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1 Introduction
Morse theory associates to a smooth function on amanifold the collection of its critical points
with their local descriptors (such as the values at the critical points, or the indices for non-
degenerate critical points). Morse theory became a powerful tool to characterize both the
function and the underlying manifold in different contexts, such as spectral theory of differ-
ential operators, or diffusions on manifolds.

An application of the Morse descriptors in data analysis emerged over the past decade,
popularized under the name of persistent homology. The originalmotivation behind the notion
was to provide a scale-independent toolbox for understanding the topology of the underly-
ing, unknown model for the data, with the study of the properties of the function defining
the persistence being an intermediate byproduct. With time, persistent homology became
however, a powerful tool to sketch the properties of the function itself.

The analysis of the mapping that associates to a function its persistent homology is rather
subtle, and it is natural to attempt to understand its output on some "typical functions" prox-
ied, customarily, by a realization of a random function. While in general precise character-
ization of the output of the persistent homology black box is rather implicit (compare, for
example, [AT11,KM10,BA11]), there is a class of random functions where this output can be
described very precisely: trajectories of certain Brownian motions. This is the central object
of study of this paper. We use the standard techniques of Brownian motions to investigate in
details 0-dimensional persistent homology, interpreted as a persistence diagram point pro-
cess. In particular, we find the intensity density and 2-point correlation functions for the
standard Brownian motion with drift.

While understanding the structure of persistent homology for random univariate func-
tions was the starting point of this paper, our findings address a somewhat finer descriptor
∗Partially supported by NSF via grant DMS-1622370
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for them than just "barcodes". Specifically, as we discuss below, for univariant functions,
persistent homology is just a sketch of a finer invariant of the function, its merge tree. In par-
ticular, each bar of the zeroth persistent homology comes with a right- or left- (F- or M-, in
our nomenclature) orientation, chirality, and we find relative frequencies of each. We also
present a convenient framework to describe ever more involved behavior of the function, of
which the barcodes are just the simplest example.

Main qualitative results of this paper are the formulae for the density of the PH0 point
process and its 2-point correlation functions (Proposition 4.3 and Theorem 6.2) and the ex-
pected excess of F over M, Theorem 5.5.

The results of this paper should be seen in the general context of search for reparametriza-
tion invariant approaches to data analysis, in our context, to the analysis of time series. Chang-
ing the coordinates corrupts many traditional tools (such as Fourier analysis, or parametric
statistics). By contrast, persistence diagrams, or the finer invariants described in this paper,
or the characteristics like unimodal category [BG18] survive compositions with any home-
omorphism, and therefore describe patterns independent of the semantics attached to the
domain coordinates.

The structure of the paper: in Section 2 we recall basics of persistent homology, merge
trees and introduce our notion of chirality. In Section 3 we introduce our tool, automata,
and explain how they help to count the bars straddling an interval. In Section 4 we couple
automata and Brownian motions, and use this technique in Section 5 to evaluate the average
numbers of bars of different chiralities in the Brownianmotionwith constant drift. In Section
6 the 2-point correlation functions for PH0 is derived.

In Appendix, inter alia, we present an efficient algorithm for computing PH0 for time
series.

2 Persistent Homology

2.1 Zero-dimensional persistent homology of a function
Consider continuous function f : X → R on a topological space X. Sublevel sets of f define
a filtration of X by Xs := {f 6 s}. Persistent homology corresponding to such filtration is
the collection of morphisms Hkmst : Hk(s) → Hk(t),k = 0, 1, . . . induced by the natural
embeddings mst : Xs ↪→ Xt, s < t for any s, t (homologies Hk(s) := Hk(Xs) in this note are
understood as singular homologies with coefficients in a field).

Standard results on persistent homology theory (see, e.g. [EH10,Oud15]) imply that for
reasonable filtrations, the collection of the homology groups andnaturalmorphisms {Hk(s)}s, {mst}s<t
decomposes, for any k > 0, into a collection of isomorphisms between finite-dimensional
spaces, referred to as bars. A conventional way to visualize these bars is to place a point
charge at (b,d) ∈ R2 in the half-space b < d above the diagonal in the two-dimensional
plane for the bar starting at b and ending at d, the weight being the dimension of the cor-
responding vector space. This results, for each k > 0 in what is known as the k-dimensional
persistent homology diagram PHk.

Wewill identify k-dimensional persistence diagramwith the sumof delta-functionsweighted
by the dimension of the bar. This gives a positive measure (still denoted as PHk) supported
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by the half-plane {b 6 d}. The resulting counting measure is a convenient tool to describe
properties of the persistence diagram.

In general, the total mass of the persistence measures PHk can be infinite, and in fact, as
we prove in [BW16], it is infinite for generic Lipschitz or Hölder functions on triangulable
spaces with length metric.

However, the contents of the displaced quadrants Q(b∗,d∗) := {b 6 b∗,d > d∗} are finite
for all b∗ < d∗ for the so-called tame filtrations (or tame functions, for the function-generated
filtrations) [Oud15]. Again, continuous functions on metric spaces with reasonable moduli
of continuity (such as Lipschitz or Hölder functions) are tame.

Notice that the points in Q(b∗,d∗) correspond to bars straddling the interval [b∗,d∗].
In this paper we deal exclusively with 0-dimensional persistence homologies PH0 on 1-

dimensional spaces.

2.2 Merge trees
Recall that 0-dimensional persistence diagram PH0 of the filtration associated with a func-
tion f can be defined also without invoking homologies, namely by tracking the connected
components of the subgraphs of the function. This procedure is codified by the notion of
merge trees associated with f.

Definition 2.1. Let X be a path connected topological space, and f a continuous real-valued function
on X. Fix an interval B = [s−, s+]. We assume that the set Xs+ is path connected (otherwise, we will
get a merge forest). The Merge Tree Tf of f over the range B is the topological space which coincides as
a set with the union

Tf := qs∈B(Xs/ ∼)× {s},

where ∼ is the relation of being within the same path-connected component (so that Xs/ ∼ is the set
of the connected components of the sublevel set Xs). The merge tree is equipped with the roughest
topology such that the function taking the class of (x, s) to s is continuous.

We will be referring to the (well-defined) value of f at each point of the merge tree as its
height (and keep notation f).

The term merge reflects the obvious from the definition observation that the components
of the subgraph can only merge as the level grows, but cannot branch1. A leaf (valency one
vertex) of the merge tree corresponds either to the unique component Xs for large enough s
(we will declare this the root of the merge tree), or to a local minimum.

For any pair of levels s < t, and a connected component of C of Xs, there is a unique
connected component C ′ ⊂ Xt containing C. This correspondence is, of course, the natural
mapping H0(s)→ H0(t) used in the definition of the persistent homology.

In general themerge trees can be quitewild even for Lipschitz functions (can have vertices
of infinite degrees etc).

1Our trees grow downwards.
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2.2.1 From merge trees to PH0

Persistence diagrams can be reconstructed from the merge tree using the following recursive
procedure, relying on the Elder Rule [EH10]:

• Find a global minimum (a leaf of the merge tree with the lowest height), and find the
unique path to the root of the merge tree. The resulting pair of heights, from lowest to
highest, is a recorded as a point on the persistence diagram.

• We will refer the path from the selected bottom leaf to the root as the stem of the
(sub)tree. Removing the stem leaves a forest (possibly, empty) of merge trees. We will
say that the stems of the each of the resulting subtrees are attached to the stem just re-
moved.

• Iterate the procedure on each of the resulting trees recursively. This results in a pile of
stems, each corresponding to a bar in the persistence diagram.

From the construction of the stems, it is clear that a stem [b ′,d ′] attached to its parent
stem [b,d] satisfies b < b ′ < d ′ < d. In terms of the persistent diagrams, a stem is located
North-West off its parent.

The decomposition of a tree into a pile of stems erases a lot of information about the
original function: the parentage relationships between stems are lost. This is one source of
ambiguity if one attempts to reconstruct the merge tree from its persistence diagram (pile of
stems).

Another source of ambiguity (for univariate functions, which are the focus of this paper)
is the fact that a stem can be attached to its parent on the right or on the left side.

In combinatorial terms, the merge tree associated to a function on an interval is equipped
the structure of a plane tree: this means that at each internal vertex one fixes the order in
which branches are attached to it.

2.2.2 Univariant Functions and Trees

In our situation, when the underlying space is an oriented interval, the merge tree (together
with its planar embedding) generates in the standard fashion its contour or height walk, also
known as the Dyck path (see, e.g. [LG05]). Figure 1 illustrates this relationship.

It iswell known that the relation between a function and its planarmerge tree is essentially
bijective:

Lemma 2.2. The height walk corresponding to the merge tree Tf is right-equivalent (i.e. equal up to
a reparametrization of the argument) to f.

2.2.3 From PH0 to merge trees

Constructions above essentially answer the natural question about the space of univariate
functions generating a particular collection of bars as its PHo diagram. The extra data nec-
essary to rebuild the planar merge tree (and therefore the function generating that merge
tree, up to reparametrization) from a (locally finite) collection of bars, are the data a) on their
parental attachments, and b) on their planar order.
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Figure 1: Graph of a function (left), its merge tree and the corrsponding contour walk (mid-
dle) and the pile of stems (bars).

This result was first published by J. Curry [Cur17]: Let f be a univariant function with the
longest bar −∞ 6 b∞ < d∞ 6 ∞. Assume that the number of bars straddling each interval
(i.e. the PH0-content of Q(b,d)) is finite (i.e. the function is tame).

Proposition 2.3 ( [Cur17]). The merge tree is uniquely reconstructed by the (arbitrary) attachment
relation on the stems (how each bar with exception of the longest one is attached to one of the straddling
bars), and by the chiralities of the stems.

We remark that one can generalize this Proposition 2.3 to functions on higher-dimensional
Euclidean spaces Rd as follows:

Theorem 2.4. The space of Morse functions on Rd with all critical points of neighboring indices
0 and 1 and fixed c-persistence diagram and the bar attachment data is homotopy equivalent to the
product of (d− 1)-dimensional spheres, one for each bar.

The proof will appear elsewhere.

2.2.4 Chirality

A bar (i.e. a point (b,d) in the persistence diagram) corresponds to two events, birth of a
connected component of the sublevel set X· at height b, and its death, i.e. merger of two
connected components, at height d. Clearly, this implies that there exists a (local) minimum
of fwith the critical value b and a (local) maximum with the critical value d.

Definition 2.5. We will be referring to the critical points corresponding to a par (b,d) in PH0 as
coupled.

Given a coupled pair of local maximum and minimum, we will refer to the right or left
orientation of 0-dimensional bar in a persistence diagram of a univariate function, when it
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is attached to its parent stem, as chirality. There are two possible chiralities which we will
denote asM and F.2

Formally,

Definition 2.6. A bar (b,d) = (f(s), f(t)) (here s, t are the critical points corresponding to the
critical values b,d) is an M if the local maximum follows local minimum, i.e. if s < t, and an F
otherwise, - i.e. if s > t.

Figure 2: Coupled critical points: M(in red) and F(in green).

Remark 2.7. Chiralities might be a useful tool to capture potential asymmetry of a time series with
respect to the time reversal, a prominent topic in econometric literature. In [LNR+12], an approach
somewhat resembling our chiralities was proposed.

In Section 5 we will compute average excess of F over M in Brownian trajectories with
drift.

3 Bars and Automata
In this section we will set up necessary apparatus to analyze bar decomposition of a univari-
ate function. Our key observation is that bars in a persistence diagram for a function on the
real line are in direct correspondence with the windings of the function around an interval.

In what follows we will be working primarily with the functions on an interval which
tend to their global minimum on the left end, and to their global maximum on the right.
One can always relate this particular version with other settings (say, where the function
tends to its global supremum on both ends), by adding a monotonic function interpolating
global maximum and minimum at one of the interval ends: such a transformation changes
the persistence diagram in an obvious way.

2The mnemonic rule here is KarlMarx, insisting that the (capitalist) economy fundamentally descends, de-
spite temporary upturns, and Milton Friedman, believing in systemic growth interrupted perhaps with occa-
sional slumps.)
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3.1 Winding of a function around an interval
Recall that we say that a point (b,d),b < d in the persistence diagram (or the corresponding
bar [b,d]) straddles the interval [b ′,d ′] if b 6 b ′ < d ′ 6 d.

Given an interval [b,d], and a continuous function f on (t0, t1) = I ⊂ R, starting below b

and ending above d on I (i.e. lim supt→t0 f < b < d < lim inft→t1 f), one can define sequences
of alternating b- and d-times tb0 < td1 < . . . < tdk < t

b
k < . . . by setting, iteratively,

tb0 = t0; for k > 1, tdk = min{t : f(t) = d, t ∈ I, t > tbk−1}, t
b
k = min{t : f(t) = b, t ∈ I, t > tdk}.

(1)
(We set the minimum over an empty subset of I to be t1).

This sequence is obviously finite, if the interval I is bounded.

Definition 3.1. Awinding of f around the interval [b,d] is a pair {tbk, tdk,k > 1} in the sequence
thus generated.

(See Fig. 3, right display, for an example of a function with two windings around an
interval.) We remark, that the continuity of f implies that the set of windings in any compact
subset of I is finite.

One has the following

Lemma 3.2. The number of the bars in PH0(f) straddling the interval [b,d], or, equivalently, the
PH0 content of the quadrant Q(b,d), is equal to the number of windings of f around [b,d], plus one.

Proof. On one hand, to each winding (tbk, t
d
k) one can associate the unique connected com-

ponent of Ib := {f 6 b} having tbk > t0 as its left end. On the other hand, to any component
of [t−, t+] ⊂ Ib outside the one having t0 in its closure, one can associate the winding with
the left end t−. This is manifestly a bijection between the windings and all but the leftmost
components of Ib.

This definition of windings is identical to the well-known construction of "upcrossings"
used in the standard proof of Doob’s martingale convergence theorem.

3.2 Finite automata
To study windings of a function around an interval, or more generally, the interactions of
the function with one or more intervals, it is convenient to encode themwith a scheme using
finite automata.

3.2.1 States, levels, transitions

The finite automata wewill be dealingwithwill have states s ∈ Swith real numbers rs, s ∈ S,
the states’ levels, assigned.

Each state will have at most two potential transitions. Special absorbing statesω· have no
outgoing transitions; a unique starting state α has no state transitioning into it. Each non-
absorbing state has two potential transitions and is a target of at least one transition.

Of two transitions possible from a non-absorbing state s, one leads to a state with a higher
level; one to a state with a lower level.
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The shortest interval containing the labels of all of the finite states is called the span of the
automaton.

3.2.2 Symbolic trajectories

Fix a finite automaton described in 3.2.1 with the span (b∗,d∗).
Consider a continuous function f on an interval I = (t0, t1) crossing the span of the au-

tomaton: such a function starts below the span of the automaton, and ends above it (i.e.
f(t0)+ < b∗; f(t1−) > d∗). Each function crossing the span defines a finite symbolic trajec-
tory: a sequence of states and transitions between them. Transition to one state to another
happens when the function, after taking the value at the level of the former state, first hits
the level of the latter state.

Namely, assume that the finite automaton is in a state s at instant t: f(t) = rs. If there are
two outgoing transitions out of s leading to the states s+ and s−, with rs+ > rs > rs− , then
the next state is whichever level, rs+ or rs− the function f reaches first. If there is just one
transition from s, (leading to a state with a higher level), the automaton transitions there as
soon as the function hits that level after the time t.

Figure 3: The finite automaton counting windings of a function around an interval. The
symbolic trajectory corresponding to the function shown above is α → δ → β → δ → β →
δ→ ω. There are two transitions δ→ β, and two windings around the interval [b,d].

The resulting sequence of states and arrows is called symbolic trajectory corresponding to
the function f.

The following is immediate:

Lemma 3.3. The symbolic trajectory of a continuous function crossing the span of a finite automaton
is finite.
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3.2.3 Automata and windings around an interval

The simplest useful finite automaton of this kind described above is (shown on he left display
of Fig. 3) has a starting state α at level a; two finite states β and δwith levels b and d, and an
absorbing state ω with level o; with assumption a < b < d < o. The transitions are α → δ,
δ→ β, δ→ ω, and β→ δ.

Again, the following is immediate:

Proposition 3.4. For a continuous function f crossing the span of this automaton, the number of
δ → β transitions in the corresponding symbolic trajectory is one less than to the number of bars
straddling the interval (b,d) in the persistence diagram PH0 of f.

(Remark: The one extra bar is the "infinite" one, spanning the inf f and sup f.)

3.2.4 Other uses of symbolic trajectories

As a general remark, the automata introduced in Section 3.2 seem to be relevant in numerous
practical situations, e.g. in financial "technical analysis", an area of financial investment lore,
where the patterns of a stock or index performance are used to predict its future evolution
(see, e.g. [LMW00]). Among other problems with this approach one cites often the vague,
informalway the patterns are define. Onemight argue that using the automata formalism in-
troduced here one can define at least some of the patters rigorously, and pursue more formal
analysis of their predictive properties (see Appendix C).

4 Persistence Diagram for Brownian Walks
Our focus in this note on the properties of persistent diagrams for Brownian motions, the
simplest Markov processes with continuous trajectories.

Specifically, we consider Brownian motion with a drift, that is

f(t) = Bo(t) +mt, (2)

whereB is the standardBrownianmotion starting at 0, on the ray (0,∞). In this and following
sections we will be concerned with the persistence diagrams of a typical trajectory.

4.1 Persistence Diagrams as Point Processes
Almost surely, there is unique bar (b∞,d∞) = (inft>0 f(t),∞).

Other bars are finite, forming to a random persistence diagram PH0. Our interpretation
of this persistence diagram is to view it as a point process, a random measure consisting of
sum of δ(b,d) over all bars (b,d).

Tameness of the this point process, that is the fact that the content of any NW-quadrant
with its apex above the diagonal is almost surely finite, follows, again, from the mentioned
above general results in [BW16]) that the persistence diagram of anyHölder function is tame,
and well-known fact that the trajectory of the Brownian motion (with any smooth drift) is
almost surely 1/2-Hölder.
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4.1.1 Process decomposition

Following the definitions of Section 3.2.2, we consider symbolic trajectories corresponding
to (continuous) trajectories of our Brownian motions. To fit the definitions, we will assume
from now on that the span of the finite automaton used to define the symbolic trajectory is
contained in the positive half-line. Under this assumption, the trajectories of the Brownian
motion with drift cross the span a.s., resulting in (random) symbolic trajectories.

The times of transitions between the states of such symbolic trajectories are, clearly, stop-
ping times with respect to the filtration {Fτ}τ>0 generated by the Brownian motion, and the
sequence of states forms a Markov chain, as follows immediately from the strong Markov
property for Bm’s.

We will rely heavily on the standard fact that for any stopping time τ, the process Bmt−τ −
Bm(τ) is independent of Fτ.

4.1.2 Bars of Brownian motion with drift

As a corollary of Proposition 3.4 we obtain

Proposition 4.1. Consider standard Brownian motion with constant driftm > 0. Then total number
of bars in PH0-persistence diagram straddling an interval [b,d],b > 0 (or, equivalently, the PH0-
content of the quadrant Q(b,d) = {(x,y) : x < b < d < y}) is geometrically distributed with
parameter p = pm(∆) = 1− exp(−2m∆), where ∆ = d− b.

Proof. Indeed, the total number of windings around [x,y] is the total number of times the
transition δ → β in the symbolic trajectory is made. The probability that the trajectory of
the standard Brownian motion with driftm starting at y reaches x before escaping to infinity
(i.e. the stateω) is exp(−2m(y− x)). Strong Markov property implies that the the escapes to
infinity after each hitting of y are independent, proving the conclusion.

4.1.3 Invariance properties

Let us state explicitly two invariances.
First, by standard rescaling properties, and the invariance (under the reparameterization

of the argument) of the persistence diagrams imply that the same result - and all following
results on the distributional properties of the persistence diagrams and chiralities, - are valid
for Brownian motion with quadratic variation σ2 and drift mσ2. Hence we will restrict our
attention to the standard Brownian motions.

Further, the distribution of the PH0 content depends only on the length of the bar [b,d].
This is again an immediate property of the Markov property of the process, and is valid for
the laws of symbolic trajectories for any finite automaton as long as its span is within the
positive half-line:

Proposition 4.2. The distribution of a finite automaton with span in the positive half line remains
the same upon simultaneous shift of all state levels by the same constant, as long as the condition on
the span of the automaton are satisfied.

Proof. Indeed, shifting the levels of all states by a positive amount a would be reset to the
original automaton if one restarts the process when it reaches a.
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4.1.4 Intensity measure for PH0 for Brownian motion with drift

Corollary 4.1 immediately leads to an explicit expression for the intensity measure EPH0

for the point process of zero-dimensional persistence from standard Brownian motion with
drift:

Proposition 4.3. The intensity measure of PHo is supported by the halfplane above diagonal b < d,
and is given by the density

µ0 =
4m2e2m∆(1+ e2m∆)

(e2m∆ − 1)3
,

where ∆ = d− b.
In particular, near the diagonal the density explodes as 1/m(d− b)3.

Proof. By 4.1, the expected PH0 content of the quadrants Qb,d is

qb,d := EPH0(Qb,d) = pm(∆)/qm(∆) =
1

e2m∆ − 1
.

The density of the intensity measure is, clearly, given by

µ0(b,d) = −
∂2qb,d

∂b∂d
,

which gives the stated result.

In particular, the density grows as (m∆)−3 as ∆→ 0.

5 Chiralities in Brownian trajectories
Fix an interval B = [b,d]. Corollary 4.1 describes the distribution of the total number of the
bars PH0(Q(b,d)) of the Brownian motion with drift Bm straddling B. In this section, we
address the question: how many of them will beM, and how many F?

5.1 Deconstructing into the bars
For a trajectory with at least k straddling intervals there are k pairs of times, tb0 < td1 < tb1 <
. . . < tdk < t

b
k < t

d
k+1, when the corresponding symbolic trajectory reaches the δ and β states,

in turn.

5.1.1 Splitting the trajectory

We chop the trajectory Bm that straddles the interval I into 2k pieces, f↓l , f
↑
l , 1 6 l 6 k by

setting
f↓l(t) := Bm(tdl + t), 0 6 t 6 tbl − t

d
l ,

being the fragments of the trajectory traveling from δ to β, and

f↑l(t) := Bm(tbl + t), 0 6 t 6 tdl+1 − t
b
l ,

their upward counterparts.
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Proposition 5.1. Conditioned on the event that the number of bars straddling [b,d] is at least k, the
random processes f↑l , f

↑
l , l = 1, . . . ,k are independent. Moreover the processes f↑l , l = 1, . . . ,k are

identically distributed, as well as the processes f↑l , l = 1, . . . ,k are.

Proof. This follows, again, from the strong Markov property of the Brownian motion with
drift.

We remark that the distributions of f↓ are those of the standard Brownianmotion starting
at d and stopped once it reaches b, while the distributions of f↑ is that of the Brownianmotion
with driftm started at b and stopped when it reaches d.

The collection of the maximal values of the processes f↓l , l = 1, . . . ,k form the set of right
ends dl, l = 1, . . . ,k of the bars straddling I, while the minimal values of the processes f↑l , l =
1, . . . ,k form the set of their left ends bl, l = 1, . . . ,k.

Almost surely, these local maximal and minimal values are distinct.

5.1.2 Excursions, spans, walls

We will need a few definitions. For a point x in the domain I of f, we will call an excursion
the smallest subinterval of I having x as its boundary point, such that f− f(x) vanishes at the
endpoints of the interval, does not change its sign in its interior and is not identically 0 there.
The excursion can be right or left (depending one whether the interval has the shape [x,y] or
[y, x]), and it can be valley or hill, depending on whether the values of f between x and y are
greater or less than f(x) = f(y).

For any critical point x that is the endpoint of an excursion, right or left, we can the other
end of the excursion interval the wall of x.

We will call an interval a span, if the values at the endpoints of the interval are different,
and the sets where the function attains its maximal and minimal value are connected and
contain the endpoints (one for minimum, one for maximum).

We will refer to a function as generic if any wall of any critical point is not a critical point
itself. For example, function with all critical values different is generic, but genericity is more
general than that. We note that for generic functions the walls of critical points are unique.

The following lemma is immediate:

Lemma 5.2. Let t− < t1 < t2 < t+ be four ordered times for a generic function f. Then the critical
points t1 and t2 of f are coupled (as defined in 2.5) if and only if t− is the left wall for t2, t+ is the
right wall for t1 and [t1, t2] is a span.

The coupling between the left and right ends of the bars depends, clearly, only on the
relative ranks of the corresponding minima and maxima. We represent these two orders as
two permutations (sequences of the ranks {1, . . . ,k}): σ+ = (u1, . . . ,uk) and σ− = (l1, . . . , lk).

5.2 Symmetries of the process
The Proposition 5.1 implies

Proposition 5.3. Conditioned on the PHo(Qa,b) = k the permutations σ+ and σ− are independent,
uniformly distributed on the symmetric group Sk.
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Proof. Both statements follow immediately from the mutual independences of f↑l , f
↓
l , l =

1, . . . ,k.

Which of the local minima and maxima b·,d· are coupled, depends only on the permuta-
tions σ+,σ−.

For a permutation σ = (s1, . . . , sk) and an index 1 6 l 6 k, we define the left and the right
walls for l as

w−(l,σ) = max{m < l : sm > sl},w+(l,σ) = min{m > l : sm > sl} (3)

If the former set is empty, we formally set w−(l,σ) = 0; if the latter one is, we wil set
w+(l,σ) = k+ 1.

Recall that a record in a permutationσ = (s1, . . . , sk) is the index l such that sl > sm,m < l;
in our terms, an index is a record iff its left wall is at 0.

Return back to the situation of a trajectory Brownian motion with drift Bm with k bars
straddling the interval I, and the corresponding permutations σ+ = (u1, . . . ,uk) and σ− =
(l1, . . . , lk) of the local extremal values above and below d and b respectively. We augment
σ− by appending 0 on the left.

The following slightly cumbersome lemma expresses the coupling between the maxima
and minima in terms of permiattions σ−,σ+.

Lemma 5.4. Let 1 6 l 6 k, and l− = w−(l,σ+), l+ = w+(l,σ+) be its left and right wall with
respect to the permutation of ranks of local maxima of bars spanning I. Let n− = min{σ−(m), l− 6
m < l be the minimal rank among the local minima of the σ− between left wall of l and l (not
including). Similarly, let n+ = min{σ−(m), l 6 m < l+ be the minimal rank of the ranks of the local
minima of the σ− between l (included) and its right wall. Then the local maximum in the interval
[tdl , t

b
l ] is coupled to the local minimum in the interval [tbm, tdm+1] if and only if m is the position of

the larger of two ranks, n−,n+.

In particular, if the local index l is a record in σ+, it is coupled to an index on its right,
that is is a F.

Finally we can deduce the expected number of the excess of F’s over M’s in a Brownian
motion with drift.

Theorem5.5. Conditioned on the number k of bars straddling an interval I, in a trajectory ofBm,m >

0, the expected excess ofFoverM is equal to the expected number of records in a random k-permutation,
that is k-th harmonic sum,

E(F−M) = Hk = 1+ 1/2+ . . .+ 1/k. (4)

Proof. If ul is a record in σ+, it is necessarily an F. If it is not a record, it has proper left and
rightwalls, 1 6 l− < l < l+ 6 (k+1). Reversing the segments of σ+ between l−+1 and l+−1,
and the segment of σ− between l− and l+ − 1 is the bijection on the pairs of permutations
(σ−,σ+) flipping the chirality of l (and preserving the set of the records in σ+). Hence, the
expected excess of Fover M for non-record indices is zero.

Now, one can recall the standard formula on the number of records in a uniform permu-
tation (see, e.g. [Pit06]), and the result follows.
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Figure 4: There 5 bars straddling I in this picture. The permutations of maxima and minima
are, correspondingly, σ+ = (41235) and σ− = (035142). The walls for l = 3 are l− = 1 and
l+ = 4, and it is coupled with the first minimum.

Corollary 5.6. For Brownianmotionwith driftm , the expected excessE(F−M) in the bars straddling
an interval of length ∆ is

− log(1− exp(−2m∆)).

Proof. The sum (4) gives the excess conditioned on the number of straddling bars. Summing
these harmonic sums with weights pqk, where q = exp(−2m∆), the probability given by
Corollary 4.1, gives the desired result, after switching order of summation in the (obviously)
converging series.

In particular, the expected excess of F over M grows logarithmically (as | log(2m∆)|) for
smallm∆; consequently the fraction of the excess among all bars straddling a short interval,
disappears, as the length of the interval decreases to 0.

6 Automata and Correlation Functions for PH0.
In this section we will construct some more complicated automata and corresponding to
them Markov chains generated by symbolic trajectories of Brownian motions. These au-
tomata will be used then to derive some second-order characteristics of the PH0 point pro-
cesses.

6.1 Automata and Sums over Paths
Consider a general finite state automaton, with edges marked by elements of a finitely gen-
erated monoid (or, more mundanely, by polynomials in some collection of formal variables
x1, x2, . . . , xm), and a finite path π in the automaton, we define the weight w(π) of the path
to be the product of all the weights of the transitions.
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If the automaton supports a Markov chain, then the weights can also incorporate the
transition probabilities.

For a pair of states γ,γ ′ in the automaton, consider the formal power series (with non-
negative real coefficients)

Fγ,γ ′(z) =
∑
γ
π−→γ

w(π)z|π|, (5)

where the |π| is the length of π, and the sum is taken over all paths starting at γ and ending
at γ ′.

The usual rules – the most important being

Fγ,γ”(z) = δγ,γ” + z
∑
γ ′→γ”

w(γ,γ ′)Fγ ′,γ”(z),− (6)

apply, and allow one to compute the formal power series counting the weights of families of
paths in the automaton.

If the series Fγ,γ”(z) converges at z = 1 (perhaps, to a formal power series in other vari-
ables), omitting the argument zmeans that we substitute z = 1.

If the weights incorporate a Markov chain structure - as is the case n the construction of
the symbolic trajectories associated by automata to Brownianmotions, - one can compute the
probability distributions of the numbers of times a trajectory traverses particular arrows.

6.2 Higher Windings
Let I1 = [b1,d1], I2 = [b2,d2] are two intervals. We will be looking into the joint distribution
of the numbers b1,b2 of bars spanning these intervals.

Assume that the intervals are not nested, so that b1 < b2;d1 < d2. In this case, the relevant
automaton is shown on the Figure 5. Any continuous function that starts below b1 and ends
above d2 generates a symbolic trajectory. The following is immediate:

Lemma 6.1. The total number of windings around the interval I1 is counted by the number of travers-
ing the arrows marked with x (i.e. either δ1 → β1 or β2 → β1), while the number of windings around
I2 is given by the number of times the symbolic trajectory goes δ2 → β2 (edge marked y).

If the symbolic trajectory is derived from a trajectory of Brownian motion with drift, the
symbolic trajectory becomes a Markov chain. To compute its transition probabilities, we re-
call, that for Bm starting at s exist the interval [s−∆l, s+∆r] at the right (left) end is, respec-
tively,

p(∆l,∆r) =
1− e(∆l)

1− e(∆l + ∆r)
;q(∆l,∆r) =

e(∆l) − e(∆l + ∆r)

1− e(∆l + ∆r)
. (7)

Here and in what follows, we will be using notation

e(s) = exp(−2ms) (8)

for the character e(·).
Using this notation, the transition probabilities in the Markov chain on the Figure 5 and

the markings on the edges result in the weights given by the following table:
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Figure 5: Windings around a pair of intervals.

δ1 → β1 xq1 = xq(d1 − b1,d2 − d1)
δ1 → δ2 p1 = p(d1 − b1,d2 − d1)
β2 → δ2 p2 = p(b2 − b1,d2 − b2)
β2 → β1 xq2 = xq(b2 − b1,d2 − b2)
δ2 → ω p = p(d2 − b2,∞)
δ2 → β2 yq = yq(d2 − b2,∞);

(9)

all other transitions are probability 1.

6.3 Distributions of Windings
Using these weights, we can compute the distributions of the numbers of windings around
the intervals I1, I2.

Let
H(x,y) = Fα,ω(x,y) =

∑
α
π−→ω

w(π) =
∑
α
π−→ω

xk(π)yl(π)Pπ, (10)

where k(π), l(π) are numbers ofwindings of the pathπ around the intervals I1, I2,respectively,
and P(π) is the probability of the realization of the symbolic path π, and the summation is
over all paths starting in α and ending inω.

The formal power series (10) is, clearly, the generating function for the numbers of wind-
ings around the intervals I1, I2.

To find H(x,y) one uses the standard way of introducing the formal power series

Fα,s(x,y) =
∑
α
π−→s

xk(π)yl(π)Pπ, (11)

for all states s of the automaton, using the rules (6), and solving the resulting system of linear
equations for Fα,·.
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The work is shown in Appendix B: the final expression for the generating function H is

H(x,y) = −
(b1 − d1)(b2 − d2)

d1(b1 − d2) + b1(d2 − d1)x+ d1(b2 − b1)y+ b1(d1 − b2)xy
. (12)

where we denote bk = e(−bk);dk = e(−bk),k = 1, 2.

6.4 Correlation density
Using equation (12), we can easily find covariance of the numbersw1,w2 of windings around
the intervals I1, I2: indeed,

Cov(I1, I2) = Ew1w2 − Ew1Ew2 =
∂2 logH

∂x∂y

∣∣∣∣
x=y=1

. (13)

Performing the calculations results in

Cov(I1, I2) =
exp(−2m(d2 − b1))

(exp(−2m(d1 − b1)) − 1)(exp(−2m(d2 − b2)) − 1)
. (14)

Consider the covariance (14) as a function Cov(b1,d1,b2,d2) of the quarterplanes with
apexes at (b1,d1), and (b2,d2). It is clear, thanks to the bilinearity of the expectations (13),
that the second moment density function is given by

g2 =
∂4Cov(b1,d1,b2,d2)

∂b1∂d1∂b2∂d2
. (15)

Elementary but lengthy computations yield

Theorem 6.2. For non-nested intervals b1 < b2;d1 < d2, the 2-point correlation function for the
point process PH0 of 0-dimensional persistence for the standard Brownian motion with drift m is
given by

g2(b1,d1;b2,d2) =
64m4 exp(2b1 + b2 + 2d1 + d2)

(exp(2mb1) − exp(2md1))3(exp(2mb2) − exp(2md2))3
. (16)

7 Conclusion
The following problems appear natural to consider:

• Itwould be of interest to derive general expression for correlation functions of all orders.
There are some issues related to the combinatorics of the overlapping intervals (say,
computations of the Section 6 need to be modified for the nested pair of intervals b1 <
b2 < d2 < d1) which make this an appealing exercise.

• Similarly, the question of the distribution of the excess of F over M is of interest.

• As we mention in Appendix A, the behavior of the stack sizes in the algorithm for
finding the barcodes of a time series seems nontrivial and interesting, with random
updown permutation [Arn92] being the natural model for the algorithm input.
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• Generalizing to higher-dimensional domains seems difficult. One might consider the
results of [Pet08] as the first step to understanding persistent homology for random
functions in dimension 2; but most basic questions remain open.

8 Appendices

Appendix A: Finding the Bars
Finding the bars of a time series can be done quite efficiently.

Assume that a function is given as a time series, i.e. a list of its values f(k),k = 1, . . . ,N
at consecutive points t1 < t2 < . . . < tN between which the function is assumed to be
monotonic (say, linearly interpolating). Further we will assume that the function is generic.

We augment the series by setting f(0) and f(N + 1) to respectively global minimum and
maximum values: f(0) < f(k) < f(N+ 1),k = 1, . . . ,N.

The output is a list with entries having the structure (d, td;b, tb), where (d < b) is a bar,
and (td, tb) are the locations of the corresponding (local) maxima and minima.

The algorithm maintains at all times two stacks, one with local minima, one with local
maxima, ordered by critical value within each stack. Removals from the stacks happen in
pairs and produce bars.

Algorithm 1 One pass bar algorithm for time series.
Maxima, Minima← empty stacks . Initializing
Direction← +1 . Initially, the function increases
for t = 1, . . . ,N do

if (f(t) − f(t− 1))× Direction < 0 then . Direction changes, so either
if Direction = +1 then

Maxima.Push((t− 1, f(t− 1)) . add the local maximum
else

Minima.Push((t− 1, f(t− 1)) . ...or minimum to respective stack,
end if
Direction = −Direction . and record change of the direction.

else
if (Direction = +1&&f(t) > Maxima(0))||(Direction = −1&&f(t) < Minima(0)) then

Output(Maxima.Pop, Minima.Pop) . If hitting a wall, output a bar.
end if

end if
end for

Correctness of this algorithm follows immediately from Lemma 5.2 and the following
observation:

Lemma 8.1. If the interval [tk, tl] is a span, there are no critical points from the interior of the interval
in the stacks.

While the time execution of the algorithm is clearly linear in the length of the time series,
an interesting question arises on the depth of stacks (memory) required for its execution. In
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the worst case (when the local maxima are descending and the local minima ascending) the
depth required is linear as well. What about the average case?

We remark that one can adapt this algorithm to register arbitrarily complicated snake-like
patterns in time series.

Appendix B: Generating functions for windings around two intervals
Simplifying the notation from Fα,s to Fs, we arrive, using (6) we see that

Fα = 1
Fd1

= Fα + Fb1

Fb1
= xq(d1 − b1,d2 − d1)Fd1

+ xq(b2 − b1,d2 − b2)Fb2

Fd2
= p(d1 − b1,d2 − d1)Fd1

+ p(b2 − b1,d2 − b2)Fb2

Fb2 = yq(d2 − b2,∞)Fd2

Fω = p(d2 − b2,∞)Fd2
.

(17)

Here we used the notational convention (7).
Solving for Fω is routine, the result is

H(x,y) = pp1/(1− xq1 − yqp2 + xyq(q1p2 − p1q2)) (18)

where we use shorthands

p = p(d2 − b2,∞);q = q(d2 − b2,∞);

p1 = p(d1 − b1,d2 − d1);q1 = q(d1 − b1,d2 − d1);

p2 = p(b2 − b1,d2 − b2);q2 = q(b2 − b1,d2 − b2).

Using the expressions (7) for p.,q we see that H(x,y) is given by

−
(e(b1) − e(d1))(e(b2) − e(d2))

e(d1)(e(b1) − e(d2)) + e(b1)(e(d2) − e(d1))x+ e(d1)(e(b2) − e(b1))y+ e(b1)(e(d1) − e(b2))xy
.

Appendix C: Automata and Patterns
Financial folklore often deals with patterns that can be easily translated into the language of
finite automata. Without going into details here, we just illustrate encoding one of more pop-
ular pattern in "technical analysis", namely "head and shoulders" [OC95]. We suggest that
most of the patterns of technical analysis can be expressed using the machinery of automata
introduced in Section 3.

(Remark that – supporting the impression of very informal, folklore character of themeth-
ods of technical analysis, –while often the pattern is described, as in op.cit., as a reparametriza-
tion invariant feature, other sources, including the often cited study [LMW00], use various
tools, like smoothening, that are destroying this invariance.)

The Figure 6 below shows an automaton capturing the "head and shoulders" pattern at a
particular level. Each passage through the blue state indicates occurrence of the pattern.

Rigorous, codified representation of patterns might lead to scientifically solid investiga-
tions of the actual efficiency of technical analysis and its inexplicable lure.
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Figure 6: Finite automaton capturing the so-called "head-and-shoulder" pattern.
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