0. Basic results on optimizers

\[f : U \to \mathbb{R}, \quad U \subset \mathbb{R}^n \]

Consider \(x^* \in U \), \(B_r(x^*) \) — ball of radius \(r \) around \(x^* \). We say that

- \(x^* \) is a local minimizer if for some \(r > 0 \), \(f(x^*) \leq f(x) \), \(x \in B_r(x^*) \subset U \); strict local minimizer, \(f(x^*) < f(x) \) for all \(x \neq x^* \).
- global minimizer if same true for \(U \).
- critical point if Gateaux diff. \(\nabla f \) at \(x^* \) is \(0 \).
- saddle point if it's a critical pt \& there are \(p, q \) pts \(x^* \), \(x^* \)
 \[f(x^*) < f(x') \leq f(x^*) \]
 in any \(B_r(x^*) \).

0. Weierstrass' Theorem: if \(f \) is continuous on a compact set \(K \).

Then \(f \) possesses a global minimizer (or maximizer).

\[\text{Proof: If a minimizer doesn't exist, we can find seq of points } \{ x_k \} \subset U, \quad f(x_k) \to \inf f. \]

Put, by compactness of \(K \), there is a subsequence \(\{ x_{k_i} \} \).
\[x_{k_i} \to x^* \in K. \]
Then \(f(x^*) = \inf f(x), \) for all \(x \in K. \)

Reminder

Compact sets:

- **Main definition:** open cover admits finite subcover.
 \[\Rightarrow \text{Any sequence has convergent subsequence.} \]
- **Bounded & closed \(\subset \mathbb{R}^n \Rightarrow \text{compact} \)

A function on metric space \(D \) is called coercive if
\[f \to \infty \quad \text{as } |x| \to \infty \]
(\(|x| = \text{dist}(x, \mathbf{0}) \)) origin in \(\mathbb{R}^n \), some basepoint respected.

Then if \(f \) is continuous coercive on closed subset of \(\mathbb{R}^n \),
then \(f \) has a global minimum.

Proof: \(f \leq c \) is either empty or bounded & closed.
\[\Rightarrow \text{compact.} \Rightarrow \text{has a minimum.} \]
Application

Any polynomial \(p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \) has a root in \(\mathbb{C} \).

Proof: If \(\|f\| \) is coercive, so it attains a global min at \(x^* \) (assume \(f(x^*) = 0 \)). But if \(p = a_0 + a_1 x + a_2 x^2 + \ldots \) then one can find \(v \) so \(a_k v^k = a_0 \), \(a_0 < 0 \), real.

For small \(v \), \(a_k v^k \) is much bigger than rest of terms \(\implies |a_0 + a_1 x + \ldots| < |a_0| \).

2. First order optimality conditions

Neither of all optimality conditions:

Thus, if \(f: \mathbb{R} \to \mathbb{R} \) is Gateaux differentiable on open \(A \), and \(x^* \) is a minimizer, then \(\nabla f(x^*) = 0 \).

Proof: Taylor formula.

Some examples

1. Steiner point: find point on the (base) perimeter \(AB \) such that distances to vertices of a triangle \(ABC \) minimize: \(f(0) = |AB| + |BC| + |CA| \)

 Solution: \(\nabla f = n_1 + n_2 + n_3 \Rightarrow \text{"120° rule": at optimum, } \frac{n_1}{h_2} = \frac{n_2}{h_3} = \frac{n_3}{h_1} = \frac{1}{\sqrt{3}} \).

 Caveat: what about this: \(A \) and \(C \)?

2. Euclid’s optimization problem: find \(O \) maximizing \(\text{area of parallelogram} \) optimal when \(O \) is midpoint between \(B \) and \(C \).
\[f(x_1, \ldots, x_n) = \frac{1}{2} \sum \frac{\partial^2 f}{\partial x_k^2} - \sum_{k \neq l} \frac{1}{x_k - x_l} \]

Confining potential

\[f \rightarrow \text{un} \]

[Background: spectrum density for Gaussian Unitary Ensemble: random Hermite matrix (remind!) of size \(n \times n \)]

\[\frac{\partial^2 f}{\partial x_k^2} = \left(\frac{\partial}{\partial x_k} \left(\sum_{l \neq k} \frac{1}{x_k - x_l} \right) \right) \]

Take \(p = p_n = \prod_{k=1}^{n} (x - x_k) \) \(p_1 (x_k) = \prod_{l \neq k} (x_k - x_l) \)

\[\frac{p''}{p'} (x_k) = \frac{\sum_{l \neq k} \prod_{m \neq l, m \neq k} (x_k - x_m)}{\prod_{l \neq k} (x_k - x_l)} = 2 \sum_{l \neq k} \frac{1}{x_k - x_l} \]

So, if \((x_n) \) is unique, \(\frac{p''}{p'} (x_k) = 2x_k \)

\[p''(x_k) - 2x_k p'(x_k) = 0 \quad \text{for all} \quad x_k \quad \text{roots of} \quad p' \]

\[\Rightarrow \quad p_n''(x) - 2x p_n'(x) = -2n p_n(x) \]

NB: \(\int p_n^2 e^{-x^2} \, dx = 2^n \frac{\sqrt{\pi}}{2} p_n(2) \)

\[= -2 \int \frac{p_n^2 - p_n''}{2n} e^{-x^2} \, dx = \left(\frac{p_n^2 e^{-x^2}}{2n} \right)' = (p_n' e^{-x^2})' \]

\[= -\frac{1}{2n} \int \left(p_n^2 e^{-x^2} \right)' p_n \, dx = -\frac{1}{2n} \int p_n' p_n e^{-x^2} \, dx \]

So \(p_n \) are orthogonal