Bessel's Equation

Bessel's equation can be written in the form

$$
\begin{equation*}
\hat{L}_{n} y=-y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{n^{2}}{x^{2}} y=k^{2} y \tag{1}
\end{equation*}
$$

the eigenfunctions J_{n} are the Bessel functions satisfying

$$
\begin{equation*}
\hat{L}_{n} J_{n}=k^{2} J_{n} \tag{2}
\end{equation*}
$$

Factorization

using reduction of order, the LHS can be put into Sturm-Liouville form

$$
\begin{equation*}
-\frac{1}{x} \frac{d}{d x} x \frac{d}{d x} y+\frac{n^{2}}{x^{2}} y=k^{2} y \tag{3}
\end{equation*}
$$

and we can read off the weight that makes it formally self-adjoint $w=x$. We also notice that the operator in (1) can be factored in two ways

$$
\begin{align*}
\hat{L}_{n} & =-\frac{d^{2}}{d x^{2}}-\frac{1}{x} \frac{d}{d x}+\frac{n^{2}}{x^{2}} \\
& =\left(\frac{d}{d x}+\frac{n+1}{x}\right)\left(-\frac{d}{d x}+\frac{n}{x}\right) \\
& =\left(-\frac{d}{d x}+\frac{n-1}{x}\right)\left(\frac{d}{d x}+\frac{n}{x}\right) \tag{4}
\end{align*}
$$

Defining the raising operator

$$
\begin{equation*}
\hat{A}_{n}=-\frac{d}{d x}+\frac{n}{x} \tag{5}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\frac{d}{d x}+\frac{n+1}{x} \tag{6}
\end{equation*}
$$

happens to be its ajoint \hat{A}_{n}^{\dagger} with respect to the weight $w=x$. Thus

$$
\begin{equation*}
\hat{L}_{n}=\hat{A}_{n}^{\dagger} \hat{A}_{n}=\hat{A}_{n-1} \hat{A}_{n-1}^{\dagger} \tag{7}
\end{equation*}
$$

This shouldn't be too surprising in hind sight. Since \hat{L}_{n} is formally selfadjoint, we'd better be able to find some operator \hat{A} such that $\hat{L}_{n}=\hat{A}^{\dagger} \hat{A}$.

Bessel Identities

The factorization property of \hat{L}_{n} results in various identities for J_{n}. Consider the effect of \hat{A}_{n} on J_{n}

$$
\begin{gather*}
\hat{A}_{n} J_{n}=\hat{A}_{n}\left(\frac{1}{k^{2}} \hat{L}_{n} J_{n}\right)=\frac{1}{k^{2}} \hat{A}_{n} \hat{A}_{n}^{\dagger} \hat{A}_{n} J_{n}=\frac{1}{k^{2}} \hat{A}_{n+1}^{\dagger} \hat{A}_{n+1}\left(\hat{A}_{n} J_{n}\right) \Rightarrow \\
k^{2}\left(\hat{A}_{n} J_{n}\right)=\hat{L}_{n+1}\left(\hat{A}_{n} J_{n}\right) \tag{8}
\end{gather*}
$$

Voila, $\hat{A}_{n} J_{n}=J_{n+1}$! Similarly $\hat{A}_{n-1}^{\dagger} J_{n}=J_{n-1}$. Explicitly

$$
\begin{gather*}
\left\{\begin{array}{l}
\left(-\frac{d}{d x}+\frac{n}{x}\right) J_{n}=J_{n+1} \\
\left(\frac{d}{d x}+\frac{n}{x}\right) J_{n}=J_{n-1}
\end{array} \Rightarrow\right. \\
\left\{\begin{array}{c}
\frac{2 n}{x} J_{n}=J_{n+1}+J_{n-1} \\
2 J_{n}^{\prime}=J_{n-1}-J_{n+1}
\end{array}\right. \tag{9}
\end{gather*}
$$

Generating Function

The generating function for Bessel functions

$$
\begin{equation*}
G_{z}(x)=e^{\frac{1}{2} x\left(z-\frac{1}{z}\right)}=\sum J_{n}(x) z^{n} \tag{10}
\end{equation*}
$$

we can easily reproduce Bessel Identities with this generating function. First notice

$$
\left\{\begin{align*}
z G_{z} & =\sum J_{n} z^{n+1}=\sum J_{n-1} z^{n} \tag{11}\\
\frac{1}{z} G_{z} & =\sum J_{n} z^{n-1}=\sum J_{n+1} z^{n}
\end{align*}\right.
$$

Taking the x derivative of both sides of (10)

$$
\begin{array}{r}
\frac{1}{2}\left(z-\frac{1}{z}\right) G_{z}=\sum J_{n}^{\prime}(x) z^{n} \Rightarrow \\
\frac{1}{2} \sum\left(J_{n-1}-J_{n+1}\right) z^{n}=\sum J_{n}^{\prime} z^{n} \Rightarrow \\
J_{n-1}-J_{n+1}=2 J_{n}^{\prime} \tag{12}
\end{array}
$$

Taking the t derivative of both sides of (10)

$$
\begin{align*}
& \frac{1}{2} x \frac{1}{z}\left(z+\frac{1}{z}\right) G_{z}=\sum n J_{n}(x) z^{n-1} \Rightarrow \\
& \frac{1}{2} x \sum\left(J_{n-1}+J_{n+1}\right) z^{n-1}=\sum n J_{n} z^{n-1} \Rightarrow \\
& J_{n-1}+J_{n+1}=\frac{2 n}{x} J_{n} \tag{13}
\end{align*}
$$

