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Bessel’s Equation

Bessel’s equation can be written in the form

L̂ny = −y′′ − 1

x
y′ +

n2

x2
y = k2y (1)

the eigenfunctions Jn are the Bessel functions satisfying

L̂nJn = k2Jn (2)

Factorization

using reduction of order, the LHS can be put into Sturm-Liouville form
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and we can read off the weight that makes it formally self-adjoint w = x. We
also notice that the operator in (1) can be factored in two ways
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Defining the raising operator

Ân = − d

dx
+

n

x
(5)

we see that

d

dx
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x
(6)

happens to be its ajoint Â†n with respect to the weight w = x. Thus

L̂n = Â†nÂn = Ân−1Â
†
n−1 (7)

This shouldn’t be too surprising in hind sight. Since L̂n is formally self-
adjoint, we’d better be able to find some operator Â such that L̂n = Â†Â.
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Bessel Identities

The factorization property of L̂n results in various identities for Jn. Consider
the effect of Ân on Jn

ÂnJn = Ân

(
1

k2
L̂nJn

)
=

1

k2
ÂnÂ

†
nÂnJn =

1

k2
Â†n+1Ân+1(ÂnJn)⇒

k2(ÂnJn) =L̂n+1(ÂnJn) (8)

Voila, ÂnJn = Jn+1! Similarly Â†n−1Jn = Jn−1. Explicitly{
(− d
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x
)Jn = Jn+1

( d
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+ n
x
)Jn = Jn−1

⇒{
2n
x
Jn = Jn+1 + Jn−1

2J ′n = Jn−1 − Jn+1
(9)

Generating Function

The generating function for Bessel functions

Gz(x) = e
1
2
x(z− 1

z
) =

∑
Jn(x)zn (10)

we can easily reproduce Bessel Identities with this generating function. First
notice {
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∑
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Taking the x derivative of both sides of (10)
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Jn−1 − Jn+1 = 2J ′n (12)

Taking the t derivative of both sides of (10)
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