Differential forms

Exterior differential forms arise when concepts such as the work of a field
along a path and the flux of a fluid through a surface are generalized to higher
dimensions.

Hamiltonian mechanics cannot be understood without differential forms.
The information we need about differential forms involves exterior multi-
plication, exterior differentiation, integration, and Stokes’ formula.

32 Exterior forms

Here we define exterior algebraic forms

A I-forms

Let R be an n-dimensional real vector space.>> We will denote vectors in this
space by E,ny, ...

Definition. A form of degree 1 (or a 1-form) is a linear function w: R" —» R, i.e.,

o(A:&; + 4,8;) = L0, + 1, 0(8)), Ay, A,€Rand &, &, eR".

We recall the basic facts about 1-forms from linear algebra. The set of all
1-forms becomes a real vector space if we define the sum of two forms by

(01 + @2)§ = 04(8) + w,(8),

and scalar multiplication by

(A)(®) = Aw(8).

52 1t is essential to note that we do not fix any special euclidean structure on R". In some examples
we use such a structure; in these cases this will be specifically stated (“euclidean R"”).
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7: Differential forms

The space of 1-forms on R” is itself n-dimensional, and is also called the dual
space (R")*.

Suppose that we have chosen a linear coordinate system x,, ..., x, on R",
Each coordinate x; is itself a 1-form. These n 1-forms are linearly independent.
Therefore, every 1-form  has the form

W=a;x, + -+ a,Xx,, a;eR.
The value of @ on a vector & is equal to
o(€) = a;x1€) + -+ + a,x,(8),
where x,(§), ..., x,(§) are the components of & in the chosen coordinate

system.

ExaMpLE. If a uniform free field F is given on euclidean R3, its work A on the displacement
& is a 1-form acting on § (Figure 135).

F (force)

w(®) = (F, §)

£ (displacement)

Figure 135 The work of a force is a 1-form acting on the displacement.

B 2-forms

Definition. An exterior form of degree 2 (or a 2-form) is a function on pairs of
vectors w?: R" x R" — R, which is bilinear and skew symmetric:

@3 (A4&; + 4,8;,83) = 1,07y, &3) + 1, 07%(E;, &5)

0*&;, &) = —0*E,, &),
Vi, A, eRE,E,,E,eR"

ExamrLE 1. Let S(&;, &,) be the oriented area of the parallelogram constructed on the vectors
&, and &, of the oriented euclidean plane R?, ie.,

Cll 612
621 622

with e,, e, a basis giving the orientation on R2,
It is easy to see that S(§;, &,) is a 2-form (Figure 136).

, where&; = .6, +{;,6,,8;, = &,,8; + &)y,

S(gb gz) =

ExaMpLE 2. Let v be a uniform velocity vector field for a fluid in three-dimensional oriented
euclidean space (Figure 137). Then the flux of the fluid over the area of the parallelogram
§,, §, is a bilinear skew symmetric function of &, and &,, i.e., a 2-form defined by the triple scalar
product

wz(gl éZ) = (V, gl, gz)
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32: Exterior forms

Figure 137 Flux of a fluid through a surface is a 2-form.

ExaMpLE 3. The oriented area of the projection of the parallelogram with sides &, and &, on
the x;, x,-plane in euclidean R3 is a 2-form.

PROBLEM 1. Show that for every 2-form w? on R" we have
0’E, &) =0,  VEeR"

Solution. By skew symmetry, w*(€, &) = —w*(E, &).

The set of all 2-forms on R" becomes a real vector space if we define the
addition of forms by the formula

(01 + ©,)E1, &) = 01§y, &) + 0,84, &)

and multiplication by scalars by the formula

(Aw)Ey, §2) = Aw(E,, §)).

PrOBLEM 2. Show that this space is finite-dimensional, and find its dimension.
ANSWER. n(n — 1)/2; a basis is shown below.

C k-forms

Definition. An exterior form of degree k, or a k-form, is a function of k vectors
which is k-linear and antisymmetric:

(4,81 + 4,87, 85, ..., 8) = 410E1, &, .-, &) + 4,081 &, -, &)
&5 -5 80) = (= D)'0(§y, ..., 80,
where
3 {O if the permutation iy, ..., i is even;

1 if the permutation iy, ..., i, is odd.
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7: Differential forms

£

£
&

Figure 138 Oriented volume is a 3-form.

ExaMpLE 1. The oriented volume of the parallelepiped with edges &, . . ., €, in oriented euclidean
space R” is an n-form (Figure 138).

éll e fln
V(él”én)z
énl frm
where &; = £;e; + - + £ e, and ey, .. ., e, are a basis of R".

ExaMPLE 2. Let R* be an oriented k-plane in n-dimensional euclidean space R". Then the
k-dimensional oriented volume of the projection of the parallelepiped with edges &;,&,, ...,
g, € R" onto R¥ is a k-form on R".

The set of all k-forms in R" form a real vector space if we introduce
operations of addition

(0 + 0,)8 = 0,(8) + w,(8), E={&,....&). &€ R’

and multiplication by scalars

(Aw)E€) = Aw(E).

PROBLEM 3. Show that this vector space is finite-dimensional and find its dimension.
ANSWER. C*: a basis is shown below.

D The exterior product of two I-forms

We now introduce one more operation: exterior multiplication of forms.
If w* is a k-form and o' is an [-form on R”, then their exterior product o* A o'
will be a k + I-form. We first define the exterior product of 1-forms, which
associates to every pair of 1-forms w,, @, on R" a 2-form w; A w, on R".

Let € be a vector in R". Given two 1-forms w, and w,, we can define a
mapping of R" to the plane R x R by associating to & € R" the vector w(§)
with components w,(€) and ®,(§) in the plane with coordinates w;, w,
(Figure 139).

Definition. The value of the exterior product w; A w, on the pair of vectors
£,,&, € R"is the oriented area of the image of the parallelogram with sides
w(&,) and w(&,) on the w,, w,-plane:

w(&;) @&,
(&) @,(&;)

(@) A ©,)&;,82) = l
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32: Exterior forms

@21 wi(Ey)

w())

]

Figure 139 Definition of the exterior product of two 1-forms

PROBLEM 4. Show that w, A w, really is a 2-form.
PRrROBLEM 5. Show that the mapping
(0, @) > 0y A 0y
is bilinear and skew symmetric:
W, AW, = -0y A O,
Aoy + Vo) A w, =Vo] A 0, + Vo] A ©,.
Hint. The determinant is bilinear and skew-symmetric not only with respect to rows, but

also with respect to columns.

Now suppose we have chosen a system of linear coordinates on R”, i.e., we
are given n independent 1-forms x,, ..., x,. We will call these forms basic.

The exterior products of the basic forms are the 2-forms x; A x;. By skew-
symmetry, x; A x; = 0 and x; A x; = —x; A x;. The geometric meaning of
the form x; A x;is very simple: its value on the pair of vectors &,, &, is equal
to the oriented area of the image of the parallelogram &, &, on the coordinate
plane x;, x; under the projection parallel to the remaining coordinate
directions.

PROBLEM 6. Show that the C2 = n(n — 1)/2 forms x; A x(i < j) are linearly independent.

In particular, in three-dimensional euclidean space (x;, x,, x3), the area
of the projection on the (x,, x,)-plane is x; A x,, on the (x,, x;)-plane it is
X, A X3, and on the (x3, x;)-plane it is x3 A x;.

ProBLEM 7. Show that every 2-form in the three-dimensional space (x,, x,, x3) is of the form

Px, A x3 + Qx3 A X; + Rxy A X,.
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7: Differential forms

PrOBLEM 8. Show that every 2-form on the n-dimensional space with coordinates x,, ..., x,
can be uniquely represented in the form

CU2 = Zaijxi A Xj-
: i<j

Hint. Let e; be the i-th basis vector, i.c., x(€;) = 1, x(e;) = 0 for i # j. Look at the value of
the form w? on the pair ¢;, ;. Then

a;; = (e, e)).

E Exterior monomials

Suppose that we are given k 1-forms wy, ..., w,. We define their exterior
product w; A -+ A .

Definition. Set
;&) --- (&)

(@1 Ao A€o, 8D =

w1(;==:k) T wk(‘gk)

In other words, the value of a product of 1-forms on the parallelepiped
€,,...,& isequal to the oriented volume of the image of the parallelepiped
in the oriented euclidean coordinate space R* under the mapping & —

(@), ..., &)

PROBLEM 9. Show that w; A -+ A w, is a k-form.
ProOBLEM 10. Show that the operation of exterior product of 1-forms gives a multi-linear skew-
symmetric mapping
(W1, @) D> @O A ... A .
In other words,

Aol + V0D A0, A Ao =A0) AWy A A+ A0 A0, A Ay

and
Wy A Ao =(=1o; A Ao,
where
0 if the permutation iy, ..., i is even,
- {1 if the permutation iy, ..., i, is odd.

Now consider a coordinate system on R" given by the basic forms x,, ...,
x,. The exterior product of k basic forms

Xiy Ao A Xy, 1<i,<n,

is the oriented volume of the image of a k-parallelepiped on the k-plane
(xi,» .-, x;) under the projection parallel to the remaining coordinate
directions.
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32: Exterior forms

ProBLEM 11. Show that, if two of the indices iy, . . ., i, are the same, then the form x;, A -+ A x;,
is zero.
PrROBLEM 12. Show that the forms

Xy, Aot A X, wherel <i) <ip <. <i<n,

iy

are linearly independent.
The number of such forms is clearly C¥. We will call them basic k-forms.
ProBLEM 13, Show that every k-form on R” can be uniquely represented as a linear combination

of basic forms:

"= Z iy, i Xig Nt N X
1<iy< - <ig<n

: k
Hint. Aiyoie = w (eil’ e ’eik)’

It follows as a result of this problem that the dimension of the vector space
of k-forms on R” is equal to C¥. In particular, for k = n, C% = 1, from which
follows

Corollary. Every n-form on R" is either the oriented volume of a parallelepiped
with some choice of unit volume, or zero:

O"=a-x; A AX,.
ProBLEM 14. Show that every k-form on R" with k > n is zero.

We now consider the product of a k-form w* and an I-form o' First,
suppose that we are given two monomials

a)k=a)1/\-°-/\(uk and (Dl=(uk+1/\---/\a)k+l,

where @, ..., @4, are 1-forms. We define their product w* A o' to be the
monomial

(@ Ao A A(@pyg A s A D)
=a)1 AN /\wkl\wk+1 AN /\(J)k+t.

PrOBLEM 15. Show that the product of monomials is associative:
(0* A @) A 0™ = 0 A (0 A 0™
and skew-commutative:
of A @ = (= 1D¥o! A ot
Hint. In order to move each of the [ factors of ' forward, we need k inversions with the

k factors of w*.

Remark. Tt is useful to remember that skew-commutativity means commutativity only if
one of the degrees k and [ is even, and anti-commutativity if both degrees k and [ are odd.
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7: Differential forms

33 Exterior multiplication

We define here the operation of exterior multiplication of forms and show that it is skew-
commutative, distributive, and associative.

A Definition of exterior multiplication

We now define the exterior multiplication of an arbitrary k-form w* by an
arbitrary I-form o', The result w* A o' will be a k + I-form. The operation of
multiplication turns out to be:

1. skew-commutative: ©* A @' = (—D¥0' A o¥;
2. distributive: (A, 0% + A,0%) A 0 = 4,0k A &' + 1,0k A 0
3. associative: (0* A @') A O™ = &* A (@' A @)

Definition. The exterior product w* A ' of a k-form w* on R" with an
I-form ' on R" is the k + I-form on R” whose value on the k + [ vectors

oo s By Bkvtr - Bxs € R"is equal to
(1) (wk A wl)(gla cre §k+ 1) = Z ('— l)vwk(gip ERE ] gik)wl(éjp vey éjx)’

wherei; < --- <ij,andj; <--- <ji;(yg,.. 5015 - - »J;) 1S @ permutation
of the numbers (1,2, ...,k + [); and

_J1 if this permutation is odd;
~ |0 if this permutation is even.

In other words, every partition of the k + [ vectors &, ..., &,., into two
groups (of k and of ] vectors) gives one term in our sum (1). This term is equal
to the product of the value of the k-form * on the k vectors of the first group
with the value of the I-form w' on the [ vectors of the second group, with sign
+ or — depending on how the vectors are ordered in the groups. If they are
ordered in such a way that the k vectors of the first group and the [ vectors of
the second group written in succession form an even permutation of the
vectors &, &,, ..., &, then we take the sign to be +, and if they form an
odd permutation we take the sign to be —.

ExampLE. If k = | = 1, then there are just two partitions: &,, §, and §,, &;.
Therefore,

(01 A @), &) = 01(E)w,(E;) — 0381w, (Ey),
which agrees with the definition of multiplication of 1-forms in Section 32.

PRrOBLEM 1. Show that the definition above actually defines a k + [-form (i.., that the value of
(@* A @Yy, ..., &) depends linearly and skew-symmetrically on the vectors ).
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33: Exterior multiplication

B Properties of the exterior product

Theorem. The exterior multiplication of forms defined above is skew-com-
mutative, distributive, and associative. For monomials it coincides with the
multiplication defined in Section 32.

The proof of skew-commutativity is based on the simplest properties of
even and odd permutations (cf. the problem at the end of Section 32) and will
be left to the reader.

Distributivity follows from the fact that every term in (1) is linear with
respect to o* and o',

The proof of associativity requires a little more combinatorics. Since the
corresponding arguments are customarily carried out in algebra courses for
the proof of Laplace’s theorem on the expansion of a determinant by column
minors, we may use this theorem.’?

We begin with the following observation: if associativity is proved for the
terms of a sum, then it is also true for the sum, i.e.,

(0] A @) A W3 = 0] A (0, A ©3) implies
(0] A @) A 03 = @f A (0, A ©3)
() + &) A 0) A 03 = (0] + 0]) A (03 A ©3).

But, by distributivity, which has already been proved, we have
(0 + 01) A @) A 03 = (0] A ©2) A ©3) + (0] A @) A 03),
(07 + @1) A (03 A @3) = (0] A (02 A ©3)) + (@] A (03 A 03)).

We already know from Section 32 (Problem 12) that every form on R" is a
sum of monomials; therefore, it is enough to show associativity for multi-
plication of monomials.

Since we have not yet proved the equivalence of the definition in Section
32 of multiplication of k 1-forms with the general definition (1), we will
temporarily denote the multiplication of k 1-forms by the symbol A, so that
our monomials have the form

=0, A Ao, and ©' =Wy K R Oy

where @, ..., 0, are 1-forms.

53 A direct proof of associativity (also containing a proof of Laplace’s theorem) consists of
checking the signs in the identity

(@ A &) A @™Eyy.. o Errem) = 2 T O Gy By, 8" Gy - - B

where i; < -+« < i, j; <+ <j, hy <--- <hy;(y,...,h,) is a permutation of the numbers
(1,...,k+ 1+ m).
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7: Differential forms

Lemma. The exterior product of two monomials is a monomial:

(@1 Ao R A (@ A R Opyy)
=(1)1 /—\ e xﬂ)k/_\wk,'_l —}\_.”Ka}k'f'l‘

ProOF. We calculate the values of the left and right sides on k + [ vectors
€., ..., &+ The value of the left side, by formula (1), is equal to the sum of
the products
Z + det |0;)]- det [wE;)!
1<i<k k<igk+l

of the minors of the first k columns of the determinant of order k + I and the
remaining minors. Laplace’s theorem on the expansion by minors of the
first k columns asserts exactly that this sum, with the same rule of sign choice
as in Definition (1), is equal to the determinant det|wy(§;)|. O

It follows from the lemma that the operations A and A coincide: we get,
in turn,

(DIK(D2=CO1 sz,
Wy AD; AWy =(0; A Wy) AWy = (0 A ®,;) A,
Oy AWy AN AW =((wy A W) A®3) A -2 A @)

The associativity of A -multiplication of monomials therefore follows from
the obvious associativity of A -multiplication of 1-forms. Thus, in view of the
observation made above, associativity is proved in the general case.

PrOBLEM 2. Show that the exterior square of a 1-form, or, in general, of a form of odd order, is
equal to zero: @* A w* = 0if k is odd.

ExampLE 1. Consider a coordinate system py,...,p,, q1,..., 4, on R?" and the 2-form
w? = Z?:l pi A g;.

[Geometrically, this form signifies the sum of the oriented areas of the projection of a paral-
lelogram on the n two-dimensional coordinate planes (p,, q;), ..., (p,, 4,). Later, we will see
that the 2-form w? has a special meaning for hamiltonian mechanics. It can be shown that every
nondegenerate®* 2-form on R?" has the form w? in some coordinate system (p,, ..., q,).]

ProBLEM 3. Find the exterior square of the 2-form w?,

ANSWER.

0P A= ~2YpiADiA G A G

i>j
ProBLEM 4. Find the exterior k-th power of w?.

ANSWER.
P AP A A@ =4kl Y P A AP A Gy A A g
v iy < e <y

k

54 A bilinear form w? is nondegenerate if V&€ # 0, In: w2(€, n) # 0.
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33: Exterior multiplication

In particular,

WA A@T =dknlp A AP AG A A g

&—.\,__._4

n

n

is, up to a factor, the volume of a 2n-dimensional parallelepiped in R?",
ExampLE 2. Consider the oriented euclidean space R*. Every vector A € R determines a 1-form
w}, by wi(§) = (A, &) (scalar product) and a 2-form w3 by

w3, &) =(AE.,E) (triple scalar product).

PROBLEM 5. Show that the maps A — w}, and A — wj establish isomorphisms of the linear space
R? of vectors A with the linear spaces of 1-forms on R* and 2-forms on R3. If we choose an
orthonormal oriented coordinate system (x,, x,, x;) on R, then

(Dk = Alxl + AzXZ + A3X3
and
WF = A1x3 A X3+ Ayx3 A Xy + A3xy A X,
Remark. Thus the isomorphisms do not depend on the choice of the orthonormal oriented
coordinate system (x,, X,, x3). But they do depend on the choice of the euclidean structure

on R?, and the isomorphism A — w3 also depends on the orientation (coming implicitly in the
definition of triple scalar product).

PROBLEM 6. Show that, under the isomorphisms established above, the exterior product of
1-forms becomes the vector product in R?, i.e., that
wi A o = ol p forany A, BeR3.

In this way the exterior product of 1-forms can be considered as an extension of the vector
product in R* to higher dimensions. However, in the n-dimensional case, the product is not a
vector in the same space: the space of 2-forms on R" is isomorphic to R” only for n = 3.

ProsLEM 7. Show that, under the isomorphisms established above, the exterior product of a
1-form and a 2-form becomes the scalar product of vectors in R3:

ok A 0= (A, B)x; A x; A Xj.

C Behavior under mappings

Let f: R™ — R" be a linear map, and w* an exterior k-form on R”". Then
there is a k-form f*w* on R™, whose value on the k vectors §,, ..., &, € R™
is equal to the value of w* on their images:

(f*NEy, ..., &) = ([, ..., fB).

PrROBLEM 8. Verify that f*w* is an exterior form.

PROBLEM 9. Verify that /* is a linear operator from the space of k-forms on R” to the space of
k-forms on R™ (the star superscript means that /* acts in the opposite direction from /).

PrOBLEM 10. Let f: R™ —» R" and g: R" — RP?. Verify that (g o /)* = f*o g*.

PROBLEM 11. Verify that f* preserves exterior multiplication: f*(@* A ©') = (f*0*) A (f*@').
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7: Differential forms

34 Differential forms

We give here the definition of differential forms on differentiable manifolds.

A Differential 1-forms

The simplest example of a differential form is the differential of a function.

ExaMpLE. Consider the function y = f(x) = x2. Its differential df = 2x dx depends on the
point x and on the “increment of the argument,” i.., on the tangent vector & to the x axis. We
fix the point x. Then the differential of the function at x, df |, depends linearly on &. So, if x = 1
and the coordinate of the tangent vector & is equal to 1, then df = 2, and if the coordinate of
€ is equal to 10, then df = 20 (Figure 140).

df

£

X

Figure 140 Differential of a function

Let f: M — R be a differentiable function on the manifold M (we can
imagine a “function of many variables” f: R" — R). The differential df |,
of fat x is a linear map

dfy: TM, - R

of the tangent space to M at x into the real line. We recall from Section 18C the
definition of this map:

Let &€ TM, be the velocity vector of the curve x(t): R - M; x(0) = x
and %(0) = &. Then, by definition,

d
a6 =+ _Of (x()).

t

ProsLem 1. Let & be the velocity vector of the plane curve x(t) = cost, y(t) =sint at t = 0.
Calculate the values of the differentials dx and dy of the functions x and y on the vector §
(Figure 141).

ANSWER dxli1.0/&) = 0,dyly,0(8) =1

Note that the differential of a function fat a point x € M is a 1-form df, on
the tangent space TM,.
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> X

Figure 141 Problem 1

The differential df of f on the manifold M is a smooth map of the tangent
bundle TM to the line

df: TM > R (TM = TM,‘).
This map is differentiable and is linear on each tangent space TM, < TM.

Definition. A differential form of degree 1 (or a 1-form) on a manifold M is a
smooth map
w:TM - R

of the tangent bundle of M to the line, linear on each tangent space TM,.

One could say that a differential 1-form on M is an algebraic 1-form on
T M, which is “differentiable with respect to X.”

ProBLEM 2. Show that every differential 1-form on the line is the differential of some function.

ProBLEM 3. Find differential 1-forms on the circle and the plane which are not the differential
of any function.

B The general form of a differential 1-form on R"

We take as our manifold M a vector space with coordinates x;, ..., x,.
Recall that the components &, ..., £, of a tangent vector § € TR} are the
values of the differentials dx, ..., dx, on the vector & These n 1-forms on
TRy, are linearly independent. Thus the 1-forms dx., ..., dx, form a basis for
the n-dimensional space of 1-forms on TR, and every 1-form on TR? can
be uniquely written in the form a, dx; + --- + a, dx,, where the q; are real
coefficients. Now let w be an arbitrary differential 1-form on R". At every
point x it can be expanded uniquely in the basisdx,. .., dx,. From this we get :

Theorem. Every differential 1-form on the space R" with a given coordinate
system xi, . .., X, can be written uniquely in the form
o = a;(x)dx; + - + a,(x)dx,,

where the coefficients a,(x) are smooth functions.
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&
0 1 2 3
Figure 142 Problem 4

>xl

ProBLEM 4. Calculate the value of the forms w, = dx,, w, = x,dx,,and w; = dr? (r? = x3 + x3)
on the vectors &, &,, and &; (Figure 142).

ANSWER.
& & &
C()l 0 - 1 1
w, 0 =2 =2
w;| 0 -8 0
PROBLEM 5. Let x4, . . ., x, be functions on a manifold M forming a local coordinate system in

some region. Show that every 1-form on this region can be uniquely written in the form
o = a(x)dx, + - + a,(x) dx,.

C Differential k-forms

Definition. A differential k-form «*| at a point x of a manifold M is an exterior
k-form on the tangent space TM, to M at X, i.e., a k-linear skew-symmetric
function of k vectors &, ..., §, tangent to M at X.

If such a form w*|, is given at every point x of the manifold M and if it is
differentiable, then we say that we are given a k-form w* on the manifold M.

ProBLEM 6. Put a natural differentiable manifold structure on the set whose elements are k-tuples
of vectors tangent to M at some point X.

A differential k-form is a smooth map from the manifold of Problem 6 to
the line.

PrOBLEM 7. Show that the k-forms on M form a vector space (infinite-dimensional if k does not
exceed the dimension of M).

Differential forms can be multiplied by functions as well as by numbers.
Therefore, the set of C* differential k-forms has a natural structure as a
module over the ring of infinitely differentiable real functions on M.
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D The general form of a differential k-form on R"

Take as the manifold M the vector space R” with fixed coordinate functions

X1s ..., Xt R" = R. Fix a point x. We saw above that the n 1-forms dx,, ...,

dx, form a basis of the space of 1-forms on the tangent space TR%.
Consider exterior products of the basic forms:

dxi, A -+ A dxg, i < o <.

In Section 32 we saw that these C k-forms form a basis of the space of exterior

k-forms on TR}. Therefore, every exterior k-form on TRZ can be written
uniquely in the form

Z iy, ..y ik dxi1 ARBRIA dxik'
il<"'<ik

Now let @ be an arbitrary differential k-form on R". At every point X it
can be uniquely expressed in terms of the basis above. From this follows:

Theorem. Every differential k-form on the space R" with a given coordinate
system X, . .., X, can be written uniquely in the form

ot = Z aih---,ik(x)dxi, A A dx,-k,
<ix

i< <i

where the a;, (x) are smooth functions on R".

T %

ProBLEM 8. Calculate the value of the forms w, = dx, A dx,, w, = x,;dx; A dx, — x,dx; A
dx,,and w; = rdr A do (where x; = rcos ¢ and x, = r sin @) on the pairs of vectors (§;,n,),
(€2, m,), and (€3, n3) (Figure 143).

ANSWER.

GEnm) Ezomy) Esma)

| 1 1 -1
w,| 2 1 -3
ws| 1 1 -1

£
2 n
2
1 ¢
£

0 1 2 1
Figure 143 Problem 8
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ProBLEM 9. Calculate the value of the forms w, = dx, A dx;, W, = x; dx;3 A dx,, and
w3 = dx; A dr? (r* = x? + x3 + x2), on the pair of vectors & = (1,1, 1), n = (1, 2, 3) at the
point x = (2, 0, 0).

ANSWER. 0; = 1, 0; = —2, w3 = ~8.

ProBLEM 10. Let x4, ..., x,; M — R be functions on a manifold which form a local coordinate
system on some region. Show that every differential form on this region can be written uniquely in
the form

o= ) a;,, . (X)dx;, A A dxg .

ExampLE. Change of variables in a form. Suppose that we are given two
coordinate systems on R3: x,, x,, x3 and y;, ,, 3. Let w be a 2-form on R3,
Then, by the theorem above, w can be written in the system of x-coordinates
as w = X,;dx, Adx; + X,dx; A dxy + X3dx, A dx,, where X, X,,
and X, are functions of x,, x,, and x5, and in the system of y-coordinates as
o =Y, dy, Adys + Y,dy; A dy, + Y3dy, A dy,, where Y, Y,, and Y,
are functions of y,, y,, and yj;.

PrOBLEM 11. Given the form written in the x-coordinates (i.e., the X;) and the change of variables
formulas x = x(y), write the form in y-coordinates, i.e., find Y.
Solution. We have dx; = (0x,/0y,) dy, + (0x;/dy,) dy, + (8x,/0y5) dys. Therefore,

ox, 0%, dx, ) <ax3 Ox3 0x3 )
dx; A dxy =\{z—dy, + —dy, + —d Alz—=dy, + —dy, + —dy;3),
2 X3 (6y1 »1 y, Y2 s Y3 o Y1 , Y2 3y, Y3
from which we get
D(x;, x3)

Y,=X,|——
’ ! D()’n)’z)

, etc.

{D(x;,, X1)
g Dy, y2)

ID(xl, X3)
: D(yy, y2)

E Appendix. Differential forms in three-dimensional spaces

Let M be a three-dimensional oriented riemannian manifold (in all future
examples M will be euclidean three-space R?). Let x,, x,, and x5 be local
coordinates, and let the square of the length element have the form

dsz = El dx% + E2 dx% + E3 dx%

(i.e., the coordinate system is triply orthogonal).

ProBLEM 12. Find E,, E,, and E, for cartesian coordinates x, y, z, for cylindrical coordinates
r, @, z and for spherical coordinates R, @, 8 in the euclidean space R* (Figure 144).

ANSWER.

ds® = dx? + dy* + dz? = dr* + r? do* + dz* = dR? + R?cos? 0 dp? + R? d>.

We let e,, e,, and e, denote the unit vectors in the coordinate directions.
These three vectors form a basis of the tangent space.
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* 7

Figure 144 Problem 12

ProBLEM 13. Find the values of the forms dx,, dx,, and dx; on the vectors e,, e,, and e;.

ANSWER. dx;(e;) = 1/\/_E_J_i, the rest are zero. In particular, for cartesian coordinates dx(e,) =
dy(e,) = dz(e,) = 1; for cylindrical coordinates dr(e,) = dz(e,) = | and do(e,) = 1/r (Figure
145), for spherical coordinates dR(eg) = 1, do(e,) = 1/R cos 6 and db(e,) = 1/R.

The metric and orientation on the manifold M furnish the tangent space
to M at every point with the structure of an oriented euclidean three-dimen-
sional space. In terms of this structure, we can talk about scalar, vector, and
triple scalar products.

ProBLEM 14. Calculate [e,, e,], (g, €,), and (e,, e,, e,).

ANSWER. €3, 0, 1.

In an oriented euclidean three-space every vector A corresponds to a
1-form w} and a 2-form w2, defined by the conditions

i) =(A8) DG =A%n, EneR’

The correspondence between vector fields and forms does not depend on
the system of coordinates, but only on the euclidean structure and orienta-
tion. Therefore, every vector field A on our manifold M corresponds to a
differential 1-form w} on M and a differential 2-form w2 on M.

il
X

¥ r
Figure 145 Problem 13
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7: Differential forms

The formulas for changing from fields to forms and back have a different
form in each coordinate system. Suppose that in the coordinates x;, x,, and
x5 described above, the vector field has the form

A = Alel + A2e2 + A3e3

(the components A4; are smooth functions on M). The corresponding 1-form
wi decomposes over the basis dx;, and the corresponding 2-form over the
basis dx,- A de.

ProBLEM 15. Given the components of the vector field A, find the decompositions of the 1-form
)} and the 2-form w3.

Solution. We have wj(e,) = (A, e) = A;. Also, (a;dx, + a,dx, + a;dx;)(e,) =
a;dx,(e;) = al/\/I_Z:. From this we get that a, = 4,./E,, so that

W) = Al\/E_1 dx, + Az\/sz dx, + A3\/E73 dx;.

In the same way, we have wi = (A, e,, e;) = A4,. Also,

(ay dx, A dxs + ay dx; A dxl + az dx, A dx,)(e,,e;) =a, .
E;E;

Hence, a; = A\/E,E;,ie,

w3 = Al\/ﬁ—zfa_ dx, A dx; + Azﬂ dx; A dx, + A3\/E:E_z dx; A dx,.
In particular, in cartesian, cylindrical, and spherical coordinates on R* the vector field
A=A + Ae, + Ae, = Ae + A,e, + A,e, = Ageg + A€, + Aye
corresponds to the 1-form
WA = Aydx + Aydy + A, dz = A, dr + rA,d¢ + A,dz = AgdR + Rcos 0A4,dp + RA,d0
and the 2-form

w} = A,dy Adz + Aydz A dx + A, dx A dy
=rA,dp Adz+ Adz Andr+rA,dr A do
= R*cos 0Ar dp A df + RA, d6 A dR + Rcos 04,dR A do.

An example of a vector field on a manifold M is the gradient of a function
f: M — R. Recall that the gradient of a function is the vector field grad f
corresponding to the differential:

wglrad 5= df, ie, df(§) = (grad fs 3] VE.

ProBLEM 16. Find the components of the gradient of a function in the basis e, e;, e;.
Solution. We have df = (0f/0x,) dx, + (9f/0x;) dx; + (8f/0x3) dx3. By the problem above

1 afe + 1 afe + 1 5fe
/E, 0% ! /E, 0%, 2 /E, 0%3 3

grad f =
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35: Integration of differential forms

In particular, in cartesian, cylindrical, and spherical coordinates

of of of of 10 of
df=-— = e, = L e
grad f axex+ayey+aze, ar°'+ra<p°"’+aze’
of 1 o 1of
ﬁek-’-RcosB%e"-*‘E%ee'

35 Integration of differential forms

We define here the concepts of a chain, the boundary of a chain, and the integration of a form
over a chain.

The integral of a differential form is a higher-dimensional generalization of such ideas as the
flux of a fluid across a surface or the work of a force along a path.

A The integral of a 1-form along a path
We begin by integrating a 1-form w! on a manifold M. Let
72[0<t<1]->M

be a smooth map (the “path of integration”). The integral of the form
@' on the path y is defined as a limit of Riemann sums. Every Riemann sum
consists of the values of the form w' on some tangent vectors &, (F igure 146):

n
fa)l = lim ) w!E).
Y A-Qi=1
The tangent vectors &; are constructed in the following way. The interval
0 <t < lisdivided into parts A;:t; < t < t;,, by the points ¢;. The interval
A; can be looked at as a tangent vector A, to the ¢ axis at the point ¢,. Its
image in the tangent space to M at the point y(t;) is

€& = dy)(A)eTM DR

The sum has a limit as the largest of the intervals A, tends to zero. It is
called the integral of the 1-form w! along the path 7.

The definition of the integral of a k-form along a k-dimensional surface
follows an analogous pattern. The surface of integration is partitioned into

7/
A;

F———fr—spt——|
I

Figure 146 Integrating a 1-form along a path
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Figure 147 Integrating a 2-form over a surface

small curvilinear k-dimensional parallelepipeds (Figure 147); these paral-
lelepipeds are replaced by parallelepipeds in the tangent space. The sum of the
values of the form on the parallelepipeds in the tangent space approaches
the integral as the partition is refined. We will first consider a particular case.

B The integral of a k-form on oriented euclidean space R

Let x,, ..., x; be an oriented coordinate system on R*. Then every k-form
on Rk is proportional to the form dx; A - - A dx,, ie., it has the form
o* = @(x)dx, A -+ A dx,, where @(x) is a smooth function.

Let D be a bounded convex polyhedron in R* (Figure 148). By definition,
the integral of the form w* on D is the integral of the function ¢:

Jw" = ~[‘(p(x)dxl,...,abc,‘,
D D

where the integral on the right is understood to be the usual limit of Riemann
sums.

Such a definition follows the pattern outlined above, since in this case the
tangent space to the manifold is identified with the manifold.

PROBLEM 1. Show that {, w* depends linearly on .

ProOBLEM 2. Show that if we divide D into two distinct polyhedra D, and D,, then

fw":f w"+f w*,
D Dy D2

In the general case (a k-form on an n-dimensional space) it is not so easy
to identify the elements of the partition with tangent parallelepipeds; we will
consider this case below.

>

L~

Figure 148 Integrating a k-form in k-dimensional space
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35: Integration of differential forms

C The behavior of differential forms under maps

Let f: M — N be a differentiable map of a smooth manifold M to a smooth
manifold N, and let w be a differential k-form on N (Figure 149). Then, a
well-defined k-form arises also on M: it is denoted by f*w and is defined by
the relation

(f*0)Ei, -, 8D = O(fy &1, -, f8)

for any tangent vectors &, ..., & € TM,. Here f, is the differential of the
map f. In other words, the value of the form f*w on the vectors &;, ..., &; is
equal to the value of w on the images of these vectors.

N
| w
——l

f*w

R

Figure 149 A form on N induces a form on M.

ExaMpLE. If y = f(x,, x,) = x} + x% and o = dy, then

[*o = 2x; dx; + 2x,dx,.

ProBLEM 3. Show that f*w is a k-form on M.

PrOBLEM 4. Show that the map f* preserves operations on forms:

[0 + ,m;) = 4, fXw,) + 4, fH(w,),
¥, A @) = (f*wy) A (f*o,).

PROBLEM 5. Let g: L — M be a differentiable map. Show that (fg)* = g*f*.

PROBLEM 6. Let D, and D, be two compact, convex polyhedra in the oriented k-dimensional
space R* and f: D, —» D, a differentiable map which is an orientation-preserving diffeomor-
phism?? of the interior of D, onto the interior of D,. Then, for any differential k-form w* on D,,

L, f*ok = J;) o,

2

Hint. This is the change of variables theorem for a multiple integral:

0155 Vn
[0 e - dx, = [ gty -y

p, 0(X1, ...y Xp) Ds

55 je., one-to-one with a differentiable inverse.
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D Integration of a k-form on an n-dimensional manifold

Let w be a differential k-form on an n-dimensional manifold M. Let D be a
bounded convex k-dimensional polyhedron in k-dimensional euclidean
space R* (Figure 150). The role of “path of integration” will be played by a

%

Figure 150 Singular k-dimensional polyhedron

k-dimensional cell>® o of M represented by a triple w = (D, f, Or) consisting
of

1. a convex polyhedron D = RF,
2. a differentiable map f: D —» M, and
3. an orientation on R¥, denoted by Or.

Definition. The integral of the k-form w over the k-dimensional cell ¢ is the
integral of the corresponding form over the polyhedron D

J;a) = L f*o.

ProsLEM 7. Show that the integral depends linearly on the form:
f llwl + /12(02 = )’1 J‘wl + 12 J‘wz.

The k-dimensional cell which differs from o only by the choice of orienta-
tion is called the negative of ¢ and is denoted by —o or —1 - ¢ (Figure 151).

AN\ [\

Figure 151 Problem 8

ProBLEM 8. Show that, under a change of orientation, the integral changes sign:
[o=fo
-0 a

56 The cell ¢ is usually called a singular k-dimensional polyhedron.
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35: Integration of differential forms

/E Chains

The set f(D) is not necessarily a smooth submanifold of M. It could have
“self-intersections” or “folds” and could even be reduced to a point. How-
ever, even in the one-dimensional case, it is clear that it is inconvenient to
restrict ourselves to contours of integration consisting of one piece: it is
useful to be able to consider contours consisting of several pieces which can
be traversed in either direction, perhaps more than once. The analogous
concept in higher dimensions is called a chain.

Definition. A chain of dimension n on a manifold M consists of a finite collection
of n-dimensional oriented cells 64, ..., 6, in M and integers m,, ..., m,,
called multiplicities (the multiplicities can be positive, negative, or zero).
A chain is denoted by

C =moy + -+ m,o0,.

We introduce the natural identifications
myo + my0 = (m; + m,)o
m;o; + my06, =m,0, + m,0, 0c =0 ¢ +0=c¢.
PROBLEM 9. Show that the set of all k-chains on M forms a commutative group if we define the

addition of chains by the formula

(mo, +---+mo)+ (moy +--- +mo,)=mo, +---+mo, +mo, + - +mg

non

F Example: the boundary of a polyhedron

Let D be a convex oriented k-dimensional polyhedron in k-dimensional
euclidean space R*. The boundary of D is the (k — 1)-chain 6D on R* defined
in the following way (Figure 152).

The cells o; of the chain dD are the (k — 1)-dimensional faces D; of the
polyhedron D, together with maps f;: D; > R* embedding the faces in R* and
orientations Or; defined below; the multiplicities are equal to 1:

aD = Z O'i O-i = (Di’ﬁs Ori)'

Rule of orientation of the boundary. Let e,, ..., e, be an oriented frame in
R*. Let D; be one of the faces of D. We choose an interior point of D; and there

Figure 152 Oriented boundary
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7: Differential forms

construct a vector m outwardly normal to the polyhedron D. An orienting
frame for the face D; will be a frame f,, ..., f,_; on D, such that the frame
(,f,, ..., f._ )isoriented correctly (ie.,the same way as the framee,, ..., €).

The boundary of a chain is defined in an analogous way. Let 6 = (D, f, Or)
be a k-dimensional cell in the manifold M. Its boundary do is the (k — 1)
chain: d¢ = ) g; consisting of the cells o; = (D;, f;, Or;), where the D, are
the (k — 1)-dimensional faces of D, Or; are orientations chosen by the rule
above, and f; are the restrictions of the mapping f: D — M to the face D;.

The boundary dc, of the k-dimensional chain ¢, in M is the sum of the
boundaries of the cells of ¢, with multiplicities (Figure 153):

oc, = 0(mo, + --- + m,0,) =m; 06, + --- + m, 0o,.

Obviously, dc; is a (k — 1)-chain on M.>7

aCZ

2

Figure 153 Boundary of a chain

PRrROBLEM 10. Show that the boundary of the boundary of any chain is zero: dc; = 0.

Hint. By the linearity of 0 it is enough to show that 30D = 0 for a convex polyhedron D. It
remains to verify that every (k — 2)-dimensional face of D appears in 0D twice, with opposite
signs. It is enough to prove this for k = 2 (planar cross-sections).

G The integral of a form over a chain

Let w* be a k-form on M, and ¢, a k-chain on M, ¢, = Y m;0;. The integral
of the form w* over the chain c, is the sum of the integrals on the cells, counting

multiplicities:
f ot =Y m f o*,
Ck a;

PROBLEM 11. Show that the integral depends linearly on the form:

fw';+wg=qu+fwg.

143 Ck Ck

PROBLEM 12. Show that integration of a fixed form w* on chains c, defines a homomorphism from
the group of chains to the line.

57 We are taking k > 1 here. One-dimensional chains are included in the general scheme if we
make the following definitions: a zero-dimensional c_l’lain consists of a collection of points with
multiplicities; the boundary of an oriented interval 4B is B — A (the point B with multiplicity 1
and A with multiplicity — 1); the boundary of a point is empty.
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35: Integration of differential forms

ExaMPLE 1.Let M be the plane {(p, q)}, »! the form pdg, and c, the chain consisting of one cell &
with muitiplicity 1: :
[OStSZn]L(p=cost,q = sin t).

Then |, pdq = n.In general, if a chain c, represents the boundary of a region G (Figure 154), then
|c, pdq is equal to the area of G with sign + or — depending on whether the pair of vectors
(outward normal, oriented boundary vector) has the same or opposite orientation as the pair
(p axis, g axis).

77 pdq

i ’
Figure 154 The integral of the form p dq over the boundary of a region is equal to the
area of the region.

ExaMPpLE 2. Let M be the oriented three-dimensional euclidean space R3. Then every 1-form on
M corresponds to some vector field A (0! = w}), where

wx(&) = (A, §).

The integral of w} on a chain ¢, representing a curve ! is called the circulation of the field A

over the curve |
f w} = I(A, dl).
(4] !

Every 2-form on M also corresponds to some field A (w? = w3, where w3(E, ) = (A, &, 0)).
The integral of the form w} on a chain ¢, representing an oriented surface S is called the
flux of the field A through the surface S:

J: zwi = L(A, dn).

ProBLEM13. Find the flux of the field A = (1/R?)eg over the surface of the sphere x? + y* + z2 =
1, oriented by the vectors e,, e, at the point z = 1. Find the flux of the same field over the surface
of the ellipsoid (x2/a?) + (y*/b?) + z? = 1 oriented the same way.

Hint. Cf. Section 36H.

PRrROBLEM 14, Suppose that, in the 2n-dimensional space R” = {(py,..., P} q1,- - -»qn)}, WE are
given a 2-chain c, representing a two-dimensional oriented surface S with boundary . Find

J. dp, Adqy + --- + dp, A dq, and fpldql + - + p,dq,.
c2 1

ANSWER. The sum of the oriented areas of the projection of S on the two-dimensional coordinate
planes p;, g;.

187
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36 Exterior differentiation

We define here exterior differentiation of k-forms and prove Stokes’ theorem: the integral of the
derivative of a form over a chain is equal to the integral of the form itself over the boundary of
the chain.

A Example: the divergence of a vector field

The exterior derivative of a k-form w on a manifold M is a (k + 1)-form dw
on the same manifold. Going from a form to its exterior derivative is analo-
gous to forming the differential of a function or the divergence of a vector
field. We recall the definition of divergence.

&

Y oeN 3

Figure 155 Definition of divergence of a vector field

Let A be a vector field on the oriented euclidean three-space R3, and let S
be the boundary of a parallelepiped IT with edges &,,&,, and &; at the vertex x
(Figure 155). Consider the (“outward”) flux of the field A through the
surface S:

F(II) = L(A, dn).

If the parallelepiped IT is very small, the flux F is approximately propor-
tional to the product of the volume of the parallelepiped, V = (§,, &,, &),
and the “source density” at the point x. This is the limit

fim £
eno €V

where ¢l is the parallelepiped with edges €&, €&,, €€5. This limit does not
depend on the choice of the parallelepiped IT but only on the point x, and is
called the divergence, div A, of the field A at x.

To go to higher-dimensional cases, we note that the “flux of A through a
surface element” is the 2-form which we called w?. The divergence, then,
is the density in the expression for the 3-form

3=divAdx A dy A dz,
w3(§1’ §2’ §3) = le A * V(éb gZ’ gS)’

characterizing the “sources in an elementary parallelepiped.”
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The exterior derivative dw* of a k-form w* on an n-dimensional manifold
M may be defined as the principal multilinear part of the integral of w* over
the boundaries of (k + 1)-dimensional parallelepipeds.

B Definition of the exterior derivative

We define the value of theformdwonk + 1vectorsg,, ..., &, tangentto M
at x. To do this, we choose some coordinate system in a neighborhood of x
on M, i.e., a differentiable map f of a neighborhood of the point 0 in euclidean
space R" to a neighborhood of x in M (Figure 156).

Figure 156 The curvilinear parallelepiped II.

The pre-images of the vectors &, ..., &, € TM, under the differential
of f lie in the tangent space to R” at 0. This tangent space can be naturally
identified with R", so we may consider the pre-images to be vectors

&t ..., & eR

We take the parallelepiped IT* in R" spanned by these vectors (strictly
speaking, we must look at the standard oriented cube in R**! and its linear
map onto IT* taking the edges e;, ..., e, to &Y, ..., &, , as a (k + 1)-
dimensional cell in R"). The map f takes the parallelepiped II to a (k + 1)-
dimensional cell on M (a “curvilinear parallelepiped”). The boundary of the
cell IT is a k-chain, 0T1. Consider the integral of the form w* on the boundary
oIl of IT:

FGEy,...,841) = J:mwk-

ExampLE. We will call a smooth function ¢: M — R a 0-form on M. The integral of the O-form ¢
on the O-chain ¢, = Y m; 4; (where the m; are integers and the A; points of M) is

f @ =Y. mo(A)).

<o

Then the definition above gives the “increment” F(§;) = @(x,) — ¢(x) (Figure 157) of the
function ¢, and the principal linear part of F(&,;) at 0 is simply the differential of ¢.

ProBLEM 1. Show that the function F&,, ..., &, ) is skew-symmetric with respect to &.

It turns out that the principal (k + 1)-linear part of the “increment”
FE,,...,&+1)is an exterior (k + 1)-form on the tangent space TM, to M
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Figure 157 The integral over the boundary of a one-dimensional parallelepiped is the
change in the function.

at X. This form does not depend on the coordinate system that was used to
define the curvilinear parallelepiped I1. It is called the exterior derivative, or
differential, of the form w* (at the point x) and is denoted by dw*.

C A theorem on exterior derivatives

Theorem. There is a unique (k + 1)-form Q on TM, which is the principal
(k + 1)-linear part at O of the integral over the boundary of a curvilinear

parallelepiped, FE,, ..., &, ), ie.,
(1) F(eEy, ..., 8841) = 1A, ..., &) + 0(F) (6 0).

The form Q does not depend on the choice of coordinates involved in the
definition of F. If, in the local coordinate system x4, . .., x, on M, the form
o® is written as

k _
" = Z a,-h__”,-k dx,-l N A dx,-k,
then Q is written as

9)) Q=do* =Y da;, ;. ANdx, A Adx,.

We will carry out the proof of this theorem for the case of a form w! =
a(xy, x,)dx,; on the x,, x, plane. The proof in the general case is entirely
analogous, but the calculations are somewhat longer.

We calculate F(E, ), i.e., the integral of ®! on the boundary of the paral-
lelogram IT with sides § and n and vertex at O (Figure 158). The chain 011 is

X2
y

n+&t

t

;xl

Figure 158 Theorem on exterior derivatives
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given by the mappings of the interval 0 <t < 1 to the plane t — &t, t —
€ +ne,t > nt,and t > n + & with multiplicities 1, 1, — 1, and — 1. Therefore,

1
L ! - f [a&) — a(&t + W&, — [aln) — atne + E)n de

where &, = dx;(§), n, = dx;(m), &, = dx,(€), and n, = dx,(n) are the
components of the vectors & and 0. But

da

0
at + ) - a&) = 7oy + 5 -z + OGS )

(the derivatives are taken at x; = x, = 0). In the same way

0 0
at + &) — a(yp) = 5)—?— £+ &“— £, + O(E%, ).

By using these expressions in the integral, we find that

Oa
FEw = [ o' = 2% G, — &) + o8 n?)
on X2
The principal bilinear part of F, as promised in (1), turns out to be the value
of the exterior 2-form
_ Oa

Q=—dx, Adx,
axZ

on the pair of vectors &, 0. Thus the form obtained is given by formula (2),
since

Ga

0 )
da/\dx1=—adx1/\dx1 +—a o
2

axl axz de A dx1 =

dx, A dx,.

Finally, if the coordinate system x,, x, is changed to another (Figure 159),
the parallelogram I1 is changed to a nearby curvilinear parallelogram IT', so
that the difference in the values of the integrals, [;; ®! — [, @' will be
small of more than second order (prove it!). O

X2
{

Y2

- X

Figure 159 Independence of the exterior derivative from the coordinate system
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PROBLEM 2. Carry out the proof of the theorem in the general case.

ProBLEM 3. Prove the formulas for differentiating a sum and a product:
dw, + w,) = do; + dw,.
and
d(@* A 0Y) = do* A &' + (—1)0* A do,

PrOBLEM 4. Show that the differential of a differential is equal to zero: dd = 0.

PROBLEM 5. Let f: M — N be a smooth map and w a k-form on N. Show that f*(dw) = d(f*w).

D Stokes’ formula

One of the most important corollaries of the theorem on exterior derivatives
is the Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré for-
mula:

(3) L cw = J;dw,

where c is any (k + 1)-chain on a manifold M and w is any k-form on M.

To prove this formula it is sufficient to prove it for the case when the chain
consists of one cell 6. We assume first that this cell ¢ is given by an oriented
parallelepiped IT = R**1 (Figure 160).

Figure 160 Proof of Stokes’ formula for a parallelepiped

We partition IT into N**! small equal parallelepipeds II; similar to IT.
Then, clearly,

Nk+1
f W= F;, whereF,-=f .
on i=1 oIl

By formula (1) we have
Fi = dw(gll, vy g;c+l) + O(N_(k+1))9

where &, ...,EL,, are the edges of IT;. But Y M7 'dw(&,..., 8L, ) is a
Riemann sum for [ dw. It is easy to verify that o(N ~®* 1) is uniform, so

Nk+1 Nk+1

lim ¥ F,=lim ¥ do@,... 8,,)= de.

N—ow i=1 N-ow i=1
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Finally, we obtain

f w=) F;= lim ZF,-=de.
on n

N- o
Formula (3) follows automatically from this for any chain whose polyhedra
are parallelepipeds.

To prove formula (3) for any convex polyhedron D, it is enough to prove

it for a simplex,>® since D can always be partitioned into simplices (Figure
161):

D=)D; 0D=}) D,

Figure 161 Division of a convex polyhedron into simplices

Figure 162 Proof of Stokes’ formula for a simplex

We will prove formula (3) for a simplex. Notice that a k-dimensional
oriented cube can be mapped onto a k-dimensional simplex so that:

1. The interior of the cube goes difftomorphically, with its orientation
preserved, onto the interior of the simplex;

2. The interiors of some (k — 1)-dimensional faces of the cube go diffeo-
morphically, with their orientations preserved, onto the interiors of the
faces of the simplex; the images of the remaining (k — 1)-dimensional
faces of the cube lie in the (k — 2)-dimensional faces of the simplex.

For example, for k = 2 such a map of the cube 0 < x;, x, < 1 onto the
triangle is given by the formula y, = x, y, = x,x, (Figure 162). Then,

58 A two-dimensional simplex is a triangle, a three-dimensional simplex is a tetrahedron, a
k-dimensional simplex is the convex hull of k + 1 points in R" which do not lie in any k — 1-
dimensional plane.

ExampLE: {x € R*:x; > Oand ) ¥, x; < 1}.
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7: Differential forms

formula (3) for the simplex follows from formula (3) for the cube and the
change of variables theorem (cf. Section 35C).

ExampLE 1. Consider the 1-form
o' =p,dg; + -+ + p,dg, = pdq

on R2" with coordinates p, ..., Pn» 415 - - -5 gq- Thendw! = dp; A dg, + -+
+ dp, A dq, = dp A dq, so

ff dp Adq= | pdqg.
c2 dea

In particular, if c, is a closed surface (9c, = 0), then [{., dp A dq = 0.

E Example 2— Vector analysis

In a three-dimensional oriented riemannian space M, every vector field A
corresponds to a 1-form w} and a 2-form w3 . Therefore, exterior differentia-
tion can be considered as an operation on vectors.

Exterior differentiation of 0-forms (functions), 1-forms, and 2-forms cor-
respond to the operations of gradient, curl, and divergence defined by the
relations

df = wémd I dw}t = wgurlA dwi = (le A)O)3

(the form w? is the volume element on M). Thus, it follows from (3) that

fO) = f(x) = fgradfdl ifol=y—x

fAdl= J]curlA-dn if oS =1
1 S

fLAdn=”D(divA)w3 ifoD = .

PrOBLEM 5. Show that
div[A, B] = (curl A, B) — (curl B, A),
curl aA = [grad g, A] + acurl A,
divaA = (grada, A) + adiv A.
Hint. By the formula for differentiating the product of forms,
d(ofy 8) = d(w) A wp) =dwx A O — W) A dog.

PROBLEM 6. Show that curl grad = div curl = 0.
Hint.dd = 0.
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36: Exterior differentiation

F Appendix 1: Vector operations in triply orthogonal systems

Let x;, x5, x3 be a triply orthogonal coordinate system on M, ds* =
E, dx? + E, dx3 + E, dx3 and e; the coordinate unit vectors (cf. Section
34F).

ProsLEM 7. Given the components of a vector field A = 4,e; + 4,e, + A;e,, find the com-
ponents of its curl.
Solution. According to Section 34F

CU}‘ = Al\/E-I dx, + AZ\/E'Z de + A3\/E dX3.

Therefore,

. (6A3, /E, 04,./E,
do, = -
3

axz ax )de A dX3+ e = 3urlA'

According to Section 34F, we have

JE &, JEe, Ese
1 (aA3\/E'3 aAz\/E;)e N B é 8
_ e
JE,E,

curl A =

VE E;E, ox, ax, 0x3
AE, AWE, An/Es

In particular, in cartesian, cylindrical, and spherical coordinates on R3,

A (aA, aAy)e . (an 6A,)e N (6Ay an>e
c = - - Z -~
oy 0z) " oz ox)”’ ox ady)”

(o4, _ard,\ (aA, aA,)e L1 (arA,,, 04,
== — e — ~ -
r \de oz | oz or)® r\ or op e

1 04y 0A,cos 6) 1 (aAR 6RA9) 1 (BRAw 1 6AR)
= ’—_—_‘_——'eR'i’_““" e¢+“———‘ _‘eg.
Rcos 0\ do 00 R\ 00 O0R R\ OR cos 0 d¢

axZ aX3

ProBLEM 9. Find the divergence of the field A = 4,e, + A,e, + Aje;.
Solution. w3 = A;/E,E5dx, A dx; + ---. Therefore,

0
dof = 5= (AE2E9) dxy A dxa A dxs o
X1

By the definition of divergence,

dQ)i = div A\/E1E2E3 dx1 A de A dX3.

This means
. 1 0 0 0
divA=—-—|—A,JEEs+ — A, JE;E, + — A3 JE\E, ).
/E\E,E, \0%: 0x, x5
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7: Differential forms

In particular, in cartesian, cylindrical, and spherical coordinates on R3:

divA = 0A, N 04, N 04, 1 (arA, aA,,) . 04,
VA= Ty T e T a0 T e

1 <6R2 cos 0Ag . 0RA, N R cos BA,,)
" R2cos @ OR o a0 )

ProBLEM 10. The Laplace operator on M is the operator A = div grad. Find its expression in
the coordinates x;.

ANSWER.

- [2(EB). ]
VEE,E, LOx; E, 0x; ’

In particular, on R?

P B oy B 1 13 o
A = —_— — = T - — —_—
U NN I Rl ¥ S NN PR

1 [0 ¥\ 6 [ 1 6/') 2 ( 6]‘)]
- 1% (Rreos0 L)+ 2 I+ ° (coso L) |,
RZ cos 0 [0R (R cos 6R) L™ (cos 030) T0\°“>* %%

G Appendix 2: Closed forms and cycles

The flux of an incompressible fluid (without sources) across the boundary
of a region D is equal to zero. We will formulate a higher-dimensional
analogue to this obvious assertion. The higher-dimensional analogue of an
incompressible fluid is called a closed form. The field A has no sources if
divA =0.

Definition. A differential form w on a manifold M is closed if its exterior
derivative is zero: dw = 0.

In particular, the 2-form w? corresponding to a field A without sources
is closed. Also, we have, by Stokes’ formula (3):

Theorem. The integral of a closed form w* over the boundary of any (k + 1)-
dimensional chain ¢, , is equal to zero:

f of =0 ifdo*=0.
Ock + 1

ProBLEM 11. Show that the differential of a form is always closed.

On the other hand, there are closed forms which are not differentials. For
example, take for M the three-dimensional euclidean space R*® without 0:
M = R3 — 0, with the 2-form being the flux of the field A = (1/R?)eg
(Figure 163). It is easy to convince oneself that div A = 0, so that our 2-form
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36: Exterior differentiation

Figure 163 The field A

w3 is closed. At the same time, the flux over any sphere with center 0 is equal
to 4n. We will show that the integral of the differential of a form over the
sphere must be zero.

Definition. A cycle on a manifold M is a chain whose boundary is equal to
zZero.

The oriented surface of our sphere can be considered to be a cycle. It
immediately follows from Stokes’ formula (3) that

Theorem. The integral of a differential over any cycle is equal to zero:

dwk =0 1f5ck+1 = 0.

Ck+1

Thus, our 2-form w3 is not the differential of any 1-form.

The existence of closed forms on M which are not differentials is related
to the topological properties of M. One can show that every closed k-form
on a vector space is the differential of some (k + 1)-form (Poincaré’s lemma).

PrROBLEM 12. Prove Poincaré’s lemma for 1-forms.
Hint. Consider |3 o' = ¢(x,).

PrOBLEM 13. Show that in a vector space the integral of a closed form over any cycle is zero.
Hint. Construct a (k + 1)-chain whose boundary is the given cycle (Figure 164).

Figure 164 Cone over a cycle
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7: Differential forms

Namely, for any chain c consider the “cone over ¢ with vertex 0.” If we denote the operation
of constructing a cone by p, then

dop+pod=1 (the identity map).
Therefore, if the chain ¢ is closed, d(pc) = c.
PrROBLEM. Show that every closed form on a vector space is an exterior derivative.

Hint. Use the cone construction. Let w* be a differential k-form on R". We define a (k — 1)-
form (the “co-cone over ™) pw* in the following way: for any chain ¢, _,

f pw* =f w*.
Ck~1 PCk

It is easy to see that the (k — 1)-form pw* exists and is unique; its value on the vectors &, ..., §,,
tangent to R" at x, is equal to

(pa))x(gla CRRE] gk) = j.(l) wtx(x, tgl’ cres t&k—l)'dt'
It is easy to see that

dop+pod=1 (the identity map).

Therefore, if the form w* is closed, d(pw*) = w*.

ProBLEM. Let X be a vector field on M and o a differential k-form. We define a differential
(k — 1)-form ix @ (the interior derivative of w by X) by the relation

(ix@)Eys .5 8- 1) = (X, &y, .00, B y).
Prove the homotopy formula
ixd + dlx = Lx,

where Ly is the differentiation operator in the direction of the field X.
[The action of Ly on a form is defined, using the phase flow {g'} of the field X, by the relation

d
(Lxw)(§) = Zl 068
0

=

Ly is called the Lie derivative or fisherman’s derivative: the flow carries all possible differential-
geometric objects past the fisherman, and the fisherman sits there and differentiates them.]

Hint. We denote by H the “homotopy operator” associating to a k-chain y: g — M the
(k + 1)-chain Hy: (I x 6) > M according to the formula (Hy)(t, x) = g'y(x) (where I = [0, 1]).
Then

g9'y —y = d(Hy) + H(dy).
ProBLEM. Prove the formula for differentiating a vector product on three-dimensional euclidean
space (or on a riemannian manifold):
curl{a, b] = {a,b} + adivb — bdiva

(where {a, b} = L,b is the Poisson bracket of the vector fields, cf. Section 39).
Hinz. If T is the volume element, then

icart[a, b} = diaip? diva=di,7 and {a,b} = L,b;

by using these relations and the fact that dz = 0, it is easy to derive the formula for curlfa, b] from
the homotopy formula.
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36: Exterior differentiation

H Appendix 3: Cohomology and homology

The set of all k-forms on M forms a vector space, the closed k-forms a sub-
space and the differentials of (k + 1)-forms a subspace of the subspace of
closed forms. The quotient space

(closed forms)

= H"M, R
(differentials) ( )

is called the k-th cohomology group of the manifold M. An element of this
group is a class of closed forms differing from one another only by a differ-
ential.

PROBLEM 14. Show that for the circle S! we have H'(S!, R) = R.

The dimension of the space H(M, R) is called the k-th Betti number of M.

ProBLEM 15. Find the first Betti number of the torus 72 = §* x S

The flux of an incompressible fluid (without sources) over the surfaces of
two concentric spheres is the same. In general, when integrating a closed form

O

N

Figure 165 Homologous cycles

over a k-dimensional cycle, we can replace the cycle with another one pro-
vided that their difference is the boundary of a (k + 1)-chain (Figure 165):

fw" = fw",
a b
ifa — b = dc,,, and do* = 0.

Poincaré called two such cycles a and b homologous.
With a suitable definition>® of the group of chains on a manifold M and its

59 For this our group {c,} must be made smaller by identifying pieces which differ only by the
choice of parametrization f or the choice of polyhedron D. In particular, we may assume that
D is always one and the same simplex or cube. Furthermore, we must take every degenerate
k-cell (D, f, Or)to be zero,ie., (D, f, Or) = 0if f = f, - f;, where f,: D - D’ and D’ has dimension
smaller than k.
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7: Differential forms

subgroups of cycles and boundaries (i.e., cycles homologous to zero), the
quotient group
(cycles)

(boundaries) H{(M)

is called the k-th homology group of M.
An element of this group is a class of cycles homologous to one another.
The rank of this group is also equal to the k-th Betti number of M (“De-

Rham’s Theorem”).
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