Graphene

Graphene is a 2D sheet of carbon atoms in a honeycomb arrangement. We shall study its band structure using the tight binding model.

Representation

Unfortunately, the honeycomb lattice is not a Bravais lattice. We have to represent it with a Bravais lattice decorated with basis (two atoms per cell).

Figure 1: Bravais lattice with two atoms (A and B) per unit cell. The Wigner-Seitz cell is shown. The basis are $\overrightarrow{0}$ and $\vec{\delta}_{1}$.

Suppose the distance between neighboring atoms is a, then the basis vectors for the Bravais and Reciprocal lattices are

$$
\left\{\begin{array} { l }
{ \vec { a } _ { 1 } = \frac { \sqrt { 3 } a } { 2 } (\sqrt { 3 } \hat { x } + 1 \hat { y }) } \tag{1}\\
{ \vec { a } _ { 2 } = \frac { \sqrt { 3 } a } { 2 } (\sqrt { 3 } \hat { x } - 1 \hat { y }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\vec{b}_{1}=\frac{2 \pi}{3 a}(\hat{x}+\sqrt{3} \hat{y}) \\
\vec{b}_{2}=\frac{2 \pi}{3 a}(\hat{x}-\sqrt{3} \hat{y})
\end{array}\right.\right.
$$

Figure 2: Reciprocal Lattice and the first Brillouin zone

Tight Binding

Consider one valance orbital per atom and label the orbital of atom A at \vec{r} as $|\vec{r}, A\rangle$ and the orbital of atom B at \vec{r} as $|\vec{r}, B\rangle$. Suppose electrons can only tunnel between its nearest neighbors with tunneling coefficient t. The tight binding Hamiltonian is then

$$
\begin{equation*}
H=-t \sum_{\vec{R}}\left(|\vec{R}, A\rangle\left\langle\vec{R}+\vec{\delta}_{1}, B\right|+|\vec{R}, A\rangle\left\langle\vec{R}+\vec{\delta}_{2}, B\right|+|\vec{R}, A\rangle\left\langle\vec{R}+\vec{\delta}_{3}, B\right|\right) \tag{2}
\end{equation*}
$$

Expanding the orbitals in plane wave basis

$$
\left\{\begin{array}{l}
|\vec{r}, A\rangle=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i \vec{k} \cdot \vec{r}}|\vec{k}, A\rangle \tag{3}\\
|\vec{r}, B\rangle=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i \vec{k} \cdot \vec{r}}|\vec{k}, B\rangle
\end{array}\right.
$$

And the Hamiltonian becomes (recall $\left.\sum_{\vec{R}} e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{R}}=\delta_{\vec{k}, \vec{k}^{\prime}}\right)$

$$
\begin{equation*}
H=-t \sum_{\vec{k}} \sum_{j=1}^{3}\left(e^{-i \vec{k} \cdot \vec{\delta}_{j}}|\vec{k}, A\rangle\langle\vec{k}, B|+e^{i \vec{k} \cdot \vec{\delta}_{j}}|\vec{k}, B\rangle\langle\vec{k}, A|\right) \tag{4}
\end{equation*}
$$

For a given \vec{k}, the Hamiltonian in matrix form

$$
H=\left(\begin{array}{lll}
0 & & -t \sum_{i=1}^{3} e^{-i \vec{k} \cdot \overrightarrow{\delta_{i}}} \tag{5}\\
-t \sum_{i=1}^{3} e^{i \vec{k} \cdot \overrightarrow{\delta_{i}}} & 0
\end{array}\right)
$$

This becomes a Bloch Hamiltonian $(H(\vec{k}+\vec{G})=H(\vec{k}))$ if we make the immaterial change of basis $|\vec{k}, B\rangle \rightarrow e^{i \vec{k} \cdot \vec{\delta}_{1}}|\vec{k}, B\rangle$

$$
H=\left(\begin{array}{ll}
0 & -t\left(1+e^{i \vec{k} \cdot \vec{a}_{1}}+e^{i \vec{k} \cdot \vec{a}_{2}}\right) \tag{6}\\
-t\left(1+e^{-i \vec{k} \cdot \vec{a}_{1}}+e^{-i \vec{k} \cdot \vec{a}_{2}}\right) & 0
\end{array}\right)
$$

When \vec{k} is at a K-point $\vec{K}_{ \pm}=\frac{2 \pi}{3 a}\left(\hat{x} \pm \frac{1}{\sqrt{3}} \hat{y}\right)$

$$
H\left(\vec{K}_{ \pm}\right)=\left(\begin{array}{ll}
0 & -t\left(1+e^{i \frac{2 \pi}{3}}+e^{i \frac{4 \pi}{3}}\right) \tag{7}\\
-t\left(1+e^{-i \frac{2 \pi}{3}}+e^{-i \frac{4 \pi}{3}}\right) & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Near the K-points $\vec{k}=\vec{K}_{ \pm}+\delta \vec{k}$

$$
H\left(\vec{K}_{ \pm}+\delta \vec{k}\right)=\frac{3 a t}{2}\left(\begin{array}{ll}
0 & \delta k_{x}-i \delta k_{y} \tag{8}\\
\delta k_{x}+i \delta k_{y} & 0
\end{array}\right)+O\left(\delta k^{2}\right)
$$

Dirac Equation

Written in terms of the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{9}\\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
$$

the tight binding Hamiltonian becomes

$$
\begin{equation*}
H=\frac{3 a t}{2}\left(\delta k_{x} \sigma_{x}+\delta k_{y} \sigma_{y}\right) \tag{10}
\end{equation*}
$$

when compared with the Hamiltonian governing 2D Dirac Fermions with momentum $\delta \vec{k}$ and mass m

$$
\begin{equation*}
H_{D F}=\hbar c \delta k_{x} \sigma_{x}+\hbar c \delta k_{y} \sigma_{y}+m c^{2} \sigma_{z} \tag{11}
\end{equation*}
$$

We see that electrons occupying states near the K-points behave like 2D Dirac Fermions with zero mass and conjugated light speed!

$$
\begin{equation*}
v_{F}=\left|\frac{1}{\hbar} \frac{\partial E}{\partial \vec{k}}\right|=\frac{3 a t}{2 \hbar} \tag{12}
\end{equation*}
$$

