Exchangability & Reinforcement

Polya urn: Markov process, with state \((k, l)\), \(k, l \geq 1\), integer.

Transition: \((k, l) \rightarrow (k+1, l)\). Interpretation: urn will

\[
\begin{align*}
\frac{k}{k+l} & \quad \text{pick one at random, return} \\
\frac{l}{k+l} & \quad \text{2 of the same color}
\end{align*}
\]

Proposition: \(X_n = \frac{k}{k+l}\) is a martingale

Indeed,

\[
\mathbb{E}(X_{n+1} | X_n) = \frac{k_n}{k_n + l_n} \cdot \frac{k_n + 1}{k_n + l_n + 1} + \frac{l_n}{k_n + l_n} \cdot \frac{k_n}{k_n + l_n + 1} = \frac{k_n(k_n + l_n + 1)}{(k_n + l_n)(k_n + l_n + 1)} = X_n.
\]

Thus: Bounded martingales converge a.s. [Won't prove]
Hence, $X_n \rightarrow X$, a random variable.

Example If $k_0 = 1 - l_0$, X is uniformly distributed on $[0, 1]$.

Indeed, $P(k_n = k, l_n = l) = \frac{1}{k + l - 1}$

$P(k_n = k, l_n = l) = \frac{1}{k + l - 2 \left[\frac{k - 1}{k + l - 1} + \frac{l - 1}{k + l - 1} \right]} = \frac{1}{k + l - 1}$

What happens in general, if one starts at (k_0, l_0)?

Theorem Conditioned on (k_0, l_0), $X_n = \frac{K_n}{K_n + L_n}$ converges to a Beta distributed random variable (having density

$$f(x) = \frac{(k_0 + l_0 - 1)!}{(k_0 - 1)! l_0 - 1} (1-x)^{k_0 - 1}$$

(Con can be proved by induction — somewhat messy).
Generalization: \(C \) colors. In this case, the limit fractions of balls of each color are uniformly drawn from the unit simplex \(\sum_{k=1}^{C} t_k = 1 \).

When \(C \) is large, Simon-Pareto distribution emerges: the frequency of \(k \)-th least frequent color behave as \(\frac{2k}{C^2} \)

Easiest proof: \(\mathbb{P} \sim \text{vector of iid } \mathcal{E}(1) \) variables normalized by sum.

Yule-Simon "Rich get richer" mechanism.
Another generalization: adding different amounts (even not integers!)

\[R_n, B_n ; \begin{cases} R \text{ is drawn} & R_{n+1} = R_n + A_{rr} \\ B \text{ is drawn} & B_{n+1} = B_n + A_{bb} \end{cases} \]

Polya urn: \(A = (1, 0) \)

What happens for, say, \(A = (2, 1) \)?

Answer: \(X_n = \frac{R_n}{B_n + R_n} \to \frac{1}{2} \text{ a.s.} \)

More generally,

Theorem If all entries in \(A \) are positive, the \(X_n \) converges
d\(d = \frac{u_1}{u_1 + u_2} \), where \((u_1)\) is the unique eigenvector of \(A \) with positive coordinates (existing thanks to Frobenius-Perron).
For Polya urn case, any vector is eigenvector for $A_2(0^1)$.

Heuristic explanation: take, for simplicity, the balanced case, where total weight added at each step is constant. Then $X_n = \frac{R_n}{T_n}$, and $R_n = R_{n+1} - R_n; T_n = T_{n+1} - T$

$$X_{n+1} - X_n = \frac{R_{n+1} + R_n}{T_n + T_{n+1}} - \frac{R_n}{T_n} = \frac{T_n}{T_n + T_{n+1}} X_n = \frac{1}{n} \left(\bar{F}(X_n) + E_{n+1} + R_n \right),$$

where $E(E_{n+1} \mid X_n) = 0$

and $|R_n|$ is not too large ($\Sigma |R_n|/n < \infty$ a.s.)

Then some relatively easy results show that for any $[a, b]$

where $\int_a^b |F(x)| > 0, P(X_n \in [a, b]) \to 0$.

This is the "stochastic approximation" regime.
Back to Polya urns,
(Here $A=(1,0)$ and X is a marking all, so that $F(x) = 0$).
Consider any trajectory $(k_0, l_0), (k_1, l_1), \ldots, (k_n, l_n)$, consisting of jumps J_1, \ldots, J_n.

Proposition The sequence (J_1, \ldots, J_n) is exchangeable, i.e., that is

$P(J) = P(J_\sigma)$ for any permutation σ.

Proof: Direct check:

$P(J) = \frac{k_0 \cdot (k_0+1) \cdots (k_{n-1}) \cdot l_0 \cdots (l_n-1)}{(k_0+l_0) \cdots (k_n+l_n-1)}$

Exchangeable sequences have dramatic properties:
They (define) If J_1, \ldots, J_k, \ldots is an infinite exchangeable sequence, then it is a mixture — Bernoulli (p) sequences w.r.t. some measure μ on $[0, 1]$.

Proof is around the fact that $\frac{\# (J_k = R, k \in \mathbb{N})}{N}$ is a martingale.

It is worth noticing that finitely exchangeable sequences are not usually, mixtures, but are getting closer to them if they can be extended.

Example Consider exchangeable sequences of length 2.

RR \quad RB \quad BR \quad BB

a \quad p \quad p \quad γ

$a + 2p + \gamma = 1$
$d=\phi=0$, $\mu=\frac{1}{2}$ is exchangeable, but not extendable to length 3 (BBB BRR BRR BBB).

$\alpha \approx \mu \approx 0$

$x = z + \sqrt{3}$ $\beta = \frac{(a+b)}{3}$ $y = y + \frac{1}{2}$

As the distribution becomes extendable to longer sequences, it approaches blue region.

Another appearance of exchangeable sequences — in Edge Reinforced Random Walks.