Variational principles. We want to extend the characterization of minimizers as critical points to situations where minimizers are absent and only "almost minimizing" points are there.

Ekeland's "variational principle" delivers some version:

Theorem. Let \(f: \mathbb{R}^n \to \mathbb{R} \) is continuous, Gateaux differentiable and bounded from below. Then for any \(a \in \mathbb{R}^n \), \(f(a) = \inf_{x \in \mathbb{R}^n} f + \epsilon \), there exists a point \(x_\epsilon \) such that:

- \(f(x_\epsilon) = f(a) \)
- \(\text{dist}(a, x_\epsilon) \leq \epsilon \)
- \(\|\nabla f(a)\| \leq \epsilon. \)

In other words, for any point where value of \(f \) is close to best possible (but unattainable, in general) value \(\inf f \), there is point \(x_\epsilon \) not far from \(a \), which has even smaller value of \(f \), and whose gradient of \(f \) is small.

The proof is essentially contained in the following picture:

Let \(\inf f =: c \geq -\infty. \)
We consider the family of functions $x \mapsto h \equiv \|x - x^*_x\|$. For $h \leq c$, this function is below $f(x)$. For $h = f(x^*_x)$ it is equal to at least at x^*_x. There is smallest h^*_h for which $h \equiv \|x - x^*_x\|$ equals h somewhere, but still never goes above it. Let x^*_h be the point where $h^*_h - \|x^*_x - x^*_h\| = f(x^*_h)$.

As $h^*_h \leq f(x^*_h)$, we get the first inequality. Also, as $f(x^*_x) \leq C + \varepsilon - \varepsilon \|x^*_x - x^*_h\|$,

$$\|x^*_x - x^*_h\| \leq f(x^*_h)$$

Lastly, as $f(x^*_x + \delta) \geq h^*_h - \|x^*_x - (x^*_x + \delta)\| \geq f(x^*_h) - \|x^*_x - x^*_h\|$

we see that $(\nabla f, \delta) \geq -\|\delta\|$ for any triangle inequality.

Some remarks: One can work with functions which are just lower semicontinuous: Sometimes, one can work with discontinuous functions as long as discontinuities are of right kind.

Recall: f is continuous at x_* if for any $\varepsilon > 0$, there is $\delta > 0$: $|f(x) - f(x^*_x)| \leq \varepsilon$ if $\text{dist}(x, x^*_x) \leq \delta$. Lower semicontinuity pays attention only to lower bound in the inequality:

$\boxed{\text{Def } f \text{ is lower semicontinuous to } x \text{ if for any } \varepsilon > 0, \text{ there is } \delta > 0: f(x) \geq f(x^*_x) - \varepsilon \text{ for all } x: \text{dist}(x, x^*_x) \leq \delta}$
So, all of the reasoning above work also for lower semi-continuous functions:

- One can expand the theory beyond \(\mathbb{R}^n \) to \(\infty \)-dim. vector spaces with norm (Banach spaces) or even metric spaces. Won't be really used in this course...

Applications of Ekeland's variational principle.

Our critically important result:

Gordan's lemma: Let \(a_1, ... , a_m \) be vectors in \(\mathbb{R}^n \).

Then one has dichotomy:

- either there exists \(x \in \mathbb{R}^n \): \((a_k, x) < 0, k=1, ... ,m \),
- or for some \(\lambda_1, ... , \lambda_m, \sum \lambda_k = 1, \lambda_k \geq 0 \) (but not both).

Proof: relies on examining the function

\[
\log \sum_{k=1}^m e^{(a_k, x)} =: f(x).
\]

It is clear that if there is no \(x \): \((a_k, x) < 0, k=1, ... ,m \), then at least one of \((a_k, x) \geq 0 \) for any \(x \in \mathbb{R}^n \), and therefore, \(f(x) \) is nonnegative (i.e. bounded from below).
If f is bounded from below, by Ekeland's theorem, for any $\varepsilon > 0$, one can find $x_\varepsilon : \| Df (x_\varepsilon) \| \leq \varepsilon$.

But $Df = \sum a_k e^{(a_k, x)} = \sum a_k \lambda_k (x)_0$, where

$$\lambda_k (x) = \frac{e^{(a_k, x)}}{\sum e^{(a_k, x)}} > 0, \quad \sum \lambda_k (x) = 1.$$

As such a collection $\{ \lambda_k (x) \}_k = 1 \cdots \infty$ exists for all $\varepsilon > 0$, and the set of $\{ \lambda_k \}_k = 1 \cdots \infty$, $\sum \lambda_k = 1$ is closed and bounded \Rightarrow compact, one can choose a converging subsequence, $\{ \lambda_k (x) \}_k = 1 \cdots \infty$,

$$\lambda (x) \rightarrow \lambda_* = (\lambda_*^1, \ldots, \lambda_*^\infty): \lambda_*^k \geq 0, \quad \sum \lambda_*^k = 1.$$

Along this subsequence, $\| \sum a_k \lambda_k (x) \| \rightarrow 0$, so that by continuity of Df, $\| \sum a_k \lambda_k \| \rightarrow 0$, i.e. $\sum \lambda_*^k a_k = 0$. I.e., if no x satisfies all inequalities $\langle a_k, x \rangle < 0$, then some convex combination of λ_*^k vanishes.

Conversely (easy part of Gordon's lemma), if $\sum \lambda_*^k a_k = 0$

$$\lambda_*^k \geq 0, \quad \sum \lambda_*^k = 1,$$

then $0 = \langle 0, x \rangle = \langle \sum \lambda_*^k a_k, x \rangle = \sum \lambda_*^k (a_k, x)$, and one cannot have all terms $(a_k, x) < 0$ simultaneously. \[\square\]