Damped Harmonic Oscillator

The damped harmonic oscillator problem is an excellent place to practice using Reduction of Order and Green's function to elegantly solve an ODE.

Figure 1: Damped Harmonic Oscillator
Starting with $F=m a$, we have the elementary form

$$
\begin{equation*}
F(t)-k y(t)-\eta \dot{y}(t)=m \ddot{y}(t) \tag{1}
\end{equation*}
$$

where k is the spring constant and η is the laminar drag coefficient. For initial conditions, suppose the oscillator starts from rest and the force turns on at $t=0$, that is $y(0)=0, y^{\prime}(0)=0$.

Standard form

Using notations (γ, Ω) that will make sense later, we can rewrite the above elementary form into the standard form that we have been seeing.

$$
\begin{equation*}
p_{0} y^{\prime \prime}+p_{1} y^{\prime}+p_{2} y=y^{\prime \prime}+2 \gamma y^{\prime}+\left(\Omega^{2}+\gamma^{2}\right) y=F \tag{2}
\end{equation*}
$$

Sturm—Liouville form

Using reduction of order, we can recast (2) into Sturm-Liouville form

$$
\begin{equation*}
\tilde{y}^{\prime \prime}+\Omega \tilde{y}=F \tag{3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
y=\omega \tilde{y} \tag{4}\\
\omega=e^{-\gamma(t-a)}
\end{array}\right.
$$

Homogeneous Solution

We can solve $\tilde{y}^{\prime \prime}+\Omega \tilde{y}=0$ by inspection

$$
\begin{equation*}
\tilde{y}_{o}=A \sin (\Omega t+\phi) \tag{5}
\end{equation*}
$$

and would thus solve $y^{\prime \prime}+2 \gamma y^{\prime}+\left(\Omega^{2}+\gamma^{2}\right) y=0$ by (4)

$$
\begin{equation*}
y_{o}=\left(A e^{\gamma a}\right) e^{-\gamma t} \sin (\Omega t+\phi) \tag{6}
\end{equation*}
$$

Green's Function

With the homogeneous solution obtained, we move on to solve the inhomogeneous problem. Since the only $y_{o}(t)$ that satiesfies $y_{o}(0)=0$ and $y_{o}^{\prime}(0)=0$ is $y_{o}(t)=0$, the Green's function takes the causal form

$$
\begin{align*}
G(t, \tau) & = \begin{cases}0 & t<\tau \\
y_{o} & t>\tau\end{cases} \\
& =\Theta(t-\tau) \cdot B e^{-\gamma t} \sin (\Omega t+\phi) \tag{7}
\end{align*}
$$

the jump and continuity conditions obtained from $\hat{L} G=\delta(t-\tau)$ say

$$
\left\{\begin{array}{l}
\left.\partial_{t} G(t, \tau)\right|_{\tau_{-\epsilon}} ^{\tau+\epsilon}=1 \tag{8}\\
\left.G(t, \tau)\right|_{\tau-\epsilon} ^{\tau+\epsilon}=0
\end{array}\right.
$$

continuity immediately gives $\phi=-\Omega \tau$, and then jump becomes

$$
\begin{array}{r}
-\gamma B e^{-\gamma \tau} \sin \Omega(\tau-\tau)+\Omega B e^{-\gamma \tau} \cos \Omega(\tau-\tau)=1 \Rightarrow \\
B=\frac{1}{\Omega} \cdot e^{\gamma \tau} \tag{9}
\end{array}
$$

Therefore, the Green's function

$$
\begin{equation*}
G(t, \tau)=\Theta(t-\tau) \cdot \frac{1}{\Omega} e^{-\gamma(t-\tau)} \sin \Omega(t-\tau) \tag{10}
\end{equation*}
$$

and the final solution

$$
\begin{equation*}
y(t)=\int_{0}^{t} d \tau \frac{1}{\Omega} e^{-\gamma(t-\tau)} \sin \Omega(t-\tau) F(\tau) \tag{11}
\end{equation*}
$$

Lo and behold, $\gamma=\frac{\eta}{2 m}$ is the exponential decay factor due to drag and $\Omega=\sqrt{\frac{k}{m}-\left(\frac{\eta}{2 m}\right)^{2}}$ is the spring-mass system's oscillation frequency modified by drag. We now have an intuitive sense of what the Green function is (at least in this case). $G(t, \tau)$ is the response of the system to a kick at $t=\tau$, as expected the response $\frac{1}{\Omega} e^{-\gamma(t-\tau)} \sin \Omega(t-\tau)$ is a damped oscillation that dies over time. When a driving force is present, different responses triggered by the driving force super-impose on each other, forming the final solution.

