Quick reminders:
\[\limsup_{n \to \infty} a_n = \lim_{N \to \infty} \left(\sup_{n \geq N} a_n \right) \]
\[a_1, a_2, a_3, a_4, \ldots \]
\[(A_1 \supset A_2 \supset \ldots \supset A_N \supset A_{N+1} \supset \ldots) \text{ is any decreasing sequence has a limit (either } -\infty \text{, or it is bounded)} \]
\[\text{Similarly, define } \liminf_{n \to \infty} a_n. \]

Example: If \(a_n \) runs through all rational numbers in \([0, 1]\), find \(\limsup a_n \) & \(\liminf a_n \).

Similar tricks for sets. If \(\{A_n\}_{n=1}^\infty \) is a sequence of sets in \(\mathbb{Q} \), then
\[\lim A_n = \bigcap_{N=1}^{\infty} \left(\bigcup_{n \geq N} A_n \right). \]

\[\sup \mathbb{Q} \subseteq \bigcup \mathbb{Q} \]

\[\bigcap \mathbb{Q} \subseteq \left[\frac{1}{5}, \frac{2}{5}, \ldots \right] \]
In words: $\bigcap_{n} A_n = \{x: x \in \text{infinitely many of } A_n\}^3$

Exercise: Represent A_n as a $\{0,1\}$-valued function on Ω: $\alpha \in A_n \iff \mathbb{1}_{A_n}(\alpha) = 1$. Then $x \in \bigcap_{n} A_n \iff \bigcap_{n} \mathbb{1}_{A_n}(x) = 1$

Similarly, $\bigcup_{n} A_n = \bigcap_{n} A_n$. In words, $\alpha \in \bigcup_{n} A_n$ if α belongs to all but finitely many sets of $\{A_n\}^3$.

Exercise: Express $\lim_{n} A_n$ in terms of $\mathbb{1}_{A_n}$, $\omega \in \Omega$.

Algebras of sets

Collections — sets closed under standard operations.

Algebra generated by a collection of sets: minimal algebra containing them all.

$A \subset 2^{\Omega}$ of subsets \mathcal{A} of Ω algebra if

$A, B \in \mathcal{A} \Rightarrow \mathcal{A}$ algebra if

$A \cup B, A \cap B, A^c \in \mathcal{A}$
\(\sigma \)-algebra: exactly the same, but countably many operations now allowed. Big difference! Algebra generated by all rational segments in \(\mathbb{R} \) is boring; \(\sigma \)-algebra contains subset of algebraic numbers (\(\mathbb{Q} \cap \mathbb{R} \)).

Counting algebras:

- \(A_1 \) is finer than \(A_2 \) (or \(A_2 \) is coarser than \(A_1 \)) if \(A_1 \subseteq A_2 \).
- Finest of them all: \(2^\mathbb{Q} \) — all subsets of \(\mathbb{Q} \).
- Coarsest: \(\{ \emptyset, \mathbb{Q} \} \).

If \(C \) is some collection of subsets, \(\sigma(C) \) is the coarsest \(\sigma \)-algebra containing \(C \).
\(-\)algebras on countable sets \(\mathcal{D}\) are easy to describe: just partition \(\mathcal{D}\) into smallest pieces of it.

Conversely, any \(\sigma\)-algebra generated by a countable partition is behaving like a \(\sigma\)-algebra on \(\mathbb{N}\).

Exercise: For \(\mathcal{D} = \mathbb{N} \times \mathbb{N}\), describe \(\mathcal{F} = \sigma(\mathcal{A} \times \mathcal{A}, \mathcal{A} \subset \mathbb{N})\), smallest \(\mathcal{A}\) containing 3.
For a σ-algebra \(\mathcal{A} \) on \(\Omega \), a measure is an \(\sigma \)-additive function (valued wherever one can add) \(\mu : \mathcal{A} \to \mathbb{R} \) (typically, \(\mathbb{R} = \mathbb{R} \)).

Additivity: \(\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) \)

As, for disjoint \(A, B \), \(\mu(A \cup B) = \mu(A) + \mu(B) \).

\(\sigma \)-additivity: the same true for countable families of disjoint sets:

\[\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) \].

N3: want the sum on the right converge, when.

If \(\mu \) is valued in \(\mathbb{R}_{++} \) and \(\mu(\Omega) = 1 \), \(\mu \) is probability measure: convergence is not an issue.
Example: \(\mu(A) = \frac{|A|}{|Q|} \) for finite \(Q \).

Caution \(\sigma \)-additivity \(\Rightarrow \) measure on countable \(Q \)

is fully characterized by measure on finite sets:

\[\mu(A) = \sum_{a \in A} \mu(\{a\}) \quad \text{(assume here that} \ A = 2^Q \).

Not so for merely finitely additive measures: there are \(\mu: \mu(a) = 0 \) for any \(a \in Q \), yet \(\mu(Q) = 1 \).

Example: For any ultrafilter \(\mathcal{F} \), set \(\mu(A) = \left\{ \begin{array}{ll}
1 & A \in \mathcal{F} \\
0 & \text{otherwise}
\end{array} \right. \)

Call elements of \(Q \) elementary outcomes; \(A \in \mathcal{F} \)-events.
Fubini Theorem (for countable sets)

If \(\mu \) is a non-negative measure on \(\mathcal{O}_1 \times \mathcal{O}_2 \),
then \(\mu(A_1 \times A_2) = \sum_{a_i \in \mathcal{O}_1} \mu_i(a_i) = \sum_{b \in \mathcal{O}_2} \mu_2(b) \),
where \(\mu_i(a) = \mu(a \times \mathcal{O}_2) = \sum_{b \in \mathcal{O}_2} \mu(a, b) \) i diff for \(\mu_2 \).

1. Reordering elements in an infinite sum can be tricky.

Example: \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln 2 \); can be reordered to any given sum (not if permuted terms are bounded).

But, if summands are positive, we are fine.

- \(S := \sum \mu(a, b) = \lim_{N \to \infty} \sum_{a_i, b \leq N} \mu(a, b) =: S_N \)
- If \(S = \infty \), then \(\sum_{a \in \mathcal{N}} \mu_i(a) \geq S_N \), so also \(\to \infty \).
- If $S < \infty$, then $\sum_{a \leq N} \mu_1(a) = S_N$, so $\sum_{a \leq N} \mu_1(a) \geq S$.

But if it overshoots, then for some N_1, $\sum_{a \leq N_1} \mu_1(a) = S + c, c > 0$

and then for some $k_2, l = 1, \ldots, N_1$, $\sum_{b \leq k_2} \mu(a, b) > \sum_{b \leq k_2} \mu(a, b) - \frac{c}{2N}$

So $\sum_{a \leq N} \mu(a, b) \geq (S + c) - \frac{c}{2} > S$, contradiction.

$\sum_{a \leq N} \mu(a, b) \geq (S + c) - \frac{c}{2} > S$, contradiction.
Random variables

A function $X: \Omega \rightarrow \mathbb{E}$ between two measurable spaces is a (\mathbb{E}-valued) random variable if $X^{-1}(A) \in \mathcal{F}_\omega$ for any $A \in \mathcal{E}_\mathbb{E}$. Easy case: \mathbb{E} is countable (then we request that $X^{-1}(a) \in \mathcal{F}_\omega$ for any $a \in \mathbb{E}$) or $\mathbb{E} = \mathbb{R}$, with Borel σ-algebra (generated by intervals).

Given a r.v. X (or a collection of r.v. X_k), we define σ-algebra $\sigma_\omega(\{X_k\}_{k \in K})$ as smallest σ-algebra such that all X_k are r.v. (equivalently σ-algebra generated by $\{X_k^{-1}(A)\}, A \in \mathcal{F}_\mathbb{E}_K$)
Example \(\Omega = \{ \omega = \omega_1, \omega_2, \ldots \} \) \(\omega_k \in \{ H, T \} \).
\(\mathcal{F} = \sigma \left(\mathcal{A}_N \right) = \sigma \left(\omega_1, \ldots, \omega_N = w_1, \ldots, w_N \in \{ H, T \}^N \right) \).

Then \(\omega_k \) is \(\{ H, T \} \)-valued r.v., \(\mathcal{A}_N = \sigma (\omega_k, k \in N) \).
(Space of coin tosses).

Random Variables & Probability

A probability measure \(P \) on \((\Omega, \mathcal{F}) \), and an \(E \)-valued random variable \(X \) define a probability measure on \(E \), given by \(P_X (A) = P [X^{-1} (A)] \).

Example For \(\Omega \) as above (coin tosses), set
\(P (\omega : \omega_1, \ldots, \omega_N = w_1, \ldots, w_N) = 2^{-N} \) for any sequence \(\omega \) (a.k.a. fair coin). Then \(P (\omega : \text{there are } k \text{ heads among first } n \text{ tosses}) = 2^{-n} \binom{n}{k} \).
Example: Consider the subset $A \subseteq \Omega$ given by $A = \{w: w_1 = H, \text{ and first double } \text{TT}\}$. Find $\mathbb{P}(A)$.

Conditional Probability

If A, B are events with $\mathbb{P}(B) > 0$, we set

\[
\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad [\mathbb{P}(B|B) = 1]
\]

Thus, if $\{B_n\}_n$ is a partition of Ω (i.e. $\Omega = \bigcup B_n$, $B_k \cap B_l = \emptyset$, $k \neq l$), then

\[
\mathbb{P}(A) = \sum \mathbb{P}(A|B_k) \mathbb{P}(B_k) \quad [\text{"Total prob. law"}]
\]

Def: Events A, B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$

Exercise: A, B are independent iff A_i, B_i are.
Expectation & Conditional Expectation

For a random variable with countable range \(X(\Omega) =: \mathcal{E} \)
we define
\[
\mathbb{E} X = \sum_{a \in \mathcal{E}} a \cdot \mathbb{P}(X = a)
\]
(for countable \(\Omega \),
this is the same as
\[
\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega) - \text{ by TBM.}
\]

Good way to think of \(\mathbb{E} \) as a linear functional,
taking values in wherever \(\Omega \) lives.

Def: \(X, Y \) are independent if
\[
\mathbb{P}(X = a, Y = b) = \mathbb{P}(X = a) \cdot \mathbb{P}(Y = b)
\]

Proposition: \(X, Y \) independent \(\Rightarrow \) \(\mathbb{E} XY = \mathbb{E} X \cdot \mathbb{E} Y \)
\[
\mathbb{E} XY = \sum_{c} c \cdot \mathbb{P}(XY = c) = \sum_{c} \sum_{a, b : ab = c} a b \cdot \mathbb{P}(X = a, Y = b) = \sum_{a, b : ab = c} a b \cdot \mathbb{P}(X = a) \cdot \mathbb{P}(Y = b)
\]
Def For a random variable X, and an event B, \[E(X|B) = \sum a \cdot P(X = a | B) = \frac{\sum a \cdot P(X = a, B)}{P(B)} \]

Def For a countable σ-algebra \mathcal{A}, $Y = E(X|\mathcal{A})$ is an \mathcal{A}-measurable random variable such that $E(Z|X) = E(Z|Y)$ for any \mathcal{A}-measurable Z. Or \[E(X|\mathcal{A})(\omega) = E(X|\mathcal{E}) \text{ for } \mathcal{E} \text{ an elementary partition} \]

$E X$ is just $E(X|\mathcal{A})$ for $\mathcal{A} = \{∅, \Omega\}$.

$E(X|B)$ is $E(X|\mathcal{A})$ on B, for $\mathcal{A} = \{∅, B, B^c, \Omega\}$.
If \(X \) is already \(\mathcal{A} \)-measurable, \(\mathbb{E}(X|\mathcal{A}) = X \)

If \(\mathcal{A}_1 \) is finer than \(\mathcal{A}_2 \) (\(\mathcal{A}_2 \subseteq \mathcal{A}_1 \)), then
\[
\mathbb{E}(\mathbb{E}(X|\mathcal{A}_2)|\mathcal{A}_1) = \mathbb{E}(X|\mathcal{A}_2).
\]
\[
\mathbb{E}(\mathbb{E}(X|\mathcal{A}_1)|\mathcal{A}_2) = \mathbb{E}(X|\mathcal{A}_2)
\]

Good way to think about \(\mathbb{E}(X|\mathcal{A}) \) as a projector from space of all r.v. to subspace of \(\mathcal{A} \)-meas. r.v.

Filtrations

Increasing families of \(\sigma \)-algebras are called filtrations (typically they model information flow)

Exercise: Find \(\mathbb{E}((X+Y)^2|\mathcal{A}) \), where \(\mathcal{A} = \mathcal{A}_X \), generated by \(X \)
Moments of a r.v.

\[M_k := \mathbb{E} X^k. \] The numbers (if they are finite!) can be combined into exponential generating \emph{func}tions \[M_x(t) = \sum_{k=0}^{\infty} M_k \frac{t^k}{k!} = \mathbb{E} e^{tX} = \sum \frac{e^t}{a} \cdot P(X=a) \]

For independent \(X, Y \) \[M_{x+y}(t) = M_x(t) \cdot M_y(t) \]

Of course \[\mathbb{E} X^k = \left(\frac{d}{dt} \right)^k M_x(t) \big|_{t=0} \]

Taking \(L_x := \log M_x \) gives the \textit{cumulant} \textit{exponential generating function,}

\[L_x(t) = \sum \frac{C_k(X)}{k!} \frac{t^k}{k!}, \quad C_i = M_i = \mathbb{E} X^i; \]

\textit{Exercise} \[C_2 = \mathbb{E}(X^2) - (\mathbb{E} X)^2 = \text{Var} X. \]
Convex functions & Jensen inequality

If \(f \) is convex, i.e.
\[
f\left(\frac{x_1 + x_2}{2}\right) \leq \frac{f(x_1) + f(x_2)}{2}
\]
then
\[
f(\mathbb{E}X) \leq \mathbb{E}(f(X)).
\]

Proof. For any \(x \), there is a linear function \(l(\xi) = f(x) + k \cdot (\xi - x) \) such that \(f(\xi) \geq l(\xi) \). Then
\[
\mathbb{E}f(X) \geq f(x) + k \mathbb{E}X.
\]
Choosing \(x = \mathbb{E}X \) gives the desired.