Heat Equation

The stereotypical form of a 1D Heat/Diffusion equation is

$$
\begin{equation*}
\frac{\partial \phi(x, t)}{\partial t}-\kappa \frac{\partial^{2} \phi(x, t)}{\partial x^{2}}=q(x, t) \tag{1}
\end{equation*}
$$

with some known initial heat distribution at time $t_{o}=\eta, \phi(x, \tau)$.

Homogeneous Solution

The homogeneous equation

$$
\begin{equation*}
\frac{\partial \phi_{o}(x, t)}{\partial t}=\kappa \frac{\partial^{2} \phi_{o}(x, t)}{\partial x^{2}} \tag{2}
\end{equation*}
$$

can be solved quite easily with a spatial Fourier transform. Suppose

$$
\begin{equation*}
\phi_{o}(x, t)=\int \frac{d k}{2 \pi} e^{i k x} \tilde{\phi}_{o}(k, t) \tag{3}
\end{equation*}
$$

plugging into (2) to get

$$
\begin{array}{r}
\int \frac{d k}{2 \pi} e^{i k x}\left\{\frac{\partial \tilde{\phi}_{o}}{\partial t}\right\}=\int \frac{d k}{2 \pi} e^{i k x}\left\{-\kappa k^{2} \tilde{\phi}_{o}\right\} \Rightarrow \\
\frac{\partial \tilde{\phi}_{o}}{\partial t}=-\kappa k^{2} \tilde{\phi}_{o} \tag{4}
\end{array}
$$

separate and integrate from τ to t we get $\tilde{\phi}_{o}$

$$
\begin{array}{r}
\left.\ln \tilde{\phi}_{o}\left(k, t^{\prime}\right)\right|_{\tau} ^{t}=-\kappa k^{2}(t-\tau) \Rightarrow \\
\tilde{\phi}_{o}(k, t)=\tilde{\phi}_{o}(k, \tau) e^{-\kappa k^{2}(t-\tau)} \tag{5}
\end{array}
$$

plugging the result back into (3) to get the solution

$$
\begin{equation*}
\phi_{o}(x, t)=\int \frac{d k}{2 \pi} \tilde{\phi}_{o}(k, \tau) e^{i k x-\kappa k^{2}(t-\tau)} \tag{6}
\end{equation*}
$$

Writing $\tilde{\phi}_{o}(k, \tau)$ in real space $\tilde{\phi}_{o}(k, \tau)=\int d \chi e^{-i k \chi} \phi_{o}(\chi, \tau)$ and we have

$$
\begin{equation*}
\phi_{o}(x, t)=\int d \chi\left\{\int \frac{d k}{2 \pi} e^{i k(x-\chi)-\kappa k^{2}(t-\tau)}\right\} \phi_{o}(\chi, \tau) \tag{7}
\end{equation*}
$$

Here it becomes natural to define the heat kernel

$$
\begin{align*}
K(x-\chi, t-\tau) & =\int \frac{d k}{2 \pi} e^{i k(x-\chi)-\kappa k^{2}(t-\tau)} \\
& =\frac{1}{\sqrt{4 \pi \kappa(t-\tau)}} e^{-\frac{(x-\chi)^{2}}{4 \kappa(t-\tau)}} \tag{8}
\end{align*}
$$

which turns out to be the causal Green's function for this problem as we shall soon see. The heat kernel describes the evolution of a unit blob of heat initially concentrated at $x=\chi, t=\tau$.

Green's Function

With homogeneous boundary conditions $\phi(x, 0)=0$ the Green's function for $\hat{L}=\frac{\partial}{\partial t}-\kappa \frac{\partial^{2}}{\partial x^{2}}$ takes the causal form

$$
G(x, t ; \xi, \tau)= \begin{cases}0 & t<\tau \tag{9}\\ \phi_{o} & t>\tau\end{cases}
$$

The jump condition obtained by integrating

$$
\begin{equation*}
\hat{L} G(x, t ; \xi, \tau)=\delta(x-\xi) \delta(t-\tau) \tag{10}
\end{equation*}
$$

around $t \in(\tau-\epsilon, \tau+\epsilon)$ says

$$
\begin{equation*}
\lim _{t \rightarrow \tau^{+}} G(x, t ; \xi, \tau)=\delta(x-\xi) \tag{11}
\end{equation*}
$$

In other words, the Green's function starts out as $\delta(x-\xi)$ at $t=\tau$ and then evolves according to the homogeneous heat equation. Therefore, the Green's function at a later time can be calculated using the heat kernel.

$$
\begin{equation*}
G(x, t ; \xi, \tau)=\int d \chi K(x-\chi, t-\tau) \delta(\chi-\xi)=K(x-\xi, t-\tau) \tag{12}
\end{equation*}
$$

as promised, the heat kernel is indeed the causal Green's function for this problem. For completeness's sake, the final solution to the inhomogeneous problem

$$
\begin{equation*}
\phi(x, t)=\int d \tau \int d \xi\left\{\int \frac{d k}{2 \pi} e^{i k(x-\xi)-\kappa k^{2}(t-\tau)}\right\} q(\xi, \tau) \tag{13}
\end{equation*}
$$

