Six problems. No cell phones or internet usage. Show reasonings; box your answers.

<table>
<thead>
<tr>
<th>UIN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. (a) Does there exist a function on real line that is bounded, has local minima and maxima, but does not have global maxima or minima?

 (b) Does there exist a continuous function on real line with infinitely many local maxima and minima, such that the values at these local maxima are all equal (say, to \(a\)); the values at the local minima are all equal (say, to \(b, b < a\)) yet the function does not attain its global maximum?

2. Describe the sets of points where the following functions on \(\mathbb{R}^2\) are not (Frechet) differentiable:

 (a) \(|x_1| - |x_2|\)

 (b) \(\max(\min(x_1, x_2), \min(x_2, -x_1 - x_2), \min(-x_1 - x_2, x_1))\)

 (c) \(\max(x_1^2 - x_2^2 - 1, 0)^2\).

3. How many critical points does the function

 \[\sin x + \frac{x^2}{101\pi}\]

 have on real line?

4. For a given \(m \times n\) matrix \(A\), solve the optimization problem:

 \[\text{tr}XX^* \rightarrow \min, \text{subject to } \text{tr}XA^* = 1.\]

 Here \(X\) is an \(m \times n\) matrix, \(^*\) means matrix conjugation (transposition).

5. Among all probability distributions on nonnegative integers \(X = \{0, 1, 2, \ldots\}\) with mean \(a > 0\), find one maximizing entropy. In other words, solve

 \[-\sum_k x_k \log x_k \rightarrow \max, \text{subject to } x_k > 0; \sum_k x_k = 1, \sum_k kx_k = a.\]

6. Formulate the dual problem to

 \[
 \begin{align*}
 x_1 + x_2 + x_3 & \rightarrow \text{max} \\
 3x_1 + x_2 + x_3 & \leq 5 \\
 x_1 + 4x_2 + x_3 & \leq 6 \\
 x_1 + x_2 + 5x_3 & \leq 7 \\
 x_1, x_2, x_3 & \geq 0.
 \end{align*}

 Solve the dual problem.