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Burger’s Shock

In the fluid’s frame of reference, Riemann’s equations reduce to

∂tu+ u∂xu = 0 (1)

multiplying by un−1 to get the form
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which contains a conservation law that can be revealed by integration
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Notice the RHS vanished since the wave u vanishes at infinity. This conser-
vation law dictates the velocity of any shock (discontinuity) the wave might
have. Suppose the wave is discontinuous at x = X(t)
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Berger’s equation only admits one such conservation law

(∂t + u∂x)u = ν∂2xu⇒
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thus a Berger’s shock moves with the average of the speeds of wave to its far
left and right
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