(1)
It is immediate that good will be transported from site \(l \) to \(k \) with \(k < l \). So the variables are \(x_{kl} \), the amount of goods transported from \(k \) to \(l \), \(k < l \). Altogether, \(N(N - 1)/2 \) variables. And we need to solve

\[
\min \sum_{0 \leq k < l \leq N} |l - k| x_{kl},
\]

s.t.

\[
\sum_{k=0}^{l-1} x_{kl} - \sum_{k=l+1}^{N} x_{kl} = 2l - N, \quad l = 0, \ldots, N,
\]

\[x_{kl} \geq 0.\]

Dual problem has variables \(y_l, l = 0, \ldots, N, \)

\[
\max \sum_l y_l (2l - N),
\]

s.t.

\[-y_l + y_m \leq (m - l), \quad 0 \leq l < m \leq N.\]

It is easy to guess a primal feasible plan, say \(x_{kl} = 1 \) for \(0 \leq k < l \leq N \) (by induction). The cost is

\[
P = \sum_{0 \leq k < l \leq N} (l - k) = \frac{N(N + 1)(N + 2)}{6}.
\]

Similarly, one can guess a dual plan is \(y_m = m, \) and

\[
D = \sum_l l(2l - N) = 2 \sum_l l^2 - N \sum_l l = 2 \frac{N(N + 1)(N + 2)}{6} - N \frac{N(N + 1)}{2} = N(N + 1) \left(\frac{2N + 1}{3} - \frac{N}{2} \right) = \frac{N(N + 1)(N + 2)}{6}.
\]

Note that the values of the primal and dual problems on these feasible plans are equal, \(P = D, \) hence, both are optimal.

(2)
We are looking at the problem of maximizing the sum of entries of the symmetric matrix

\[
\begin{pmatrix}
x_1 & y_1 & 0 & 0 & y_5 \\
y_1 & x_2 & y_2 & 0 & 0 \\
0 & y_2 & x_3 & y_3 & 0 \\
0 & 0 & y_3 & x_4 & y_4 \\
y_5 & 0 & 0 & y_4 & x_5
\end{pmatrix}
\]

such that \(\sum x_k = 1 \) (i.e. the trace is 1) and the matrix is positive definite. The problem is convex and invariant with respect to cyclic shift of variables: \(x_1 \rightarrow x_2, x_2 \rightarrow x_3, x_3 \rightarrow x_4, \ldots, x_5 \rightarrow x_1 \) and similarly for \(y \). Hence, there is a minimizer with all \(x \)'s and \(y \)'s equal (take any minimizer, cyclic-shift variables, find the average: the result will be feasible, at least as good as the original optimum, and will have all \(x \)'s and all \(y \)'s equal). So, the problem reduces to maximizing \(1 + 10a \), subject to

\[
A(a) = \begin{pmatrix}
1/5 & a & 0 & 0 & a \\
a & 1/5 & a & 0 & 0 \\
0 & a & 1/5 & a & 0 \\
0 & 0 & a & 1/5 & a \\
a & 0 & 0 & a & 1/5
\end{pmatrix} \succ 0.
\]
The spectrum of $A(a)$ is given by $\lambda_k = 1/5 + 2(e^{2\pi i k/5} + e^{-2\pi i k/5}) = 1/5 + 2a \cos(2\pi k/5)$. For $k = 0$, this gives $1/5 + 2a \geq 0$, for $k = 1, 4$, we have $1/5 + a^{-1+\sqrt{5}} \geq 0$, and for $k = 2, 3$, we have $1/5 + a^{-1-\sqrt{5}} \geq 0$. Hence, we have $a \leq \frac{2}{5(1+\sqrt{5})}$. One can easily see that for this value of a, $A(a)$ is indeed positive definite, and the sum of its coefficients is

$$1 + 10a = 1 + \frac{4}{1+\sqrt{5}} = \sqrt{5}.$$

(3)

Legendre dual is obtained as

$$g(y_1, y_2) = \max_{x_1, x_2} y_1 x_1 + y_2 x_2 - f(x_1, x_2)$$

$$= \max_{x_1, x_2} y_1 x_1 + y_2 x_2 - \min_{s_1, s_2} [(x_1 - s_1)^2 + (x_2 - s_2)^2]$$

$$= \max_{x_1, x_2, s_1, s_2} y_1 x_1 + y_2 x_2 - (x_1 - s_1)^2 - (x_2 - s_2)^2$$

$$= \max_{s_1, s_2} \left[\max_{x_1, x_2} -y_1^2/4 + y_1(x_1 - s_1) - (x_1 - s_1)^2 - y_2^2/4 + y_2(x_2 - s_2) - (x_2 - s_2)^2 \right]$$

$$+ y_1^2/4 + y_2^2/4 + y_1 s_1 + y_2 s_2$$

$$= \left[\max_{s_1, s_2} y_1 s_1 + y_2 s_2 \right] + y_1^2/4 + y_2^2/4 = |y_1| + |y_2| + y_1^2/4 + y_2^2/4.$$

(4)

Similarly,

$$g(y_1, y_2) = \max_{x_1, x_2} y_1 x_1 + y_2 x_2 - f(x_1, x_2)$$

$$= \max_{x_1, x_2} y_1 x_1 + y_2 x_2 - \max_{s_1, s_2} [(x_1 - s_1)^2 + (x_2 - s_2)^2]$$

$$= \max_{x_1, x_2, s_1, s_2} \left[(y_1 x_1 - (x_1 - s_1)^2) + (y_2 x_2 - (x_2 - s_2)^2) \right]$$

$$= \max_{x_1} \min_{s_1 = \pm 1} (y_1 x_1 - (x_1 - s_1)^2) + \max_{x_2} \min_{s_2 = \pm 1} (y_2 x_2 - (x_2 - s_2)^2).$$

Hence, we can solve the problem for each variable, x_1 and x_2 separately, i.e. we need to find g, given by

$$g(y) = \max_x y x + \min(-(x - 1)^2, -(x + 1)^2)$$

This is easy to do case-by-case, resulting in

$$g(y) = \begin{cases} (y/2 + 1)^2 - 1, & y < -2 \\ -1, & -2 \leq y \leq 2 \\ (y/2 - 1)^2 - 1, & \text{else} \end{cases}$$

Using this g, the answer is $g(y_1, y_2) = g(y_1) + g(y_2)$.

(5)

For a gradient descent algorithm with step size t, the iterations are

$$x_1(k + 1) = x_1(k) - tx_2(k)$$

$$x_2(k + 1) = x_2(k) - tx_1(k)$$

2
Thus, $x(k + 1) = Ax(k)$, where $A = \begin{pmatrix} 1 & -t \\ -t & 1 \end{pmatrix}$. The eigenvalues/eigenvectors are

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \lambda_1 = 1 - t, v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \lambda_1 = 1 + t.$$

So, for an initial point, we can find a, b such that

$$x(0) = av_1 + bv_2 \implies x(100) = A^{100}x(0) = a(1 - t)^{100}v_1 + b(1 + t)^{100}v_2.$$

Let $t = 1/2$. Then, if $x_1(0) = x_2(0) = 1$, we have $a = 1, b = 0$, and $x_1(100) \approx 0, x_2(100) \approx 0$. Similarly, For $x_1(0) = 0.9999, x_2(0) = 1$, we have $a = 0.99995, b = 0.00005$, and $x(100)$ is a vector along $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.