
Chapter 4

Controlled invariant subspaces

In this chapter we introduce controlled invariant subspaces (which are also called
(A, B)-invariant subspaces) and the concepts of controllability subspace and stabiliz-
ability subspace. The notion of controlled invariance is of fundamental importance
in many of the feedback design problems that the reader will encounter in this book.
We will apply these concepts to a number of basic feedback design problems, among
which the problem of disturbance decoupling by state feedback. The design prob-
lems treated in this chapter have in common that the entire state vector of the control
system is assumed to be available for control purposes, and we confine ourselves to
the design of static state feedback control laws. Dynamic feedback will be discussed
in chapter 6.

4.1 Controlled invariance

In this section we will introduce the concept of controlled invariant subspace and
prove the most important properties of these subspaces. Again consider the system

ẋ(t) = Ax(t) + Bu(t). (4.1)

The input functions u are understood to be elements of the class U of admissible input
functions (see section 3.1). A subspace of the state space will be called controlled
invariant if it has the following property: for every initial condition in the subspace
there exists an input function such that the resulting state trajectory remains in the
subspace for all times. More explicitly:

Definition 4.1 A subspace V ⊂ X is called controlled invariant if for any x 0 ∈ V
there exists an input function u such that xu(t, x0) ∈ V for all t ! 0.

It follows immediately from the definition that the sum of any number of con-
trolled invariant subspaces is a controlled invariant subspace. In order to stress the
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dependence on the underlying system, we will often use the terminology (A, B)-
invariant subspace instead of controlled invariant subspace. It is easily seen that if
F : X → U is a linear map and G : U → U is an isomorphism then a given
subspace V is (A, B)-invariant if and only if it is (A + BF, BG)-invariant. Stated
differently: the classes of controlled invariant subspaces associated with the systems
(A, B) and (A + BF, BG), respectively, coincide. Sometimes this is expressed by
saying that the property of controlled invariance is invariant under state feedback
and isomorphism of the input space. The following theorem gives several equivalent
characterizations of controlled invariance:

Theorem 4.2 Consider the system (4.1). Let V be a subspace of X. The following
statements are equivalent:

(i) V is controlled invariant,

(ii) AV ⊂ V + im B,

(iii) there exists a linear map F : X → U such that (A + BF)V ⊂ V.

Proof : (i)⇒ (ii). Let x0 ∈ V and let u be an input function such that x u(t, x0) ∈ V
for all t ! 0. Since V is a linear subspace, for all t > 0 we have 1

t (xu(t, x0) −
x0) ∈ V. Being a subspace of X, V is closed in the Euclidean topology. Thus
ẋ(0+) : = limt↓0 1t (xu(t, x0) − x0) ∈ V. Since Ax0 = ẋ(0+) − Bu(0+) it follows
that Ax0 ∈ V + im B.

(ii)⇒ (iii). Choose a basis q1, . . . , qn ofX adapted to V. For all 1 " i " n there
exist vectors q̄i ∈ V and ui ∈ U such that Aqi = q̄i + Bui . Define F : X → U
as follows: for 1 " i " k define Fqi : = −ui and for k + 1 " i " n let Fqi be
arbitrary vectors in X. Then for i = 1, . . . , k we have (A + BF)q i = q̄i ∈ V and
hence (A + BF)V ⊂ V.

(iii)⇒ (i). Let x0 ∈ V. We claim that if the system is controlled by the feedback
control law u = Fx , then the resulting trajectory remains in V. Indeed, using this
control law the trajectory xu(t, x0) is equal to the solution of ẋ = (A+BF)x, x(0) =
x0. The claim then follows immediately from theorem 2.4.

In the above, the characterization (i) is typically an open loop characterization:
the input functions are allowed to depend on the initial condition arbitrarily. In this
vein, the characterization (iii) is called a closed-loop characterization: it turns out
to be possible to remain within a controlled invariant subspace using a state feed-
back control law. As an intermediate between these two we stated (ii), a geometric
characterization of controlled invariance.

If V is controlled invariant, then we will denote by F(V) the set of all linear
maps F such that (A + BF)V ⊂ V. In the sequel we will often use the notation
AF : = A + BF .
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LetV be a controlled invariant subspace and let F ∈ F(V). Consider the equation
(4.1). If we represent the control u as u = Fx + v, we obtain the equation

ẋ(t) = AF x(t) + Bv(t).

Let x0 ∈ V. We know that if we choose v = 0, then the state trajectory starting in
x0 remains in V. We now ask ourselves the question: what other control inputs v
have the property that the resulting state trajectory remains in V? We claim that the
trajectory x(t) starting in x0 remains in V if and only if Bv(t) ∈ V for all t ! 0.
Indeed, if x(t) ∈ V for t ! 0, then also AFx(t) ∈ V and ẋ(t) ∈ V for t ! 0. Thus
Bv(t) = ẋ(t) − AFx(t) ∈ V for t ! 0. Conversely, if Bv(t) ∈ V for t ! 0 then

x(t) = eAF t x0 +
∫ t

0
eAF (t−τ )Bv(τ ) dτ ∈ V

for all t ! 0, since eAF t x0 ∈ V for t ! 0. Consider the linear subspace

B−1V : = {u ∈ U | Bu ∈ V}.

Then Bv(t) ∈ V is equivalent to v(t) ∈ B−1V. Let L be a linear map such that
im L = B−1V. Obviously, v(t) ∈ B−1V for all t ! 0 if and only if v(t) =
Lw(t), t ! 0, for some functionw (compare exercise 2.2). Thus we have proven:

Theorem 4.3 Let V be a controlled invariant subspace. Assume that F ∈ F(V) and
let L be a linear map such that im L = B−1V. Let x0 ∈ V and let u be an input
function. Then the state trajectory resulting from x0 and u remains in V for all t ! 0
if and only if u has the form

u(t) = Fx(t) + Lw(t) (4.2)

for some input function w.

Note that (AF , BL) can be viewed as the restriction of the system " to the sub-
space V. After all if we stay inside V then u must be of the form (4.2). Therefore,
the dynamics must be of the form

ẋ(t) = AF x(t) + BLw(t).

IfK is a subspace ofX which is not controlled invariant, then we are interested
in a controlled invariant subspace contained inK which is as large as possible.

Definition 4.4 Let K be a subspace of X. Then we define

V∗(K) : = {x0 ∈ X | there exists an input function u such that
xu(t, x0) ∈ K for all t ! 0}.



78 Controlled invariant subspaces

Two things follow immediately from this definition. First, it is easy to see that
V∗(K) is a linear subspace of X. Indeed, if x0, y0 ∈ V∗(K) then there are inputs
u and v such that xu(t, x0) ∈ K and xv(t, y0) ∈ K for all t ! 0. Let λ, µ ∈ R.
Define w(t) : = λu(t) + µv(t). Then xw(t,λx0 + µy0) ∈ K for all t ! 0 (see (3.2)).
Secondly, it is clear that V∗(K) ⊂ K . In fact, we have the following result:

Theorem 4.5 Let K be a subspace of X. Then V ∗(K) is the largest controlled
invariant subspace contained in K , i.e.

(i) V∗(K) is a controlled invariant subspace,

(ii) V∗(K) ⊂ K ,

(iii) if V ⊂ K is a controlled invariant subspace then V ⊂ V ∗(K).

Proof : We first show that V∗(K) is controlled invariant. Assume x0 ∈ V∗(K).
There is an input u such that xu(t, x0) ∈ K for all t ! 0. We claim that, in fact,
xu(t, x0) ∈ V∗(K) for all t ! 0. To show this, take a fixed but arbitrary t1 ! 0.
Let x1 : = xu(t1, x0). It will be shown that x1 ∈ V∗(K). Indeed, if we define
v(t) : = u(t1 + t) (t ! 0), then using (3.2) we have x v(t, x1) = xu(t + t1, x0) ∈ K
for all t ! 0. This proves that x1 = xu(t1, x0) lies in V∗(K). Since t1 was arbitrary,
xu(t, x0) ∈ V∗(K) for all t ! 0 and hence V ∗(K) is controlled invariant.

Next, we show that V∗(K) is the largest controlled invariant subspace in K .
Let V ⊂ K be controlled invariant. Let x0 ∈ V. There is an input u such that
xu(t, x0) ∈ V for all t ! 0. Consequently, xu(t, x0) ∈ K for all t ! 0 and hence
x0 ∈ V∗(K). This completes the proof.

In order to display the dependence on the underlying system we will sometimes
denote V∗(K) by V∗(K, A, B).

4.2 Disturbance decoupling

Consider the system

ẋ(t) = Ax(t) + Ed(t),
z(t) = Hx(t). (4.3)

In the differential equation above, d represents an unknown disturbance which is
assumed to be an element of a given function space. For a given initial condition x 0
and disturbance d, the output of the system is given by

z(t) = HeAt x0 +
∫ t

0
T (t − τ )d(τ ) dτ. (4.4)

Here T (t) : = HeAt E is the impulse response between the disturbance and the out-
put. The system (4.3) will be called disturbance decoupled if T = 0 or, equivalently,
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if the transfer function G(s) = H (I s− A)−1E is equal to zero. If this is the case then
for any given initial condition x 0 the output is equal to z(t) = HeAt x0 for all distur-
bances d. This means that in a system which is disturbance decoupled, the output
does not depend on the disturbance. The following theorem will play an important
role in the sequel:

Theorem 4.6 The system (4.3) is disturbance decoupled if and only if there exists an
A-invariant subspace V such that im E ⊂ V ⊂ ker H.

Proof : (⇒) If T = 0 then also all its time derivatives T (k) are identically equal to
0. Thus, T (k)(t) = H AkeAt E = 0 for all t . By taking t = 0 this yields H AkE =
0, k = 0, 1, 2, . . . Define V : = im

(
E AE · · · An−1E

)
. Then V ⊂ ker H .

By corollary 3.3, V is equal to ⟨A | im E⟩, the smallest A-invariant subspace that
contains im E .

(⇐) If im E ⊂ V andV is A-invariant, then also im AkE ⊂ V for k = 0, 1, 2, . . ..
Since we know that V ⊂ ker H this yields H AkE = 0 for all k. Thus T (t) =∑∞

k=0(tk/k!)H AkE = 0 for all t . It follows that the system is disturbance decoupled.

If the system (4.3) is not disturbance decoupled, then one can try to make it dist-
urbance decoupled. In order to do this one needs the possibility to change the sys-
tem’s dynamics by using a control input. This possibility is modelled by adding a
control term to the right hand side of the original differential equation in (4.3). Thus
we consider the system

ẋ(t) = Ax(t) + Bu(t) + Ed(t),
z(t) = Hx(t). (4.5)

In this description, the variable u represents a control input (see also section 2.8). Let
F : X → U be a linear map. If in (4.5) we substitute u(t) = Fx(t), the system’s
equations change into

ẋ(t) = (A + BF)x(t) + Ed(t),
z(t) = Hx(t), (4.6)

the closed-loop system obtained from the state feedback control law u = Fx . The
impulse response matrix of (4.6) is called the closed-loop impulse response and is
equal to

TF (t) : = He(A+BF)t E .

The corresponding transfer function G F (s) : = H (I s − A − BF)−1E is called the
closed-loop transfer function. The problem of disturbance decoupling by state feed-
back is to find a linear map F : X → U such that the closed-loop system (4.6) is
disturbance decoupled:
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Definition 4.7 Consider the system (4.3). The problem of disturbance decoupling by
state feedback, DDP, is to find a linear map F : X → U such that TF = 0 (or,
equivalently, such that G F = 0).

The following result establishes the connection between the concept of controlled
invariance and the problem of disturbance decoupling.

Theorem 4.8 There exists a linear map F : X → U such that TF = 0 if and only if
there exists a controlled invariant subspace V such that im E ⊂ V ⊂ ker H.

Proof : (⇒) If TF = 0 then (4.6) is disturbance decoupled. By theorem 4.6 there is
an (A+ BF)-invariant subspaceV such that im E ⊂ V ⊂ ker H . By theorem 4.2, V
is controlled invariant.

(⇐) Let V be a controlled invariant subspace such that im E ⊂ V ⊂ ker H . By
theorem 4.2 there exists a linear map F : X → U such thatV is (A+ BF)-invariant.
It then follows from theorem 4.6 that the system (4.6) is disturbance decoupled.

Corollary 4.9 There exists a linear map F : X → U such that TF = 0 if and only if

im E ⊂ V∗(ker H ). (4.7)

Formula (4.7) provides a very compact necessary and sufficient condition for the
existence of a state feedback control law that achieves disturbance decoupling. How-
ever, in order to be able to check this condition for an actual system, we would like
to have an algorithm. In the next section we will describe an algorithm that, starting
from a system (4.5), calculates the associated subspace V ∗(ker H ).

4.3 The invariant subspace algorithm

In this section we give an algorithm to compute the subspace V ∗(K). Consider the
system (A, B) and let K be a subspace of the state space X. The algorithm we give
is most easily understood if one thinks in terms of the discrete-time system

xt+1 = Axt + But , t = 0, 1, 2, . . . . (4.8)

Given an input sequence u = (u 0, u1, u2, . . .) and an initial condition x0, the resulting
discrete-time state trajectory is denoted by x = (x0, x1, x2, . . .). The discrete-time
analogue V∗

d (K) of the subspace V∗(K) defined by definition 4.4 is obviously the
subspace of all x0 ∈ X for which there exists an input sequence u such that all terms
of the resulting state trajectory lie inK:

V∗
d (K) : = {x0 ∈ X | there is an input sequence u such that

xt ∈ K for t = 0, 1, 2, . . .}.
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Define a sequence of subspaces V0,V1,V2, . . . by

Vt : = {x0 ∈ X | there is an input sequence u such that x0, x1, x2, . . . , xt ∈ K}.

Thus, Vt consists of those points in which a state trajectory starts for which the first
t + 1 terms lie in K . It is easily verified that Vt is indeed a subspace, that V0 = K
and that V0 ⊃ V1 ⊃ V2 ⊃ · · · . It turns out to be possible to derive a recurrence
relation forVt . Indeed, x0 ∈ Vt+1 if and only if x0 ∈ K and there exists u0 ∈ U such
that Ax0+ Bu0 ∈ Vt . Hence, x0 ∈ Vt+1 if and only if x0 ∈ K and Ax0 ∈ Vt + im B
or, equivalently, x0 ∈ A−1(Vt + im B). It follows that

V0 = K, Vt+1 = K ∩ A−1(Vt + im B). (4.9)

From this recurrence relation it follows immediately that if Vk = Vk+1 for some k,
then Vk = Vt for all t ! k. Now, recall that V0 ⊃ V1 ⊃ V2 ⊃ · · · . If we have strict
inclusion, the dimension must decrease by at least one. Hence the inclusion chain
must have the form

V0 ⊃ V1 ⊃ · · · ⊃ Vk = Vk+1 = Vk+2 = · · ·

for some integer k " dimK (" n − 1). In the above formula, ⊃ stands for strict
inclusion. We claim that V∗

d (K) = Vk . Indeed, on the one hand it follows immedi-
ately from the definition that V ∗

d (K) ⊂ Vt for all t . Conversely, assume x0 ∈ Vk .
We want to construct an input sequence (u 0, u1, . . .) such that the corresponding
state trajectory x = (x0, x1, . . .) lies in K . Since x0 ∈ Vk = Vk+1, there is
u0 such that x1 = Ax0 + Bu0 ∈ Vk . Thus, in particular we have x0, x1 ∈ K .
We now proceed inductively. Assume u 0, u1, . . . , us−1 have been found such that
x0, x1, . . . , xs−1 ∈ K , while xs ∈ Vk . Again using Vk = Vk+1 we can find us such
that xs+1 = Axs + Bus ∈ Vk . This proves our claim.

The above is meant to provide some intuitive background for the introduction of
the recurrence relation (4.9). This recurrence relation will henceforth be called the
invariant subspace algorithm, ISA. Of course, we still have to show its relevance in
continuous-time systems. In the following result we will collect the properties of the
sequence {Vt } we established above and prove that it can be used to calculate the
largest controlled invariant subspace contained in K for the continuous-time system
(4.1).

Theorem 4.10 Consider the system (4.1). Let K be a subspace of X. Let V t , t =
0, 1, 2, . . ., be defined by the algorithm (4.9). Then we have

(i) V0 ⊃ V1 ⊃ V2 ⊃ · · · ,
(ii) there exists k " dimK such that Vk = Vk+1,

(iii) if Vk = Vk+1 then Vk = Vt for all t ! k,

(iv) if Vk = Vk+1 then V∗(K) = Vk .
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Proof : The statements (i), (ii) and (iii) were proven above. To prove (iv), note that
Vk ⊂ K . Moreover, it follows immediately from (4.9) that

AVk = AVk+1 ⊂ Vk + im B.

Hence Vk is a controlled invariant subspace contained in K and therefore contained
in V∗. To prove the converse inclusion, we show that in fact V ∗ ⊂ Vt for all t .
Obviously this is true for t = 0. Assume V ∗ ⊂ Vt−1. Since V∗ is controlled
invariant we have AV∗ ⊂ V∗ + im B. Thus AV∗ ⊂ Vt−1 + im B and hence V∗ ⊂
A−1(Vt−1 + im B). Finally, V∗ ⊂ K so we conclude that V∗ ⊂ Vt .

Of course item (iv) is crucial because it tells us that there exists a finite algorithm
to computeV∗. As a matter of fact it is easily seen that we need at most n steps where
n is the dimension of the state space.

4.4 Controllability subspaces

Consider the system (4.1). If a subspace of the state space has the property that every
point in that subspace can be steered to the origin in finite time without leaving the
subspace, it is called a controllability subspace.

Definition 4.11 A subspace R ⊂ X is called a controllability subspace if for every
x0 ∈ R there exists T > 0 and an input function u such that x u(t, x0) ∈ R for
0 " t " T and xu(T, x0) = 0.

It is immediately clear from this definition that every controllability subspace is
controlled invariant. Indeed, if one chooses the control input to be equal to zero for
t > T , the state trajectory also remains zero and hence does not leaveR. As was the
case with controlled invariant subspaces, it can be shown that the sum of any (finite or
infinite) number of controllability subspaces is a controllability subspace. Also, the
class of all controllability subspaces associated with a given system is invariant under
state feedback and isomorphisms of the input space. That is, if R is a controllability
subspace with respect to (A, B), it is a controllability subspace with respect to (A +
BF, BG) for all linear maps F : X → U and isomorphisms G ofU.
We can give the following characterization of controllability subspaces:

Theorem 4.12 A subspace R ⊂ X is a controllability subspace if and only if there
exist linear maps F and L such that

R = ⟨A + BF | im BL⟩. (4.10)

Proof : (⇒) Let F ∈ F(R) and L be a linear map such that im L = B −1R. We
claim that (4.10) holds. Let x0 ∈ R. There is T > 0 and an input u such that
xu(t, x0) ∈ R for all t ! 0 and xu(T, x0) = 0. By theorem 4.3 there exists w such
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that u(t) = Fxu(t, x0) + Lw(t). Hence, xu(t, x0) is a state trajectory of the system
ẋ(t) = AFx(t) + BLw(t) with state spaceR. Along this trajectory, x0 is steered to
0 at time t = T . Since this is possible for all x0 ∈ R, it follows that the latter system
is null-controllable. Consequently, it is reachable soR = ⟨A F | im BL⟩ (see section
3.2).

(⇐) Assume that (4.10) holds. Then we have A FR ⊂ R and im BL ⊂ R. Thus
ẋ(t) = AFx(t) + BLw(t) defines a system with state space R. By corollary 3.4,
this system is controllable. Hence every point inR can be controlled to the origin in
finite time while remaining inR.

It follows from the proof of the above theorem that if R is a controllability
subspace then for the maps F and L in the representation (4.10) we can take any
F ∈ F(R) and any map L such that im L = B−1R. Since the latter equality implies
im BL = im B ∩ R we obtain the following:

Corollary 4.13 Let R be a controllability subspace. Then for any F ∈ F(R) we
have

R = ⟨A + BF | im B ∩ R⟩.

If K is a subspace of the state space X then we are interested in the largest
controllability subspace that is contained inK (see also definition 4.4).

Definition 4.14 Let K be a subspace of X. Then we define

R∗(K) : = {x0 ∈ X | there exists an input function u and T > 0 such that
xu(t, x0) ∈ K for all 0 " t " T and xu(T, x0) = 0}.

Clearly,R∗(K) is contained inK . In fact, we have

Theorem 4.15 LetK be a subspace ofX. ThenR∗(K) is the largest controllability
subspace contained in K , i.e.

(i) R∗(K) is a controllability subspace,

(ii) R∗(K) ⊂ K ,

(iii) if R ⊂ K is a controllability subspace thenR ⊂ R∗(K).

Proof : We first show that R∗(K) is a subspace. Let x0, y0 ∈ R∗(K) and λ, µ ∈
R. There exist controls u, v and numbers T1, T2 > 0 such that xu(T1, x0) = 0,
xv(T2, y0) = 0, xu(t, x0) ∈ K for all 0 " t " T1 and xv(t, y0) ∈ K for all
0 " t " T2. Without loss of generality, assume that T1 " T2. Define a new control
function ũ by ũ(t) = u(t) (0 " t " T1) and ũ(t) = 0 (t > T1). Then xũ(T2, x0) = 0
and xũ(t, x0)(t) ∈ K for all 0 " t " T2. Define now w(t) : = λũ(t) + µv(t). Then
xw(T2,λx0 + µy0) = 0 and xw(t,λx0 + µy0) ∈ K for all 0 " t " T2.
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Next, we prove thatR∗(K) is a controllability subspace. Let x0 ∈ R∗(K). There
is a control input u and a number T > 0 such that x u(T, x0) = 0 and xu(t, x0) ∈ K
for all 0 " t " T . We contend that, in fact, xu(t, x0) ∈ R∗(K). To prove this,
take a fixed but arbitrary t1 < T . Let x1 : = xu(t1, x0). Define a new input function
v by v(t) : = u(t + t1) (t ! 0). Then xv(t, x1) = xu(t1 + t, x0) ∈ K for all
0 " t " T − t1 and xv(T − t1, x1) = xu(T, x0) = 0. Consequently, x1 can be
controlled to the origin in finite time while remaining inK and hence x 1 ∈ R∗(K).
Since t1 was arbitrary we find that xu(t, x0) ∈ R∗(K) for all 0 " t " T . Finally,
the fact that R∗(K) is the largest controllability subspace inK is proven completely
similarly as the corresponding part of theorem 4.5.

Sometimes, we will denote R∗(K) by R∗(K, A, B). Starting with a subspace
K of the state space, we have now defined V ∗(K) (see definition 4.4) and R∗(K).
SinceR∗(K) is controlled invariant and contained inK , it must be contained in the
largest controlled invariant subspace inK . Thus

R∗(K) ⊂ V∗(K) ⊂ K. (4.11)

More specifically, we have R∗(V∗(K)) = R∗(K). In the following, whenever this
is convenient, we denoteR∗(K) and V∗(K) byR∗ and V∗, respectively.

Lemma 4.16 Let K be a subspace of X. Then im B ∩ V ∗(K) ⊂ R∗(K).

Proof : Let L be a linear map such that im L = B−1V∗. Then im BL = im B ∩ V∗.
Choose F ∈ F(V∗). Then we have

im B ∩ V∗ ⊂ ⟨AF | im BL⟩ ⊂ V∗ ⊂ K.

Since ⟨AF | im BL⟩ is a controllability subspace (see theorem 4.12) it must be con-
tained inR∗(K). This proves the lemma.

The above lemma will be used to prove the following, stronger, result:

Theorem 4.17 Let K be a subspace of X. Then F(V ∗) ⊂ F(R∗) and

R∗ = ⟨A + BF | im B ∩ V∗⟩ (4.12)

for all F ∈ F(V∗).

In the above, F(R∗) denotes the set of all linear maps F with the property thatR ∗

is A+ BF invariant. This is consistent with our earlier notation F(V) with respect to
the controlled invariant subspaceV, since every controllability subspace is controlled
invariant.
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Proof : Let F ∈ F(V∗). Since R∗ ⊂ V∗ we have that AFR∗ ⊂ V∗. On the other
hand, sinceR∗ is controlled invariant, AFR∗ ⊂ R∗ + im B. Thus we have

AFR∗ ⊂ (im B + R∗) ∩ V∗ = (im B ∩ V∗) + R∗ ⊂ R∗.

where we used the modular rule for the equality in the middle. This shows that
F ∈ F(R∗). Next, by corollary 4.13,R∗ = ⟨AF | im B ∩ R∗⟩. Moreover, it follows
from lemma 4.16 that im B ∩ R∗ = im B ∩ V∗. This completes the proof of the
theorem.

The above theorem has the following interpretation. By taking F ∈ F(V ∗) and a
linear map L such that im L = B−1V∗ we obtain a new system

ẋ(t) = (A + BF)x(t) + BLw(t)

with state space V∗. This system can be considered as being obtained from the orig-
inal system by restricting the trajectories to the subspace V ∗ and by restricting the
input functions to take their values in B−1V∗. Since im BL = im B ∩ V∗, (4.12)
expresses the fact thatR∗ is just the reachable subspace of this restricted system.

If V is a controlled invariant subspace then of course V = V ∗(V). Let R : =
R∗(V), the largest controllability subspace contained in V. Then theorem 4.17 says
that if F ∈ F(V) and L is a linear map such that im L = B−1V then

R = ⟨A + BF | im BL⟩. (4.13)

Finally we note that it follows from theorem 4.17 that R ∗(X), the largest controlla-
bility subspace of the system (4.1), is equal to the reachable subspace ⟨A | im B⟩. In-
deed, the state spaceX itself is of course a controlled invariant subspace soV ∗(X) =
X and F(X) = {F : X → U | F is linear}. It also follows from this that every con-
trollability subspace V is contained in ⟨A | im B⟩.

4.5 Pole placement under invariance constraints

In section 3.10 we have discussed to what extent one can assign the spectrum of the
system map using state feedback. In section 4.1 we introduced the class of controlled
invariant subspaces and showed that these are characterized by the property that they
can be made invariant by state feedback. In the present section we will combine
these two issues and ask ourselves the question: how much freedom is left in the
assignment of the spectrum of the system map if it is required that a given controlled
invariant subspace should be made invariant? More concretely: given a controlled
invariant subspaceV, what freedom do we have in the assignment of the spectrum of
A+ BF if we restrict ourselves to F ∈ F(V). The following result gives a complete
solution.

Theorem 4.18 Consider the system (4.1). Let V be a controlled invariant subspace.
Let R : = R∗(V) be the largest controllability subspace contained in V. Let S : =
V + ⟨A | im B⟩. Then we have
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(i) F(V) ⊂ F(R) ∩ F(S).

(ii) Given any pair of real monic polynomials (p1, p2) with deg p1 = dimR and
deg p2 = dimS/V there exists F ∈ F(V) such that the characteristic polyno-
mials of AF | R and AF | S/V equal p1 and p2, respectively.

(iii) The map AF | V/R is independent of F for F ∈ F(V). The map AF | X/S
is equal to A | X/S for all F.

The results concerning the freedom of spectral assignability under the constraint
that a given controlled invariant subspace should be made invariant is depicted in the
lattice diagram in Figure 4.1. Before we establish a proof of this theorem, let us

X

fixed

A + BF , F ∈ F(V)

0

S = V+ < A | im B >

free

V

fixed

R

free

Figure 4.1

make some remarks. The theorem states that if a feedback map F makes V invariant
under A + BF , then it must do the same withR and S (see also theorem 4.17). The
subspacesR, V and S form a chain, that is, they are related by the inclusion relation

R ⊂ V ⊂ S. (4.14)

In order to appreciate the content of theorem 4.18 it is useful to see what it says in
terms of partitioned matrices. Choose a basis of the state space X adapted to the
chain (4.14). Accordingly, we can split

A =

⎛

⎜⎜⎝

A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
0 0 0 A44

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

B1
B2
B3
0

⎞

⎟⎟⎠ .
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Here, the zero blocks appear due to the facts that the subspace S is A-invariant and
contains the subspace im B. A map F =

(
F1 F2 F3 F4

)
is an element of F(V)

if and only if

A31 + B3F1 = 0 and A32 + B3F2 = 0. (4.15)

If we restrict ourselves to maps F satisfying (4.15) then automatically A 21+ B2F1 =
0 (see theorem 4.17). Theorem 4.18 asserts that, under the restriction that F1 should
satisfy (4.15), the spectrum of A11+ B1F1 is freely assignable. Also, the eigenvalues
of A33 + B3F3 can be placed arbitrarily by appropriate choice of F3. Finally, the
theorem states that, under the restriction (4.15) on F2, the map A22 + B2F2 is fixed.
More specifically, if F 12 and F

2
2 satisfy A32 + B3Fi2 = 0 (i = 1, 2) then we have

A22 + B2F12 = A22 + B2F22 and, a fortiori, also σ (A22 + B2F12 ) = σ (A22 + B2F22 ).
The block A44 is not affected by any feedback map F and consequently also σ (A 44)
is fixed.

As a consequence of the above theorem, given a pair of real monic polynomials
(p1, p2) with deg p1 = dimR and deg p2 = dimS/V, we can find a linear map
(F1 F2 F3 F4) = F ∈ F(V) such that the characteristic polynomial of A + BF
becomes equal to the product p1 · q · p2 · r . Here q is equal to the characteristic
polynomial of A22 + B2F2 which, as noted before, is the same for all maps F2 such
that F ∈ F(V). The polynomial r is equal to the characteristic polynomial of A 44.

In the proof of theorem 4.18 the following lemma will be useful.

Lemma 4.19 Let V be a controlled invariant subspace and let F0 ∈ F(V). Let
F : X → U be a linear map. Then F ∈ F(V) if and only if (F0 − F)V ⊂ B−1V.

Proof : (⇒) Let x0 ∈ V. Then (A + BF0)x0 ∈ V and (A + BF)x0 ∈ V. Hence
B(F0 − F)x0 ∈ V.
(⇐) Let x0 ∈ V. Then B(F0 − F)x0 ∈ V. Also (A + BF0)x0 ∈ V. It follows

that also (A + BF)x0 = (A + BF0)x0 − B(F0 − F)x0 ∈ V.

We will now give a proof of theorem 4.18.

Proof of theorem 4.18: : (i) The fact that F(V) ⊂ F(R) was already proven
in theorem 4.17. The subspace S is invariant under A + BF for any F (see also
exercise 4.2).

(ii) Let (p1, p2) be a pair of polynomials as in the statement of the theorem. We
choose any F0 ∈ F(V) and L : Rk → Uwith im L = B−1V, where k : = dim B−1V.
Then, according to (4.13), we have

R = ⟨A + BF0 | im BL⟩.

Define A0 : = (A + BF0) | R and B0 : = BL. Then the system (A0, B0) is controll-
able (see corollary 3.4) and hence, by theorem 3.29, there exists a map F 1 : R → Rk
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such that A0 + B0F1 has characteristic polynomial p1. Extend F1 to a linear map
fromX → Rk . Define F2 : = F0 + LF1. Since F2 − F0 = LF1 and im L = B−1V,
it follows from lemma 4.19 that V is invariant under A+ BF2. Also S is (A+ BF2)-
invariant. Let % : S → S/V be the canonical projection (see section 2.4). Define
A2 : = (A+BF2) | S/V and let B2 : U → S/V be defined by B2 : = %B. We claim
that the system (A2, B2) is controllable. We will show that S/V = ⟨A2 | im B2⟩. Let
x̄ ∈ S/V, say x̄ = %x with x ∈ S. Then x can be written as x = x1 + x2 with
x1 ∈ ⟨A | im B⟩ = ⟨A + BF2 | im B⟩ and x2 ∈ V. Since V = ker% we have that in
fact x̄ = %x1. There are u0, . . . , un−1 ∈ U such that x1 = ∑

i (A+ BF2)i Bui . Thus

x̄ = %x1 =
∑

i
%(A + BF2)i Bui

=
∑

i
Ai2B2ui ∈ ⟨A2 | im B2⟩.

Here, we have used the fact that %(A + BF2) = A2% and B2 = %B. This proves
our claim. Now, by theorem 3.29 there exists a map F̄3 : S/V → U such that
the characteristic polynomial of A2 + B2 F̄3 equals p2. Define F3 : S → U by
F3 : = F̄3% and extend F3 to a map onX. Define F : = F2+F3. Then (A+BF)V =
(A + BF2)V ⊂ V so F ∈ F(V). Also, (A + BF) | S/V = A2 + B2 F̄3 since

(A2 + B2 F̄3)% = A2%+%BF3 = %(A + BF2) +%BF3 = %(A+ BF).

Thus, the characteristic polynomial of (A + BF) | S/V is equal to p2. It remains
to be shown that the characteristic polynomial of (A + BF) | R equals p 1. This
however follows from the fact that (A + BF) | R = A0 + B0F1.

(iii) Let F1, F2 ∈ F(V). According to lemma 4.19 we have (F1−F2)V ⊂ B−1V.
Hence B(F1− F2)V ⊂ V ∩ im B ⊂ R (see lemma 4.16). Let%1 : V → V/R be the
canonical projection. SinceR = ker%1 we have%1B(F1 − F2)V = 0. Denote A1 :
= (A+BF1) | V/R and A2 : = (A+BF2) | V/R. Let x̄ ∈ V/R, say x̄ = %1x with
x ∈ V. Then (A1 − A2)x̄ = (A1%1 − A2%1)x = (%1(A+ BF1) −%1(A+ BF2))x
= %1B(F1 − F2)x = 0. Thus A1 = A2 and hence the map (A + BF) | V/R is
independent of F for F ∈ F(V).

Finally, let %2 : X → X/S be the canonical projection. Since im B ⊂ S and
S = ker%2 we have %2B = 0. Let F1, F2 be linear maps X → U. Note that S is
(A + BFi )-invariant (i = 1, 2) and define Ai : = (A + BFi ) | X/S. Let x̄ ∈ X/S,
say x̄ = %2x . Then (A1 − A2)x̄ = (A1%2 − A2%2)x = (%2(A + BF1) −%2(A +
BF2))x = %2B(F1 − F2)x = 0. Thus A1 = A2 and (A + BF) | X/S = A | X/S
for every F .

We close this section by applying theorem 4.18 to obtain the following character-
ization of controllability subspaces.

Theorem 4.20 Consider the system (4.1). Let V be a subspace of X. The following
statements are equivalent:
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(i) V is a controllability subspace,

(ii) for all for all λ ∈ C we have (λI − A)V + im B = V + im B,

(iii) for each real monic polynomial p with deg p = dimV, there exists F ∈ F(V)
such that the characteristic polynomial of A F | V equals p.

Proof : (i) ⇒ (iii). Follows by applying theorem 4.18 to the subspace V. Note that
R∗(V) = V.

(iii)⇒ (ii). From the fact that F(V) ̸= ∅ it follows thatV is controlled invariant.
Hence AV ⊂ V + im B (see theorem 4.2) and consequently (λI − A)V + im B ⊂
V + im B for all λ ∈ C. To prove the converse inclusion it suffices to show that
V ⊂ (λI − A)V + im B for all λ. Let λ ∈ C. Pick a real monic polynomial p with
deg p = dimV such that p(λ) ̸= 0. There is F ∈ F(V) such that the characteristic
polynomial of AF | V equals p. It follows that λ ̸∈ σ (A + BF | V) so the map
(λI − A− BF) | V must be regular. Also, (λI − A− BF)V ⊂ V and consequently
we must in fact have (λI − A− BF)V = V. It follows that V ⊂ (λI − A)V + im B.

(ii) ⇒ (i). If (ii) holds then also AV ⊂ V + im B so V is controlled invariant.
For each linear map F we have

(λI − A − BF)V + im B = V + im B (4.16)

for all λ ∈ C. If in (4.16) we take F ∈ F(V) and intersect both sides of the equation
with V we obtain

(λI − A − BF)V + (im B ∩ V) = V (4.17)

for all λ ∈ C. Let L be a linear map such that im L = B−1V, say L : Rk → U. Then
im B ∩ V = im BL and (4.17) becomes

(λI − A − BF)V + BLRk = V (4.18)

for all λ. By theorem 3.13 (compare (3.12)) this implies that the system (A+BF, BL)

with state space V and input space Rk is controllable. Hence, by corollary 3.4, V =
⟨A + BF | im BL⟩. Finally, apply theorem 4.12.

4.6 Stabilizability subspaces

In this section we introduce the notion of stabilizability subspace. Consider the sys-
tem (4.1). From section 2.6, recall that if we choose an input function that is Bohl,
then for any initial state also the resulting state trajectory is Bohl. Moreover, for a
Bohl trajectory x we defined its spectrum σ (x) and we called a Bohl trajectory x
stable with respect to a given stability domain Cg if σ (x) ⊂ Cg .

Let Cg be a stability domain. A subspace V of the state space is called a stabi-
lizability subspace if it has the following property: for each initial condition in the
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subspace there is a Bohl input such that the resulting state trajectory remains in the
subspace and is stable.

Definition 4.21 A subspace V ⊂ X is called a stabilizability subspace if for any
x0 ∈ V there exists a Bohl function u such that xu(t, x0) ∈ V for all t ! 0 and
xu(·, x0) is stable.

An important special case is obtained by taking the stability set Cg to be equal
to C−, the open left half complex plane. Since a Bohl function converges to zero as
t tends to infinity if and only if its spectrum is contained in C−, for this particular
case the requirement that xu(·, x0) should be stable is equivalent to the condition
xu(t, x0) → 0 (t → ∞).

Note that every stabilizability subspace is controlled invariant. The sum of any
number of stabilizability subspaces is a stabilizability subspace. It also follows from
the definition that the property of being a stabilizability subspace is invariant under
state feedback and isomorphisms of the input space. In the following, for a given
stability domain Cg , let Cb be its complement in C. Stabilizability subspaces can be
characterized as follows:

Theorem 4.22 Consider the system (4.1) and let Cg be a stability domain. Let V be
a subspace of X. Then the following statements are equivalent:

(i) V is a stabilizability subspace,

(ii) for all λ ∈ Cb we have (λI − A)V + im B = V + im B,

(iii) there exists F ∈ F(V) such that σ (AF | V) ⊂ Cg.

Proof : (i)⇒ (ii). For any F , condition (ii) is equivalent to

(λI − AF )V + im B = V + im B for all λ ∈ Cb. (4.19)

Let F ∈ F(V). We claim that in this case (4.19) is equivalent to

(λI − AF )V + (im B ∩ V) = V for all λ ∈ Cb. (4.20)

Indeed, (4.20) follows from (4.19) by taking the intersection with V on both sides of
the equation. The converse can be verified immediately. Now assume that (ii) does
not hold. Then by the previous there must be a λ0 ∈ Cb for which the equality in
(4.20) does not hold. Since F ∈ F(V) we do have

(λ0 I − AF )V + (im B ∩ V) ⊂ V. (4.21)

Consequently, the inclusion in (4.21) must be strict. Hence, there exists a nonzero
row vector η such that η ⊥ (λ0 I − AF )V + (im B ∩ V) but not η ⊥ V. Let x0 ∈ V
such that ηx0 ̸= 0. Since V is a stabilizability subspace there exists a Bohl function
u such that if x(t) satisfies ẋ = AF x + Bu, x(0) = x0, we have x(t) ∈ V for
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all t ! 0 and σ (x) ⊂ Cg . Since x(t) ∈ V for all t ! 0, also ẋ(t) ∈ V and
AFx(t) ∈ V for all t ! 0. Hence, Bu(t) ∈ V ∩ im B for all t ! 0 and therefore
ηBu(t) = 0, t ! 0. Also, since η ⊥ (λ0 I − AF )V, we have η(λ0 I − AF )x(t) = 0
for all t and hence ηAFx(t) = λ0ηx(t) for all t . Now define z(t) : = ηx(t). Then
z(0) = ηx0 ̸= 0 and z satisfies the differential equation ż(t) = λ0z(t). It follows that
η∗x(t) = z(t) = eλ0tη∗x0. Thus λ0 = σ (η∗x). Obviously, σ (η∗x) ⊂ σ (x) ⊂ Cg .
Since λ0 ∈ Cb, this yields a contradiction.

(ii)⇒ (iii). If (ii) holds then AV ⊂ V + im B so V is controlled invariant. Take
F0 ∈ F(V). Then (ii) is equivalent to (4.20) with F replaced by F0. Let L be a
linear map such that im L = B−1V, say L : Rk → U. Then im B ∩ V = im BL so
(4.20) yields (λI − AF0)V + BLRk = V for all λ ∈ Cb . It follows from theorem
3.13 that the system (AF0, BL) with state space V and input space Rk is stabilizable.
Hence there is F1 : V → Rk such that σ ((AF0 + BLF1) | V) ⊂ Cg . Extend F1 to
a linear map on X and define F : = F0 + LF1. Then σ (AF | V) ⊂ Cg and since
im(F − F0) ⊂ B−1V also F ∈ F(V) (see lemma 4.19).

(iii) ⇒ (i). Let F ∈ F(V) with σ (AF | V) ⊂ Cg . Denote A0 : = AF | V
and apply state feedback u = Fx . The resulting state trajectory is given by x(t) =
eA0t x0. Obviously for x0 ∈ V we have that x(t) ∈ V for all t . Then it follows from
theorem 2.6 that the spectrum of x must be contained in σ (A 0) which is contained in
Cg . Finally note that x is equal to the state trajectory resulting from the Bohl input
u(t) = FeA0t x0.

As already noted in the proof of the previous theorem, for any F ∈ F(V) and
any map L such that im L = B−1V condition (ii) is equivalent to saying that the
system ẋ = AFx + BLw with state space V is stabilizable. In this sense, a sta-
bilizability subspace can be considered as a subspace to which the original system
can be restricted by suitable restriction of the input functions, such that the restricted
system is stabilizable. From theorem 4.20 it follows that, in the same sense, a control-
lability subspace is a subspace for which the restricted system is controllable. Note
that, given any stability domain Cg , every controllability subspace is a stabilizability
subspace.

Using the feedback characterization in theorem 4.22 (iii) it is possible to char-
acterize stabilizability subspaces in terms of the spectral assignability properties of
controlled invariant subspaces studied in the previous section. For a given controlled
invariant subspace V, denote R : = R∗(V). It was shown in theorem 4.18 that the
map AF | V/R is independent of F for F ∈ F(V). If V is a stabilizability subspace
then there exists F ∈ F(V) such that σ (AF | V) ⊂ Cg . Since

σ (AF | V) = σ (AF | R) ∪ σ (AF | V/R)

this implies that the fixed spectrum σ (AF | V/R) is contained in Cg . Conversely, if
V is a controlled invariant subspace such that the fixed spectrum σ (A F | V/R) ⊂ Cg
then obviously one can find a F1 ∈ F(V) such that σ (AF1 | V) ⊂ Cg (since the
characteristic polynomial of AF1 | R can be chosen arbitrarily). Thus we have shown:
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Corollary 4.23 Let V be a controlled invariant subspace. ThenV is a stabilizability
subspace if and only if σ (A + BF | V/R) ⊂ Cg for any F ∈ F(V).

If K is an arbitrary subspace then we want to consider the largest stabilizability
subspace contained inK .

Definition 4.24 Let Cg be a stability set and let K be a subspace of X. Then we
define

V∗
g (K) : = {x0 ∈ X | there is a Bohl function u such that

xu(t, x0) ∈ K for all t ! 0 and xu(·, x0) is Cg-stable.}

Theorem 4.25 Let K be a subspace of X. Then V ∗
g (K) is the largest stabilizability

subspace contained in K , i.e.,

(i) V∗
g (K) is a stabilizability subspace,

(ii) V∗
g (K) ⊂ K ,

(iii) if V ⊂ K is a stabilizability subspace then V ⊂ V∗
g (K).

The proof is similar to that of theorem 4.5 and is left as an exercise to the reader.
Sometimes we denote V∗

g (K) by V∗
g (K, A, B). It is easily verified that for a

given subspaceK the following relation holds:

R∗(K) ⊂ V∗
g (K) ⊂ V∗(K) ⊂ K.

More specifically, we have R∗(V∗
g (K)) = R∗(K) and V∗

g (V
∗(K)) = V∗

g (K).
In particular, if we take K = X we obtain the largest stabilizability subspace of
the system (4.1), V∗

g (X). This subspace will be called the stabilizable subspace of
(A, B) and will be denoted by Xstab or Xstab(A, B) (see also exercise 3.24). This
subspace consists exactly of those points in which a stable state trajectory starts:

Xstab = {x0 ∈ X | there is a Bohl function u such that xu(·, x0) is stable.} (4.22)

According to the following result, the stabilizable subspace is equal to the sum of the
stable subspace of A (see definition 2.13) and the reachable subspace of (A, B):

Theorem 4.26 Xstab = Xg(A) + ⟨A | im B⟩.

Proof : (⊃). Obviously, bothXg(A) and ⟨A | im B⟩ are stabilizability subspaces and
hence also their sum. This sum is contained in the largest stabilizability subspace.

(⊂) In this proof, denote V : = Xg(A) + ⟨A | im B⟩. It is easily seen that both
Xstab as well as V are A-invariant. Let % : Xstab → Xstab/V be the canonical
projection and denote A0 : = A | Xstab/V. We claim that σ (A0) ⊂ Cb. Indeed,

σ (A | Xstab/V) ⊂ σ (A | X/V) ⊂ σ (A | X/Xg(A)).
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The latter spectrum is of course equal to σ (A | Xb(A)), which is contained in Cb.
Now assume that V ⊂ Xstab with strict inclusion. Then there is x0 ∈ Xstab with
x0 ̸∈ V. By (4.22) there is a Bohl function u such that the resulting trajectory x is
stable. Let x̄(t) : = %x(t). Then x̄ satisfies

¯̇x = %ẋ = %Ax +%Bu = A0%x = A0x̄ .

Here we used the facts that im B ⊂ V = ker% and %A = A0%. Since x̄(0) =
%x0 ̸= 0, x̄ is unstable. This contradicts the assumption that x and hence %x is
stable.

The above result can also be used to obtain an expression for the largest stabi-
lizability subspace contained in an arbitrary subspace of the state space. Let K be
a subspace of X and let V∗ be the largest controlled invariant subspace in K . Take
an arbitrary F ∈ F(V∗) and let L be a linear map such that im L = B−1V∗, say
L : Rk → U. Consider the restricted system ẋ(t) = AF x(t) + BLw(t) with state
space V∗ and input space Rk . Temporarily, denote the stabilizable subspace of the
restricted system by X̃stab. By (4.22),

X̃stab = {x0 ∈ V∗ | there is a Bohl functionw such that the solution x(t) of
ẋ = AFx + BLw, x(0) = x0 is stable}.

We claim that the largest stabilizability subspace in K is equal to the stabilizable
subspace of the restricted system, i.e. V ∗

g (K) = X̃stab. To prove this, first recall that
V∗
g (K) = V∗

g (V
∗). Let x0 ∈ V∗

g (K). By definition 4.24 there exists a Bohl function
u such that xu(t, x0) ∈ V∗ for all t ! 0 and xu(·, x0) is Cg-stable. It follows from
theorem 4.3 that the control u must be of the form

u(t) = Fxu(t, x0) + Lw(t)

for some Bohl functionw. Thus xu(t, x0) satisfies ẋ = AFx+BLw, x(0) = x0. This
shows that x0 ∈ X̃stab. The converse inclusion, i.e. the inclusion X̃stab ⊂ V∗

g (K) is
left as an exercise to the reader. By applying theorem 4.26 we find that

V∗
g (K) = Xg(AF | V∗) + ⟨AF | im BL⟩.

In theorem 4.17 it was shown that ⟨AF | im BL⟩ (the reachable subspace of the
restricted system) is equal toR∗(K). Moreover, sinceV∗ is invariant under A+ BF ,
we have

Xg(AF | V∗) = Xg(AF ) ∩ V∗.

Thus we obtain the following characterization of the largest stabilizability subspace
contained in a given subspace:

Corollary 4.27 Let K be a subspace of X. Then for all F ∈ F(V ∗(K)) we have

V∗
g (K) = Xg(A + BF) ∩ V∗(K) + R∗(K).
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In theorem 4.22 we characterized stabilizability subspaces as controlled invariant
subspacesV for which there exist F ∈ F(V) such that the restriction of A+ BF toV
has all its eigenvalues in Cg . Sometimes it will be important to know something about
the spectrum of the map induced by A + BF on the factor spaceX/V. A controlled
invariant subspace V will be called outer stabilizable if there exists an F ∈ F(V)
such that σ (A + BF | X/V) ⊂ Cg . Using the terminology of section 2.7 this can
be stated alternatively as: if there exists F ∈ F(V) such that the subspace V is outer
stable with respect to the map A + BF . Correspondingly, stabilizability subspaces
will sometimes be called inner stabilizable controlled invariant subspaces. In order
to illustrate these concepts, let V be a controlled invariant subspace for the system
(4.1). Choose a basis forX adapted to V. Accordingly, split

A =
(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, x =

(
x1
x2

)
.

Now, first assume thatV is inner stabilizable. Then there is a map F = (F1 F2) such
that A21 + B2F1 = 0 and σ (A11 + B1F1) ⊂ Cg . By taking F2 = 0 we thus obtain

A + BF =
(
A11 + B1F1 A12

0 A22

)
.

Let x0 ∈ V. Then with respect to the above choice of basis for X we have x 0 =
(x T10, 0)

T. Apply the state feedback control u = Fx . The trajectory resulting from x 0
and u satisfies the equations

ẋ1(t) = (A11 + B1F1)x1(t) + A12x2(t), x1(0) = x10,
ẋ2(t) = A22x2(t), x2(0) = 0.

Thus x2(t) = 0 (t ! 0) and x1(t) = e(A11+B1F1)t x10 (t ! 0). The fact that x2(t) = 0
for t ! 0 expresses the fact that the trajectory xu(t, x0) remains in V for all t ! 0.
The expression for x1(t) displays the fact that the spectrum of xu(·, x0) lies in Cg . In
particular, if Cg = C− then x1(t) → 0 as t → ∞.

Next, instead of inner stabilizable, let us assume thatV is outer stabilizable. Then
there is a map F = (F1 F2) such that A21 + B2F1 = 0 and σ (A22 + B2F2) ⊂ Cg .
Thus

A + BF =
(
A11 + B1F1 A12 + B1F2

0 A22 + B2F2

)
.

Take any x0 = (x T10, x
T
20)

T ∈ X. Apply the state feedback control u = Fx . Then the
trajectory resulting from x0 and u is given by

ẋ1(t) = (A11 + B1F1)x1(t) + (A12 + B1F2)x2(t), x1(0) = x10,
ẋ2(t) = (A22 + B2F2)x2(t), x2(0) = x20.

Consequently, x2(t) = e(A22+B2F2)t x20. Thus, if we assume that Cg = C− then
x2(t) → 0 (t → ∞). This expresses the fact that the trajectory xu(t, x0) converges to
the subspaceV as t → ∞. We see that, assuming that Cg = C−, an outer stabilizable
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controlled invariant subspace has the property that there exists a state feedback such
that all trajectories starting in the subspace remain in it, while all other trajectories
converge to that subspace as t → ∞. An inner stabilizable subspace has the property
that there exists a state feedback such that all trajectories starting in the subspace
remain in the subspace and converge to the origin as t → ∞.

We will now establish a criterion for a controlled invariant subspace to be outer
stabilizable. In the following, again let Cg be an arbitrary stability domain.

Lemma 4.28 Let V be a controlled invariant subspace. Then V is outer stabilizable
if and only if

σ (A | X/(V + ⟨A | im B⟩)) ⊂ Cg .

Proof : Denote S : = V + ⟨A | im B⟩.
(⇒) Let F ∈ F(V) be a map such that σ (AF | X/V) ⊂ Cg . Since both S and V

are invariant under AF and since, by theorem 4.18, AF | X/S is equal to A | X/S
we have

σ (A | X/S) = σ (AF | X/S) ⊂ σ (AF | X/V) ⊂ Cg .

(⇐) Let p be a real monic polynomial with all its zeros inCg , with deg p = dimS/V.
According to theorem 4.18 there is F ∈ F(V) such that the characteristic polynomial
of AF | S/V equals p. Hence σ (AF | S/V) ⊂ Cg . It follows that

σ (AF | X/V) = σ (AF | X/S) ∪ σ (AF | S/V)

= σ (A | X/S) ∪ σ (AF | S/V) ⊂ Cg .

Theorem 4.29 Let V be a controlled invariant subspace. Then V is outer stabiliz-
able if and only if

V + Xstab = X. (4.23)

Proof : (⇒) Assume that (4.23) does not hold. By theorem 4.26 we then have S +
Xg(A) ⊂ X with strict inclusion. Thus

σ
(
A | X/(S + Xg(A))

) ̸= ∅. (4.24)

The spectrum (4.24) is contained in σ (A | X/S). By lemma 4.28, the latter is
contained in Cg . On the other hand, the spectrum (4.24) is contained in σ (A |
X/Xg(A)), which is contained in Cb. This yields a contradiction.
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(⇐) Assume that (4.23) holds. Then we have

σ (A | X/S) = σ (A | (S + Xg(A))/S)

= σ (A | Xg(A)/(S ∩ Xg(A)))

⊂ σ (A | Xg(A)) ⊂ Cg .

It follows from (4.28) that V is outer stabilizable.

To conclude this section we will study the connection between the concepts in-
troduced here and stabilizability of the system (4.1). Recall from section 3.10 that
(A, B) is called stabilizable if there exists an F such that A + BF is stable. Ob-
viously, (A, B) is stabilizable if and only if the state space X is inner stabilizable.
According to theorem 4.22 this is equivalent with (λI − A)X + BU = X for all
λ ∈ Cb. Thus we recover theorem 3.32. On the other hand, (A, B) is stabilizable if
and only if the zero-subspace is outer stabilizable. Using this observation we obtain

Theorem 4.30 The following statements are equivalent:

(i) (A, B) is stabilizable,

(ii) σ (A | X/⟨A | im B⟩) ⊂ Cg,

(iii) Xg(A) + ⟨A | im B⟩ = X,

(iv) Xb(A) ⊂ ⟨A | im B⟩.

Proof : The equivalence of (i), (ii) and (iii) follows immediately from theorem 4.26
and lemma 4.28. The equivalence of (iii) and (iv) follows from exercise 2.11.

4.7 Disturbance decoupling with internal stability

In this section we again consider the disturbed control system

ẋ(t) = Ax(t) + Bu(t) + Ed(t),
z(t) = Hx(t). (4.25)

In section 4.2 we discussed the problem of disturbance decoupling by state feedback.
The problem was to find a state feedback control law u(t) = Fx(t) such that the
impulse response matrix

TF (t) : = He(A+BF)t E

of the closed-loop system (4.6) is identically equal to zero (or, equivalently, such that
the closed-loop transfer function: G F (s) is equal to zero). On the other hand, in sec-
tion 3.10 we discussed stabilizability of the system (4.1), that is, the existence of a
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state feedback such that the system controlled by means of this feedback control law
becomes internally stable. In the present section we combine these two requirements
into one single design problem, the problem of disturbance decoupling with internal
stability by state feedback. This problem will consist of finding a state feedback con-
trol law such that the closed-loop system (4.6) is disturbance decoupled and internally
stable:

Definition 4.31 Consider the system (4.25). Let Cg be a stability domain. The pro-
blem of disturbance decoupling with internal stability by state feedback, DDPS, is to
find a linear map F : X → U such that TF = 0 and σ (A + BF) ⊂ Cg.

Given a feedback map F , consider the closed-loop system (4.6). Using (4.6) we
see that the closed-loop system is disturbance decoupled and internally stable if and
only if there exists an AF -invariant subspace V between im E and ker H and A F is
stable. If a subspace V is AF -invariant and if AF is stable then of course V is a
stabilizability subspace and (A, B) is stabilizable. The following result states that the
converse also holds:

Theorem 4.32 LetV be a subspace ofX. There exists an F ∈ F(V) such that σ (A+
BF) ⊂ Cg if and only if V is a stabilizability subspace and (A, B) is stabilizable.

Proof : (⇒) Of course, (A, B) is stabilizable. Also σ (AF | V) ⊂ σ (AF ) ⊂ Cg so V
is a stabilizability subspace.

(⇐) Denote S : = V + ⟨A | im B⟩ and R : = R∗(V). It follows from theorem
4.18 that there exists an F ∈ F(V) such that σ (AF | R) ⊂ Cg and σ (AF | S/V) ⊂
Cg . SinceV is a stabilizability subspace, according to corollary 4.23 we have σ (A F |
V/R) ⊂ Cg . Finally, since (A, B) is stabilizable, using theorem 4.30 we obtain

σ (A | X/S) ⊂ σ (A | X/⟨A | im B⟩) ⊂ Cg .

Corollary 4.33 There exists a linear map F : X → U such that TF = 0 and
σ (A + BF) ⊂ Cg if and only if there exists a stabilizability subspace V such that
im E ⊂ V ⊂ ker H and (A, B) is stabilizable.

Proof : (⇒) If TF = 0 then (4.6) is disturbance decoupled. Hence there is an A F -
invariant subspace V with im E ⊂ V ⊂ ker H . Since σ (AF ) ⊂ Cg , V is a stabiliz-
ability subspace and (A, B) is stabilizable.

(⇐) According to theorem 4.32 there is an F such that V is A F -invariant and
σ (AF ) ⊂ Cg . Since im E ⊂ V ⊂ ker H , the system (4.6) is disturbance decoupled.
It follows that TF = 0.
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Of course, if im E is contained in a stabilizability subspace that is contained in
ker H , then it is also contained in the largest stabilizability subspace contained in
ker H (see theorem 4.25). Thus we obtain

Corollary 4.34 There exists a linear map F : X → U such that TF = 0 and
σ (A + BF) ⊂ Cg if and only if im E ⊂ V∗

g (ker H ) and (A, B) is stabilizable.

We conclude this section by noting that it is, in principle, possible to verify the
subspace inclusion im E ⊂ V∗

g (ker H ) computationally. Indeed, recall from corollary
4.27 that for any F ∈ F(V ∗(ker H )) we have

V∗
g (ker H ) = Xg(AF ) ∩ V∗(ker H ) + R∗(ker H ).

Thus, given the system (4.25) and a stability domain C g , one could first calculate
V∗(ker H ) using the algorithm described in section 4.3. Next, one could calculate
an F ∈ F(V∗(ker H )) and compute the subspace Xg(AF ). Finally, the subspace
R∗(ker H ) could be computed using theorem 4.17. Of course, the above only pro-
vides a very rough, conceptual, algorithm. If one would actually want to verify the
conditions of corollary 4.34 computationally, several questions concerning numerical
stability would have to be taken into account.

4.8 External stabilization

Again consider the system (4.25). In section 4.2 it was shown that the condition

im E ⊂ V∗(ker H ) (4.26)

is necessary and sufficient for the existence of a state feedback control law u(t) =
Fx(t) such that the transfer function of the closed-loop system becomes equal to
zero. The output of the system then becomes independent of the disturbance input
and, in particular, if the initial condition of the closed loop system is zero then the
output will be equal to zero for all disturbances. Suppose now that condition (4.26)
does not hold, so that disturbance decoupling by state feedback is not possible. In this
section we will set ourselves a more modest objective and ask ourselves the question:
when can we find a state feedback control law u(t) = Fx(t) such that the closed-loop
transfer function becomes stable. Equivalently: when can we make the closed-loop
system (4.6) input/output stable by choosing F appropriately? The rationale behind
this objective is of course that if the closed-loop system is stable then at least stable
disturbances will result in stable outputs. If for example we take the stability set to
be equal to C− and if the initial condition of the closed-loop system is equal to zero,
then d(t) → 0 (t → ∞) will imply z(t) → 0 (t → ∞) (see corollary 3.22). Also,
bounded disturbances will at least result in bounded outputs.

Let us first consider the uncontrolled system

ẋ(t) = Ax(t) + Ed(t),
z(t) = Hx(t). (4.27)
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Let G(s) : = H (I s − A)−1E be the transfer function from d to z. The following
lemma provides a useful sufficient condition for G(s) to be stable:

Lemma 4.35 Let Cg be a stability domain. Assume that there exist A-invariant sub-
spaces V1 ⊂ V2 of X such that V1 ⊂ ker H, im E ⊂ V2 and σ (A | V2/V1) ⊂ Cg.
Then G(s) is stable.

Proof : Let% : V2 → V2/V1 be the canonical projection. Denote Ā : = A | V2/V1.
Let H̄ : V2/V1 → Z be a linear map such that H̄% = H | V2 (such a map H̄ exists
since V1 ⊂ ker H , see section 2.4). Let Ē : = %E . Then we have

G(s) = H (I s − A)−1E = H̄ (I s − Ā)−1 Ē .

(see exercise 3.8). Since σ ( Ā) ⊂ Cg , we conclude that G(s) is stable.

In the following, let GF (s) be the transfer function of the closed loop system
(4.6).

Definition 4.36 Consider the system (4.3). Let Cg be a stability domain. The pro-
blem of external stabilization by state feedback, ESP, is to find a linear map F : X →
U such that GF (s) is stable.

Assume that F is a map such that GF (s) is stable. Then for every point x0 ∈ im E ,
H (I s− AF )−1x0 is stable. This says that if in the system ẋ(t) = Ax(t)+ Bu(t)with
initial condition x(0) = x0 we use the control law u(t) = Fx(t) then the resulting
state trajectory xu(·, x0) has the property that Hxu(·, x0) is stable. Of course, xu(·, x0)
also results from the open loop control u(t) = Fe AF t x0. Thus we find that if there
exists an F such that GF (s) is stable then im E must be contained in

Wg(ker H ) : = {x0 ∈ X | there is a Bohl function u such that Hxu(·, x0) is stable}.
(4.28)

It is easy to verify that Wg(ker H ) is a subspace of X. This subspace will turn out
to play a central role in the problem of external stabilization. Often, we will denote
Wg(ker H ) byWg . We have the following characterization ofWg(ker H ) in terms of
controlled invariant subspaces introduced before:

Theorem 4.37 Wg(ker H ) = V∗(ker H ) + Xstab.

Proof : (⊃) It follows immediately from definition 4.4 and (4.22) that bothV ∗(ker H )
andXstab are contained inWg . Hence also their sum is contained inWg .

(⊂) Assume that x0 ∈ Wg . Let u be a Bohl input such that Hxu(·, x0) is stable.
Denote x : = xu(·, x0). Obviously, the input u and the state trajectory x can be
decomposed uniquely as

x = x1 + x2 and u = u1 + u2,
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with x1, x2, u1 and u2 Bohl, the spectrum of u1 and x1 contained in Cg and the spec-
trum of u2 and x2 contained in Cb. Denote x10 : = x1(0) and x20 : = x2(0). Then we
have x0 = x10 + x20. Also, since ẋ = Ax + Bu, we have

ẋ1(t) − Ax1(t) − Bu1(t) = −ẋ2(t) + Ax2(t) + Bu2(t).

Note that in this equation the left hand side has its spectrum contained in C g , whereas
the right hand side has its spectrum contained in Cb (see (2.7)). It follows that both
sides of the equation must in fact be identically equal to zero. Hence we obtain

ẋ1(t) = Ax1(t) + Bu1(t), (4.29)
ẋ2(t) = Ax2(t) + Bu2(t). (4.30)

From (4.29) it follows that x1 = xu1(·, x10). Since x1 is stable, according to (4.22)
we have x10 ∈ Xstab. On the other hand,

Hx2 = Hx − Hx1.

Since σ (x2) ⊂ Cb we have that the spectrum of Hx2 is contained in Cb. However,
both Hx as well as Hx1 are stable so σ (Hx2) = σ (Hx − Hx1) ⊂ Cg . This implies
that Hx2(t) = 0 for all t . It follows from (4.30) that x 2 = xu2(·, x20) and hence, by
definition 4.4, that x20 ∈ V∗(ker H ). Thus x0 = x10 + x20 ∈ Xstab + V∗(ker H ).

It follows from the above that Wg is a strongly invariant subspace (see exercise
4.2). Indeed, by combining theorem 4.37 and theorem 4.26 it is easy to see that W g
is A-invariant and that im B ⊂ Wg . Hence, AWg + im B ⊂ Wg . In particular this
implies that (A + BF)Wg + im B ⊂ Wg for any linear map F : X → U.

As already noted, the subspace inclusion im E ⊂ Wg is a necessary condition for
the existence of a map F : X → U such that GF is stable . Using the representation
for Wg obtained in theorem 4.37 we now prove that this subspace inclusion is also
sufficient.

Lemma 4.38 There exists a linear map F ∈ F(V∗(ker H )) such that

σ (AF | Wg/V
∗(ker H )) ⊂ Cg .

Proof : Recall that Wg is A-invariant and that im B ⊂ Wg . Let A0 : = A | Wg ,
the restriction of A to Wg , and consider the system ẋ = A0x + Bu with state space
Wg . Denote V∗ : = V∗(ker H ). We have V∗ ⊂ Wg , and its is easily seen that V∗ is
controlled invariant with respect to the restricted system (A 0, B). Also,Xstab ⊂ Wg
and it can be verified that the stabilizable subspace of (A 0, B) is equal to Xstab (use
the characterization (4.22)). Consequently, the formula

V∗ + Xstab = Wg,
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together with theorem 4.26 implies that V ∗ is outer-stabilizable with respect to the
system (A0, B). Hence there exists an F : Wg → U such that (A0 + BF)V∗ ⊂ V∗

and

σ (A0 + BF | Wg/V
∗) ⊂ Cg .

Extend this F to a map on X in an arbitrary way. Since A 0 and A coincide on Wg ,
we obtain σ (AF | Wg/V∗) ⊂ Cg .

Theorem 4.39 Consider the system (4.25). There exists a linear map F : X → U
such that GF (s) is stable if and only if im E ⊂ V∗(ker H ) + Xstab.

Proof : (⇒) This was already proven. (⇐) This is an application of lemma 4.38:
Let F be such that AFV∗ ⊂ V∗ and σ (AF | Wg/V∗) ⊂ Cg (Wg is automatically
AF -invariant). Since V∗ ⊂ Wg , V∗ ⊂ ker H and im E ⊂ Wg , we may conclude
from lemma 4.35 that GF (s) is stable.

By using theorem 4.26, we see that the subspace inclusion of theorem 4.39 can
in principle be verified computationally. Indeed, X stab = Xg(A) + ⟨A | im B⟩ so
Xstab can be calculated from first principles. In section 4.3 we gave an algorithm to
compute V∗(ker H ). Of course, again we do not address numerical issues here.

4.9 Exercises

4.1 (Output null-controllability.) Consider the system

ẋ(t) = Ax(t) + Bu(t), z(t) = Hx(t).

If x0 ∈ X and u is an input function, then the corresponding output is denoted
by zu(t, x0) : = Hxu(t, x0). A point x0 is called output null-controllable if
there is a T > 0 and an input u such that z u(t, x0) = 0 for all t ! T . The
subspace of all output null-controllable points is denoted by S. Prove that

S = V∗(ker H ) + ⟨A | im B⟩.

Hint: xu(T, x0) = eAT x0 + xu(T, 0). Use the facts that

xu(T, x0) ∈ V∗(ker H ),

xu(T, 0) ∈ ⟨A | im B⟩

and that

V∗(ker H ) + ⟨A | im B⟩

is A-invariant.
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4.2 (Strong invariance.) Consider the system ẋ(t) = Ax(t)+Bu(t). A subspaceV
ofX is called strongly invariant if for each x0 ∈ V and for each input function
u we have xu(t, x0) ∈ V for all t ! 0. Show that

a. The reachable subspace ⟨A | im B⟩ is strongly invariant.
b. V is strongly invariant if and only if V is controlled invariant and

⟨A | im B⟩ ⊂ V.
c. If V is strongly invariant then (A + BF)V ⊂ V for all F .
d. V is strongly invariant if and only if AV + im B ⊂ V.

4.3 Consider the system (A, B). Let F : X → U be a linear map and let G : U →
U be an isomorphism. Show that the classes of (A, B)-invariant subspaces and
(A + BF, BG)-invariant subspaces coincide.

4.4 Consider the system ẋ(t) = Ax(t) + Bu(t). Let x0 ∈ X, let u be an input
function, and let xu(·, x0) be the resulting state trajectory. Let V denote the
linear span of the vectors {xu(t, x0) | t ! 0}. Show that V is a controlled
invariant subspace.

4.5 (The model matching problem) In this exercise we study the connection be-
tween DDP and the solvability of a rational matrix equation. Consider the
system (4.5). Define R1(s) : = H (I s− A)−1B and R2(s) : = H (I s− A)−1E .
R1 and R2 are strictly proper real rational matrices of dimensions q × m and
q × r , respectively. We consider the equation

R1Q = R2

in the unknown Q, which is required to be a (m×r) strictly proper real rational
matrix. A more systemic interpretation of this equation is the following: given
a system "1 with transfer matrix R1(s) and a system "2 with transfer matrix
R2(s), find a system "m such that the cascade (= parallel) connection of "m
and "1 is equal to "2
The above is called the problem of exact model matching: given the system " 1
(plant) and a ‘desired’ system"2, find a ‘precompensator’"m for"1 such that
the resulting cascade connection has exactly the same input/output behaviour
as the given system "2.

a. Show that the equation R1Q = R2 has a strictly proper real rational solu-
tion Q if and only if there exists an (m × r) matrix Bohl function U such
that

∫ t

0
HeA(t−τ )BU(τ ) dτ = HeAt for all t ! 0.

b. Show that if there exists U such that the equation in (i) holds, then for
each x0 ∈ im E there exists an input function u for the system ẋ(t) =
Ax(t) + Bu(t) such that Hxu(t, x0) = 0 for all t ! 0.
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c. Show that if F ∈ F(V∗(ker H )) then for each x0 ∈ V∗(ker H ) we have

−R1(s)F(I s − A − BF)−1x0 = H (I s − A)−1x0.

d. Conclude that the equation R1Q = R2 has a strictly proper real rational
solution Q if and only if im E ⊂ V ∗(ker H ).

4.6 (Disturbance decoupling with feedforward.) Consider the system (4.5). In the
previous section we studied the problem of disturbance decoupling by state
feedback. Sometimes, instead of restricting ourselves to feedback control laws
of the form u(t) = Fx(t), we want to allow the use of control laws of the form
u(t) = Fx(t) + Nd(t). If such a control law is connected to our system, then
the closed-loop system is given by the equation

ẋ(t) = (A + BF)x(t) + (BN + E)d(t), z(t) = Hx(t).

Thus we may pose the problem of disturbance decoupling by state feedback
with feedforward: find linear maps F : X → U and N : D → U such that
the given closed-loop system is disturbance decoupled.

a. Show that the closed-loop system is disturbance decoupled if and only if
there exists an (A+ BF)-invariant subspace V such that im(BN + E) ⊂
V ⊂ ker H .

b. Let N : D → U be given. Show that there exists F : X → U such that
the closed-loop system is disturbance decoupled if and only if im(BN +
E) ⊂ V∗(ker H ).

c. Show that there exist F and N such that the closed-loop system is disturb-
ance decoupled if and only if im E ⊂ V ∗(ker H ) + im B.

4.7 Consider the system ẋ(t) = Ax(t) + Bu(t). A subspace V of X is called a
reachability subspace if for every x 1 ∈ V there exists T > 0 and an input
function u such that xu(t, 0) ∈ V for all 0 " t " T and xu(T, 0) = x1, i.e., if
every point in the subspace can be reached from the origin in finite time along
a trajectory that does not leave the subspace. Show that:

a. every reachability subspace is controlled invariant,
b. a subspaceV is a reachability subspace if and only if it is a controllability

subspace,
c. a subspaceV is a controllability subspace if and only if it has the property

that for any pair of points x0, x1 ∈ V there exists T > 0 and an input
function u such that xu(t, x0) ∈ V for all 0 " t " T and xu(T, x0) = x1.

4.8 Consider the system ẋ(t) = Ax(t) + Bu(t). A subspace V of X is called a
coasting subspace if for each x0 ∈ V there is exactly one input function u such
that xu(t, x0) ∈ V for all t ! 0. Show that the following three conditions are
equivalent:
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a. V is a coasting subspace,
b. V is controlled invariant,R∗(V) = 0 and B is injective,
c. F(V) ̸= ∅ and if F1, F2 ∈ F(V) then F1 | V = F2 | V.

4.9 Consider the single-input system ẋ(t) = Ax(t) + bu(t). Assume that (A, b) is
controllable.

a. Find all controllability subspaces associated with the system (A, b).
b. Show that every controlled invariant subspaceV withV ̸= X is a coasting

subspace.

Let K be a subspace of X with K ̸= X. Assume that x0 ∈ K and let u be
such that xu(t, x0) ∈ K for all t ! 0.

c. Show that u is given by a state feedback control law, i.e., there is a linear
map f : X → U such that u = f x .

4.10 (Output regulation by state feedback.) Consider the system ẋ(t) = Ax(t) +
Bu(t)+Ed(t), z(t) = Hx(t). For a given feedback control law u(t) = Fx(t),
let zF (t, x0, d) denote the output of the closed-loop system corresponding to
the initial condition x0 and disturbance d. In this exercise we study the problem
of output regulation by state feedback. We will say that F achieves output
regulation if zF (t, x0, d) → 0 (t → ∞) for all x0 ∈ X and every disturbance
d.

a. Show that F achieves output regulation if and only if He AFt E = 0 for all
t and HeAFt → 0 (t → ∞).

b. LetXstab denote the stabilizable subspace of the pair (A, B) with respect
to the stability set C− = {s ∈ C | ℜe s < 0}. Show that there exists F
such that HeAFt → 0 (t → ∞) if and only ifX = V∗(ker H ) + Xstab.

c. Show that there exists a map F that achieves output regulation if and only
if V∗(ker H ) is outer-stabilizable and im E ⊂ V ∗(ker H ).

4.11 (Input/output stabilization with feedforward.) Again consider the system (4.5).
Suppose thatCg is a stability domain. The problem of input/output stabilization
by state feedback with feedforward is to find a control law u(t) = Fx(t) +
Nd(t) such that the transfer function of the resulting closed-loop system, i.e.

GF,N (s) : = H (I s − AF )−1(BN + E),

is stable (see also exercise 4.6). Show that there exists a control law u(t) =
Fx(t) + Nd(t) such that GF,N (s) is stable if and only if im E ⊂ V∗(ker H )+
Xstab. Conclude that allowing feedforward of the disturbance input does not
enlarge the class of systems that can be made input/output stable.

4.12 Give a proof of theorem 4.25.
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4.13 (Disturbance decoupling by state feedback with pole placement.) In addition
to the ordinary disturbance decoupling problem, DDP, and the disturbance de-
coupling problem with stability, DDPS, we can also consider the disturbance
decoupling problem with pole placement, DDPPP. Here, the question is to
find conditions under which for any stability domain C g , there exists a map
F : X → U such that σ (A + BF) ⊂ Cg and TF = 0 (where, as usual, TF
denotes the closed loop impulse response from d to z). In this exercise we de-
rive necessary and sufficient conditions for this to hold. DenoteV ∗(K) byV∗,
R∗(K) byR∗, and V∗

g (K) by V∗
g .

a. Observe that if for any stability domainCg there exists a map F : X → U
such that σ (A+ BF) ⊂ Cg and TF = 0, then for any stability domain Cg
we have im E ⊂ V∗

g .
b. For F ∈ F(V∗), let τ denote the fixed spectrum σ (A + BF | V ∗/R∗).

Show that if Cg is a stability domain with the property that τ ∩ Cg = ∅,
then V∗

g = R∗.
c. Show that if (A, B) is controllable, then for any pair of real monic poly-

nomials (p1, p2) such that deg p1 = dimR∗ and deg p2 = n − dimR∗,
there exist F ∈ F(R∗) such that χAF |R∗ = p1 and χAF |X/R∗ = p2.
(Hint: apply theorem 4.18 to V = R∗).

d. Show that if (A, B) is controllable and im E ⊂ R∗, then for any real
monic polynomial p of degree n such that p = p 1 p2, with p1 and p2
monic polynomials and deg p1 = dimR∗, there exists F : X → U such
that χAF = p and TF = 0.

e. Show that for any stability domainCg there exists a map F : X → U such
that σ (A + BF) ⊂ Cg and TF = 0 if and only if (A, B) is controllable
and im E ⊂ R∗.

4.10 Notes and references

Controlled invariant subspaces were introduced independently by Basile and Marro
[10,11] andWonham andMorse [224]. An extensive treatment, including the disturb-
ance decoupling problem by state feedback, can also be found in Wonham’s classical
textbook [223], and in the textbook [14] by Basile and Marro. A characterization of
controlled invariant subspaces in terms of vectors of rational functions was given by
Hautus in [72]. A study of controlled invariant subspaces in the context of polynomial
models can be found in the work of Fuhrmann and Willems [51].

Alternative conditions for the existence of disturbance decoupling state feedback
control laws, in terms of the open loop control input-to-output, and disturbance input-
to-output transfer matrices, were obtained by Bhattacharyya in [19]. Robustness is-
sues in the context of design of disturbance decoupling state feedback controllers
were studied by Bhattacharyya, Del Nero Gomez and Howze in [22], and by Bhat-
tacharyya in [21]. Extensions to characterize the freedom in placing the closed loop


