Green's Function

Motivation

Green function enables us to construct solutions to inhomogeneous equations

$$
\begin{equation*}
\hat{L} u(x)=f(x), \quad \mathscr{B}=\left\{u \in L^{2}[a, b] \mid u(a)=u_{a}, u(b)=u_{b}\right\} \tag{1}
\end{equation*}
$$

from homogeneous solutions u_{o} with $\hat{L} u_{o}(x)=0$. To appreciate the usefulness of Green's function, notice that for " nice enough" problems, if

$$
\begin{equation*}
\hat{L} G(x, \xi)=\delta(x-\xi) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
u(x)=\int_{a}^{b} G(x, y) f(y) d y \tag{3}
\end{equation*}
$$

is a solution to (1), since

$$
\begin{equation*}
\hat{L} u(x)=\int_{a}^{b} \hat{L} G(x, y) f(y) d y=\int_{a}^{b} \delta(x-y) f(y) d y=f(x) \tag{4}
\end{equation*}
$$

In essence, we now only has to solve (2) instead of (1). Given that we know the form of the homogeneous solutions u_{o}, we can guess

$$
G(x, \xi)= \begin{cases}u_{o L}(x) & x<\xi \tag{5}\\ u_{o R}(x) & x \geq \xi\end{cases}
$$

in general, where $\hat{L} u_{o L / R}=0$ and $u_{o L}, u_{o R}$ satisfy the left/right boundary conditions respectively. Now, by integrating (2) around $(\xi-\epsilon, \xi+\epsilon)$, depending on what \hat{L} looks like, we get a jump and various continuity conditions.

$$
\left\{\begin{array}{l}
\int_{-}^{+} \hat{L} G(x, \xi) d x=1 \tag{6}\\
\int_{-}^{+} \int_{a}^{x} \hat{L} G\left(x_{1}, \xi\right) d x_{1} d x=0 \\
\int_{-}^{+} \int_{a}^{x} \int_{a}^{x_{2}} \hat{L} G\left(x_{1}, \xi\right) d x_{1} d x_{2}=0 \\
\vdots
\end{array}\right.
$$

Example $\hat{L}=-\frac{d^{2}}{d x^{2}}$ on $[0,1], \hat{L} y(x)=f(x)$ and $y(0)=y(1)=0$ Let $y_{o L}=a x, y_{o R}=b(1-x)$ then

$$
G(x, \xi)= \begin{cases}y_{o L}(x)=a x & x<\xi \tag{7}\\ y_{o R}(x)=b(1-x) & x \geq \xi\end{cases}
$$

the jump and continuity conditions are

$$
\left\{\begin{array} { l }
{ - G ^ { \prime } (x , \xi) | _ { - } ^ { + } = 1 } \tag{8}\\
{ - G (x , \xi) | _ { - } ^ { + } = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ a + b = 1 } \\
{ a \xi = b (1 - \xi) }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=1-\xi \\
b=\xi
\end{array}\right.\right.\right.
$$

thus the Green's function

$$
G(x, \xi)= \begin{cases}x(1-\xi) & x<\xi \tag{9}\\ \xi(1-x) & x \geq \xi\end{cases}
$$

and the solution

$$
\begin{equation*}
y(x)=\int_{0}^{x} \xi(1-x) f(\xi) d \xi+\int_{x}^{1} x(1-\xi) f(\xi) d \xi \tag{10}
\end{equation*}
$$

Adjoint Green's Function

To see what is meant by "nice enough", let's first look at the adjoint Green's function satisfying

$$
\begin{equation*}
\hat{L}^{\dagger} G^{\dagger}(x, \xi)=\delta(x-\xi) \tag{11}
\end{equation*}
$$

If \hat{L} on \mathscr{D} is self-adjoint with \hat{L}^{\dagger} on \mathscr{D}^{\dagger}, Lagrange's identity says

$$
\begin{equation*}
\int_{a}^{b} u^{*}(x) \hat{L} v(x)-\left(\hat{L}^{\dagger} u(x)\right)^{*} v(x) d x=0 \tag{12}
\end{equation*}
$$

Plugging in

$$
\left\{\begin{array}{l}
u(x)=G^{\dagger}(x, \xi) \tag{13}\\
v(x)=G\left(x, \xi^{\prime}\right)
\end{array}\right.
$$

and we find

$$
\begin{array}{r}
\int_{a}^{b}\left(G^{\dagger}(x, \xi)\right)^{*}(x) \delta\left(x-\xi^{\prime}\right)-(\delta(x-\xi))^{*} G\left(x, \xi^{\prime}\right) d x=0 \Rightarrow \\
\left(G^{\dagger}\left(\xi^{\prime}, \xi\right)\right)^{*}=G\left(\xi, \xi^{\prime}\right) \tag{14}
\end{array}
$$

Now consider the general boundary value problem (1) where $\mathscr{B} \neq \mathscr{D}$. For the set of functions that may be a solution \mathscr{B}, the operator \hat{L} on \mathscr{B} may no long be self-adjoint. Thus Lagrange's identity reads ${ }^{1}$

$$
\begin{equation*}
\int_{a}^{b} \mu^{*}(y) \hat{L} v(y)-\left(\hat{L}^{\dagger} \mu(y)\right)^{*} v(y) d y=\left.Q\right|_{a} ^{b} \tag{15}
\end{equation*}
$$

[^0]Suppose we have already found $G, G^{\dagger} \in \mathscr{D}$ and let

$$
\left\{\begin{array}{l}
\mu(y)=G^{\dagger}(y, x) \tag{16}\\
v(y)=u(y)
\end{array}\right.
$$

then (15) becomes

$$
\begin{array}{r}
\int_{a}^{b}\left(G^{\dagger}(y, x)\right)^{*} f(y)-\delta(y, x) u(y) d y=\left.Q\right|_{a} ^{b} \Rightarrow \\
u(x)=\int_{a}^{b} G(x, y) f(y) d y-\left.Q\right|_{a} ^{b} \tag{17}
\end{array}
$$

Comparing equations (3) and (17) we finally see that "nice enough" means the boundary conditions of the problem \mathscr{B} must make $\left.Q\right|_{a} ^{b}$ vanish.

[^0]: ${ }^{1}$ I'm using μ instead of u to not confuse it with the u in (1)

