved quite easily with a spatial Fourier transform. Suppose
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separate and integrate from 7 to t we get (}50
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plugging the result back into (3) to get the solution
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Writing ¢, (k, 7) in real space ¢o(k, ) = [ dxe *X¢,(x,7) and we have
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Here it becomes natural to define the heat kernel
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which turns out to be the causal Green’s function for this problem as we
shall soon see. The heat kernel describes the evolution of a unit blob of heat
initially concentrated at x = x, t = 7.

Green’s Function

With homogeneous boundary conditions ¢(z,0) = 0 the Green’s function for

L= % — /<; > takes the causal form
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The jump condition obtained by integrating
LG(x,t;€,7) = 6z — €)d(t —7) (10)
around t € (T — €, T + €) says
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In other words, the Green’s function starts out as 6(z —¢) at t = 7 and then
evolves according to the homogeneous heat equation. Therefore, the Green’s
function at a later time can be calculated using the heat kernel.
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as promised, the heat kernel is indeed the causal Green’s function for this
problem. For completeness’s sake, the final solution to the inhomogeneous

problem
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