Distributional Derivative

In this section, we shall find a place for "nasty" "functions" (distributions) such as the Dirac delta function to live (dual space of function space) and find a general rule for differentiation in this space (distributional/weak derivative).

Dual Space

A function takes elements in its domain to its range. Consider a space of functions $V=\{f: \mathcal{D} \rightarrow \mathcal{R} \mid \mathcal{D}, \mathcal{R} \in \mathcal{F}\}$ where \mathcal{F} is the field over which the functions in V are defined, then it's dual space V^{*} is the space of linear and continuous functionals that take elements of V and map them back to \mathcal{F} i.e. $V^{*}=\{F: V \rightarrow \mathcal{F} \mid$ linear and continuous $\}$.

For example, the Hilbert space is its own dual by the Riesz-Fréchet theorem: any continuous linear map $F: L^{2} \rightarrow \mathbb{R}$ can be written as $F[f]=$ $\langle l, f\rangle$ for some $l \in L^{2}$

Test Function Space

Test functions are "nice" functions satisfying

1. Smooth

2. Vanishes at infinity

Examples of such spaces include the Schwartz space $\mathcal{S}(\mathbb{R})$ and the space of smooth functions with compact support C_{0}^{∞}. The space of relevant test functions is generally referred to as \mathcal{T}, in other words, depending on the context $\mathcal{T}=\mathcal{S}(\mathbb{R}), C_{0}^{\infty}$ etc.

Distribution

Distributions are elements of the dual space V^{*} of a function space V. In general, elements of V need not be test functions, however, more often than not they are because the "nicer" V is the "nastier" the functions in V^{*} can be. For example, $\langle\delta(x)|$ is not an element of the dual space of the Hilbert space (which is just the Hilbert space itself), but it can be accommodated in \mathcal{T}^{*}. That is for $\phi \in \mathcal{T}$

$$
\begin{equation*}
\delta_{x-a}[\phi] \equiv \phi(a) \tag{1}
\end{equation*}
$$

We still use the conventional notation

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x-a) \phi(x) d x=\phi(a) \tag{2}
\end{equation*}
$$

because it suggests correct results such as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(a x-b) \phi(x) d x=\frac{1}{|a|} \phi(b / a) \tag{3}
\end{equation*}
$$

The derivatives of $\delta(x)$ can then be defined by paring them with derivative functions in \mathcal{T}

$$
\begin{equation*}
\delta_{x-a}^{\prime}[\phi] \equiv-\phi^{\prime}(a)=-\delta_{x-a}\left[\phi^{\prime}\right] \tag{4}
\end{equation*}
$$

suggested by the conventional notation

$$
\begin{equation*}
\int_{-\infty}^{\infty} \phi(x) \frac{d}{d x} \delta(x-a) d x=-\int_{-\infty}^{\infty} \phi^{\prime}(x) \delta(x-a) d x=-\phi^{\prime}(a) \tag{5}
\end{equation*}
$$

The form of equation (4) can serve as the definition for a general derivative of a distribution, that is for $d \in \mathcal{T}^{*}$ and $\phi \in \mathcal{T}$

$$
\begin{equation*}
d^{\prime}[\phi] \equiv-d\left[\phi^{\prime}\right] \tag{6}
\end{equation*}
$$

This is known as a distributional derivative or a weak derivative

