
Differential forms 7 

Exterior differential forms arise when concepts such as the work of a field 
along a path and the flux of a fluid through a surface are generalized to higher 
dimensions. 

Hamiltonian mechanics cannot be understood without differential forms. 
The information we need about differential forms involves exterior multi-
plication, exterior differentiation, integration, and Stokes' formula. 

32 Exterior forms 
Here we define exterior algebraic forms 

A l-forms 

Let IRn be an n-dimensional real vector space. 52 We will denote vectors in this 
space by 1), .•.• 

Definition. A form of degree 1 (or aI-form) is a linear function w: IRn - IR, i.e., 

We recall the basic facts about I-forms from linear algebra. The set of all 
I-forms becomes areal vector space if we define the sum of two forms by 

(w1 + ( 2); = + 
and scalar multiplication by 

= 

52 It is essential to note that we do not fix any special euclidean structure on •. In some examples 
we use such a structure; in these cases this will be specifically stated (" euclidean "). 
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7: Differential forms 

The space of I-forms on is itself n-dimensional, and is also called the dual 
space 

Suppose that we have chosen a linear coordinate system Xl> ••• , Xn on 
Each coordinate Xi is itself a I-form. These n I-forms are linearly independent. 
Therefore, every I-form w has the form 

The value of w on a vector ; is equal to 

w(;) = a1x1(;) + .,. + anxn(;), 

where Xl (;), •.• , xi;) are the components of ; in the chosen coordinate 
system. 

EXAMPLE. If a uniform free field F is given on eucIidean [R3, its work A on the displacement 
; is al-form acting on; (Figure 135). 

F (force) 

t = (F, 

(;( displacement ) 

Figure 135 The work of a force is aI-form acting on the displacement. 

B 2-forms 

Definition. An exterior form of degree 2 (or a 2-form) is a function on pairs of 
vectors w2 : X --+ which is bilinear and skew symmetrie: 

W2(A 1;1 + A2;2' ;3) = Al W2(;1' ;3) + A2 W2(;2' ;3) 

W2(;1' ;2) = -W2(;2' ;1), 

VAl, A2 E ;2';3 E [R". 

EXAMPLE 1. Let S(;\, ;2) be the oriented area of the paralleIogram constructed on the vectors 
;\ and;2 ofthe oriented eucIidean plane [R2, i.e., 

with e\, e2 a basis giving the orientation on [R2. 
It is easy to see that S(;1o ;2) is a 2-form (Figure 136). 

EXAMPLE 2. Let v be a uniform velocity vector field for a fluid in three-dimensional oriented 
eucIidean spaee (Figure 137). Then the flux of the fluid over the area of the paralleIogram 
;10;2 is a biIinear skew symmetrie funetion Of;1 and ;2' i.e., a 2-form defined by the tripie scalar 
produet 
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32: Exterior forms 

Figure 136 Oriented area is a 2-form. 

Figure 137 Flux of a fluid through a surface is a 2-form. 

EXAMPLE 3. The oriented area of the projection of the paralle\ogram with sides and on 
the XI> x2-plane in euc1idean 1R3 is a 2-form. 

PROBLEM 1. Show that for every 2-form w2 on IR" we have 

E IR". 

Solution. By skew symmetry, = -

The set of all 2-forms on becomes areal vector space if we define the 
addition of forms by the formula 

(w1 + ( 2)(;1> ;2) = W1(;1> ;2) + Wi;l' ;2) 

and multiplication by scalars by the formula 

(AW)(;1> ;2) = AW(;l' ;2)· 

PROBLEM 2. Show that this space is finite-dimensional, and find its dimension. 
ANSWER. n(n - 1)/2; a basis is shown below. 

C k-forms 

Definition. An exterior form of degree k, or a k-form, is a function of k vectors 
which is k-linear and antisymmetric: 

W(A1;'l + ;2'···' ;k) = A1W(;'1> ;2'···' ;k) + ;2'···' ;k) 

... , = ( -1)'W(;1> ... , 

where 

v = 
if the permutation i 1, ... , ik is even; 
if the permutation il> ... , ik is odd. 
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7: Differential forms 

Figure 138 Oriented volume is a 3-form. 

EXAMPLE 1. The oriented volume ofthe parallelepiped with edges .•• , oriented euclidean 
space IR" is an n-form (Figure 138). 

•.• 

where = + ... + and eh ... , e. are a basis of IR". 

EXAMPLE 2. Let IRk be an oriented k-plane in n-dimensional euclidean space IR". Then the 
k-dimensiomd oriented volume of the projection of the parallelepiped with edges ... , 

E IR" onto IRk is a k-form on IR". 

The set of aU k-forms in IRn form areal vector space if we introduce 
operations of addition 

(01 1 + 012); = 01 1(;) + O1i;), 

and multiplication by scalars 

PROBLEM 3. Show that this vector space is finite-dimensional and find its dimension. 
ANSWER. C:; a basis is shown below. 

D The exterior product oftwo l-forms 
We now introduce one more operation: exterior multiplication of forms. 
If O1k is a k-form and 011 is an I-form on IR", then their exterior product O1k /I. 011 

will be a k + I-form. We first define the exterior product of I-forms, which 
associates to every pair of I-forms 011> 012 on IR" a 2-form 011 /I. 012 on IR". 

Let ; be a vector in IR". Given two I-forms 011 and 012 , we can define a 
mapping of IR" to the plane IR x IR by associating to ; E IR" the vector 01(;) 

with components 011(;) and 012(;) in the plane with coordinates 011> 012 

(Figure 139). 

Definition. The value of the exterior product 011 /I. 012 on the pair of vectors 
;1> ;2 E IR" is the oriented area ofthe image ofthe parallelogram with sides 
W(;d and w(;2) on the 011, O12-plane: 

( I 011(;1) 012(;1) I 
011 /I. 012 0,1> 0,2 = 011 (;;) O1i;2) • 
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32: Exterior forms 

1E::-----___ wJ 

Figure 139 Definition of the exterior product of two I-forms 

PROBLEM 4. Show that W l 1\ W 2 really is a 2-form. 

PROBLEM 5. Show that the mapping 

is bilinear and skew symmetrie: 

Hint. The determinant is bilinear and skew-symmetrie not only with respeet to rows, but 
also with respeet to eolumns. 

Now suppose we have chosen a system oflinear coordinates on IRn, i.e., we 
are given n independent I-forms Xt. ... , Xn• We will call these forms basic. 

The exterior products ofthe basic forms are the 2-forms Xi 1\ Xj' By skew-
symmetry, Xi 1\ Xi = 0 and Xi 1\ X j = - X j 1\ Xi' The geometrie meaning of 
the form Xi 1\ Xj is very simple: its value on the pair ofvectors ;1';2 is equal 
to the oriented area ofthe image ofthe parallelogram ;1';2 on the coordinate 
plane Xi' Xj under the projection parallel to the remaining co ordinate 
directions. 

PROBLEM 6. Show that the C; = n(n - 1)/2 forms Xi 1\ xß < j) are Iinearly independent. 

In particular, in three-dimensional euclidean space (xt. X2' X3), the area 
of the projection on the (xt. x2)-plane is Xl 1\ X2' on the (X2' x3)-plane it is 
X2 1\ X3' and on the (X3' xd-plane it is X3 1\ Xl' 

PROBLEM 7. Show that every 2-form in the three-dimensional spaee (Xl' X2' X3) is ofthe form 
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7: Differential forms 

PROBLEM 8. Show that every 2-form on the n-dimensional space with coordinates XI>' .• , x. 
can be uniquely represented in the form 

0:2 = Laijx; A Xj' 
i<j 

Hint. Let e; be the i-th basis vector, i.e., x;(e;) = 1, x/ei) = 0 for i # j. Look at the value of 
the form w2 on the pair e;, ej. Then 

E Exterior monomials 

Suppose that we are given k I-forms W 1, .•• , Wk • We define their exterior 
product W 1 A ••• A W k • 

Definition. Set 

(W1 A '" A Wk)(;l, ... , ;k) = 

Wt(;k) 

In other words, the value of a product of I-forms on the parallelepiped 
;1>' . ";k is equal to the oriented volume ofthe image ofthe parallelepiped 
in the oriented euclidean co ordinate space Iffik under the mapping ; --+ 

(w 1(;),···, wk(;))· 

PROBLEM 9. Show that Wj A .•. A Wk is a k-form. 

PROBLEM 10. Show that the operation of exterior product of I-forms gives a multi-linear skew-
symmetrie mapping 

In other words, 

and 

where 

v = {O if the permutation i 1, ... , ik is even, 
1 if the permutation i l' ... , ik is odd. 

Now consider a co ordinate system on Iffin given by the basic forms Xl' ..• , 

xn • The exterior product of k basic forms 

is the oriented volume of the image of a k-parallelepiped on the k-plane 
(Xi!, ... , Xik) und er the projection parallel to the remaining coordinate 
directions. 
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32: Exterior forms 

PROBLEM 11. Show that, if two ofthe indices i h ••• , ik are the same, then the form Xi, 1\ ••• 1\ Xi. 

is zero. 

PROBLEM 12. Show that the forms 

Xi, 1\ •.• 1\ Xi., where 1 :;:; i 1 < i2 < ... < ik :;:; n, 

are linearly independent. 

The number of such forms is c1early C;. We will call them basic kjorms. 

PROBLEM 13. Show that every k-form on IR" can be uniquely represented as a linear combination 
of basic forms: 

(JJk = L ailo ... ,ikxit " ... 1\ Xik' 
1 Sil < ... <ikSn 

It follows as a result ofthis problem that the dimension ofthe vector space 
of k-forms on is equal to In particular, for k = n, = 1, from which 
follows 

CoroUary. Every n{orm on is either the oriented volume of a parallelepiped 
with some choice of unit volume, or zero: 

PROBLEM 14. Show that every k-form on IR" with k > n is zero. 

We now consider the product of a k-form wk and an I-form w'. First, 
suppose that we are given two monomials 

w" = Wl 1\ ••• 1\ Wk and w' = Wk+1 1\ .•. 1\ W"+h 

where W 1, ..• , Wk+' are 1-forms. We define their product w" 1\ W' to be the 
monomial 

(w 1 1\ '" 1\ w,,) 1\ (Wk+l 1\ ••• 1\ w k+') 

= W 1 1\ ••• 1\ Wk 1\ W"+l 1\ ••• 1\ w,,+,. 

PROBLEM 15. Show that the product ofmonomials is associative: 

(ook 1\ 00/) 1\ oom = ook 1\ (00' 1\ ooln) 

and skew-commutative: 

ook 1\ 00' = (-1)kloo' 1\ ook. 

Hint. In order to move each of the I factors of 00' forward, we need kinversions with the 
k factors of ook• 

Remark. It is useful to remember that skew-commutativity means commutativity only if 
one of the degrees k and I is even, and anti-commutativity if both degrees k and I are odd. 

169 



7: Differential forms 

33 Exterior multiplication 

We define here the operation of exterior multiplication of forms and show that it is skew-
commutative, distributive, and associative. 

ADefinition 0/ exterior multiplication 

We now define the exterior multiplication of an arbitrary k-form wk by an 
arbitrary {-form w l• The result wk 1\ w l will be a k + {-form. The operation of 
multiplication turns out to be: 

1. skew-commutative: wk 1\ wl = (_1)kIWI 1\ wk; 

2. distributive: (A'1 + A2 1\ wl = Al 1\ wl + A2 1\ wl ; 

3. associative: (wk 1\ wl ) 1\ wm = wk 1\ (w l 1\ wn). 

Definition. The exterior product wk 1\ w l of a k-form wk on IRn with an 
{-form w l on IRn is the k + {-form on IRn whose value on the k + { vectors 

... , 1, ... , E IRn is equal to 

where i1 < ... < ik andj1 < ... < j/; (ib"" ik,it, ... ,h) is apermutation 
of the numbers (1, 2, ... , k + l); and 

{1 if this permutation is odd; 
v = 0 if this permutation is even. 

In other words, every partition ofthe k + { vectors •.. , into two 
groups (of k and of {vectors) gives one term in our sum (1). This term is equal 
to the product of the value of the k-form wk on the k vectors of the first group 
with the value of the {-form w/ on the { vectors of the second group, with sign 
+ or - depending on how the vectors are ordered in the groups. If they are 
ordered in such a way that the k vectors ofthe first group and the {vectors of 
the second group written in succession form an even permutation of the 
vectors then we take the sign to be +, and ifthey form an 
odd permutation we take the sign to be -. 

EXAMPLE. If k = { = 1, then there are just two partitions: and 
Therefore, 

which agrees with the definition of multiplication of 1-forms in Section 32. 

PROBLEM 1. Show that definition above actually defines a k + I-form (i.e., that the value of 
(ol 1\ WI)(;I"'" ;k+I) depen(1! linearly and skew-symmetrically on the vectors ;). 
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33: Exterior multiplication 

B Properties 0/ the exterior product 

Theorem. The exterior multiplication of forms defined above is skew-com-
mutative, distributive, and associative. For monomials it coincides with the 
multiplication defined in Section 32. 

The proof of skew-commutativity is based on the simplest properties of 
even and odd permutations (cf. the problem at the end of Section 32) and will 
be left to the reader. 

Distributivity follows from the fact that every term in (1) is linear with 
respect to wk and w'. 

The proof of associativity requires a little more combinatorics. Since the 
corresponding arguments are customarily carried out in algebra courses for 
the proof of Laplace's theorem on the expansion of a determinant by column 
minors, we may use this theorem. 53 

We begin with the following observation: if associativity is proved for the 
terms of a sum, then it is also true for the sum, i.e., 

(W'I /\ W2) /\ W 3 = W'I /\ (w2 /\ W 3 )} . l' 
") 11 ( ) Imp les 

(W I /\ W2 /\ W 3 = WI /\ W 2 /\ W 3 

«Wt + wD /\ W2) /\ W3 = (Wt + /\ (W2 /\ W3)' 

But, by distributivity, which has already been proved, we have 

«Wt + wD /\ w2) /\ W 3 = «wt /\ w2) /\ W3) + /\ w2) /\ w3), 

(Wt + wD /\ (W2 /\ W3) = (Wt /\ (W2 /\ w3» + (w'{ /\ (w2 /\ w3»· 
We already know from Section 32 (Problem 12) that every form on is a 
sum of monomials ; therefore, it is enough to show associativity for multi-
plication of monomials. 

Since we have not yet proved the equivalence of the definition in Section 
32 of multiplication of k 1-forms with the general definition (1), we will 
temporarily denote the multiplication of k I-forms by the symbol 1\, so that 
our monomials have the form 

I --
W = W k+ l /\ ... /\ W k+" 

where W l , ... , Wk+l are I-forms. 

53 A direct proof of associativity (also containing a proof of Laplace's theorem) consists of 
checking the signs in the identity 

where i l < ... < ik,jl < ... < jlo hl < ... < hm : (ilo"" h .. ) is apermutation of the numbers 
(l, ... ,k+l+m). 
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7: Differential forms 

Lemma. The exterior product oftwo monomials is a monomial: 

(W1 7i. •.• 7i. wk) 1\ (Wk+ 1 7i. •.• 7i. W k + l) 

= W 1 7i. ..• 7i. W k 7i. WH1 7i. ... 7i. WHl' 

PROOF. We calculate the values of the left and right sides on k + I vectors 
;1' ... , ;k+l' The value of the left side, by formula (1), is equal to the sum of 
the products 

L ± det 1 W;(;i",) I· det 1 w;(;jm) 1 
15i5k k<i5k+1 

of the minors of the first k columns of the determinant of order k + land the 
remaining minors. Laplace's theorem on the expansion by minors of the 
first k columns asserts exactly that this sum, with the same rule of sign choice 
as in Definition (1), is equal to the determinant det 1 Wi(;j) I. 0 

It follows from the lemma that the operations 7\ and 1\ coincide: we get, 
in turn, 

W 1 7i. W 2 7i. W 3 = (w 1 7\ ( 2) 1\ W3 = (W1 1\ (2) 1\ W3, 

W 1 7\ W2 7\ ... 7i. W k = ( ... «W1 1\ ( 2) 1\ ( 3) 1\ ••• 1\ wk). 

The associativity of 1\ -multiplication of monomials therefore follows from 
the obvious associativity of 7\ -multiplication of 1-forms. Thus, in view of the 
observation made above, associativity is proved in the general case. 

PROBLEM 2. Show that the exterior square of a 1-form, or, in general, of a form of odd order, is 
equal to zero: wk 1\ wk = 0 if k is odd. 

EXAMPLE 1. Consider a coordinate system PI"'" Pn' qlo"" qn on 1R2n and the 2-form 
w2 = Li=1 Pi 1\ qi' 

[Geometrically, this form signifies the sum of the oriented areas of the projection of a paral-
lelogram on the n two-dimensional coordinate planes (PI' ql)"'" (Pn, qn)' Later, we will see 
that the 2-form w2 has a special meaning for hamiltonian mechanics. It can be shown that every 
nondegenerate54 2-form on 1R2• has the form w2 in some coordinate system (PI' ... ,q.).] 

PROBLEM 3. Find the exterior square of the 2-form w 2 • 

ANSWER. 

w2 1\ w2 = -2LPi 1\ Pj 1\ qi 1\ qj. 
i> j 

PROBLEM 4. Find the exterior k-th power of w2 . 

ANSWER. 

w 2 1\ w2 1\ ••• 1\ w2 = ± k ! 
\, I 

k 

54 A bilinear form w2 is nondegenerate if "" 0, 311: 11) "" o. 
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33: Exterior multiplication 

In particular, 
002 /\ .,. /\ 002 = ± n! PI /\ ... /\ P. /\ q I /\ ... /\ q. --..-

n 

is, Up to a factor, the volume of a 2n-dimensional parallelepiped in 

EXAMPLE 2. Consider the oriented euclidean space Every vector A E determines al-form 
001, by 001(;) = (A, ;) (scalar product) and a 2-form 001 by 

(tripIe scalar product). 

PROBLEM 5. Show that the maps A -> 001 and A -> ooi establish isomorphisms of the linear space 
of vectors A with the linear spaces of l-forms on and 2-forms on If we choose an 

orthonormal oriented coordinate system (XI' X2' Xl) on then 

001 = Alxl + A2X2 + A3X3 

and 

Remark. Thus the isomorphisms do not depend on the choice of the orthonormal oriented 
coordinate system (Xl> X2' X3)' But they do depend on the choice of the euclidean structure 
on and the isomorphism A -> 001 also depends on the orientation (coming implicitly in the 
definition of tripIe scalar product). 

PROBLEM 6. Show that, under the isomorphisms established above, the exterior product of 
l-forms becomes the vector product in Le., that 

w1 /\ = for any A, B E 

In this way the exterior product of l-forms can be considered as an extension of the vector 
product in to higher dimensions. However, in the n-dimensional case, the product is not a 
vector in the same space: the space of 2-forms on is isomorphic to only for n = 3. 

PROBLEM 7. Show that, under the isomorphisms established above, the exterior product of a 
I-form and a 2-form becomes the scalar product ofvectors in 

ool /\ wt, = (A, B)xl /\ X2 /\ X3' 

C Behavior under mappings 
Let f: IRm -+ IRR be a linear map, and oi' an exterior k-form on IRR. Then 
there is a k-formf*o} on IRm, whose value on the k vectors ••• , E IRm 
is equal to the value of ())k on their images: 

... , = ... 

PROBLEM 8. Verify thatj*ook is an exterior form. 

PROBLEM 9. Verify thatf* is a linear operator from the space of k-forms on to the space of 
k-forms on .. (the star superscript means thatf* acts in the opposite direction from/'). 

PROBLEM 10. Let f: ..... and g: -> Verify that (g 0 f)* = f* 0 g*. 

PROBLEM 11. Verify that f* preserves exterior multiplication: f*(ook /\ 00') = (f*ook ) /\ (f*w'). 
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7: Differential forms 

34 Differential forms 
We give here the·definition of differential forms on differentiable manifolds. 

A Differential I-forms 

The simplest example of a differential form is the differential of a function. 

EXAMPLE. Consider the function y = f(x) = x 2• Its differential df = 2x dx depends on the 
point x and on the .. increment of the argument," i.e., on the tangent vector ; to the x axis. We 
fix the point x. Then the differential of the function at x, df Ix, depends linearlyon ;. So, if x = 1 
and the coordinate of the tangent vector ; is equal to 1, then df = 2, and if the coordinate of 
; is equal to 10, then df = 20 (Figure 140). 

f 

df 

x 

Figure 140 Differential of a function 

Let f: M -+ IR be a differentiable function on the manifold M (we can 
imagine a "function of many variables" f: IR" -+ IR). The differential dflx 
off at x is a linear map 

df,,: TM" -+ IR 

of the tangent space to M at x into the realline. We recall from Section 18C the 
definition of this map: 

Let ;e TM" be the velocity vector of the curve x(t): IR -+ M; x(O) = x 
and x(O) = Then, by definition, 

= :t It=of(X(t». 

PROBLEM 1. Let ; be the velocity vector of the plane curve x(t) = cos t, y(t) = sin t at t = O. 
Calculate the values of the differentials dx and dy of the functions x and y on the vector ; 
(Figure 141). 

ANSWER. 

Note that the differential of a function f at a point x e M is al-form df" on 
the tangent space TM". 
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34: Differential [orms 

y 

'--__ _L ___ X 

Figure 141 Problem 1 

The differential df off on the manifold M is a smooth map of the tangent 
bundle TM to the line 

df: TM --+ IR 

This map is differentiable and is linear on each tangent space TMx c TM. 

Definition. A differential form of degree 1 (or a 1 {orm ) on a manifold M is a 
smooth map 

w: TM --+ IR 

of the tangent bundle of M to the line, linear on each tangent space T Mx. 

One could say that a differential l{orm on M is an algebraic l{orm on 
T Mx which is "differentiable with respect to x." 

PROBLEM 2. Show that every differential I-form on the line is the differential of some function. 

PROBLEM 3. Find differential I-forms on the circle and the plane which are not the differential 
of any function. 

B The general form of a differential I-form on IRn 

We take as our manifold M a vector space with coordinates Xl' ... , X n • 

Recall that the components ... , of a tangent vector E are the 
values of the differentials dXl' ... , dXn on the vector These n I-forms on 

are linearly independent. Thus the I-forms dXb ... ,dxn form a basis for 
the n-dimensional space of I-forms on and every I-form on can 
be uniquely written in the form al dXl + ... + an dxn, where the ai are real 
coefficients. Now let w be an arbitrary differential I-form on IRn. At every 
point x it can be expanded uniquely in the basis dx l' ... ,dxn. From this we get: 

Theorem. Every differential l{orm on the space IRn with a given coordinate 
system Xb ... , Xn can be written uniquely in theform 

w = al(x)dxl + ... + an(x)dxn, 

where the coefficients alx) are smoothfunctions. 
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7: Differential [orms 

Figure 142 Problem 4 

PROBLEM4.CaIculatethevalueoftheformsw l = dXl,W2 = xldx2,andw3 = dr2(r2 = XI + 
on the vectors and (Figure 142). 

ANSWER. 

w 1 0 -1 
W 2 0 -2 -2 
W3 0 -8 0 

PROBLEM 5. Let Xz, ... , Xn be functions on a manifold M forming a local coordinate system in 
some region. Show that every i-form on this region can be uniquely written in the form 
W = a1(x) dX1 + ... + an(x) dxn• 

C Differential k-forms 

Definition. A differential k{orm wk Ix at a point x of a manifold M is an exterior 
k{orm on the tangent space T Mx to M at x, i.e., a k-linear skew-symmetric 
function of k vectors ... , tangent to M at x. 

If such a form wk Ix is given at every point x of the manifold M and if it is 
differentiable, then we say that we are given a k{orm wk on the manifold M. 

PROBLEM 6. Put a natural differentiable manifold structure on the set whose elements are k-tuples 
of vectors tangent to M at some point x. 

A differential k-form is a smooth map from the manifold of Problem 6 to 
the line. 

PROBLEM 7. Show that the k-forms on M form a vector space (infinite-dimensional if k does not 
exceed the dimension of M). 

Differential forms can be multiplied by functions as weH as by numbers. 
Therefore, the set of COO differential k-forms has a natural structure as a 
module over the ring of infinitely differentiable real functions on M. 
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34: Differential forms 

D The general form of a differential k-form on IR" 

Take as the manifold M the vector space IRn with fixed co ordinate functions 
Xl' ... , Xn : IRn IR. Fix a point x. We saw above that the n l-forms dXl' ... , 

dXn form a basis of the space of l-forms on the tangent space 
Consider exterior products of the basic forms: 

In Section 32 we saw that these k-forms form a basis of the space of exterior 
k-forms on Therefore, every exterior k-form on can be written 
uniquely in the form 

L ah ....• ik dXi. /\ .. , /\ dXik' 
il<···<ik 

Now let w be an arbitrary differential k-form on IRn. At every point x it 
can be uniquely expressed in terms of the basis above. From this folIo ws : 

Theorem. Every differential k10rm on the space IR" with a given coordinate 
system Xl"'" Xn can be written uniquely in theform 

wk = L ai ••...• ik(x)dxi. /\ ... /\ dXik' 
il<···<ik 

where the ah . ... , ik(X) are smooth functions on IRn. 

PROBLEM 8. Ca1culate the value ofthe forms w! = dX I /\ dx2 , w 2 = Xl dXI /\ dX2 - X2 dX2 /\ 

dx" and w3 = r dr /\ dcp (where Xl = r cos cp and X 2 = r sin cp) on the pairs of vectors (;,,1\1), 

(;2,112), and (;3,'13) (Figure 143). 

ANSWER. 

1 
2 

-1 
-3 
-1 

Figure 143 Problem 8 
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7: Differential forms 

PROBLEM 9. Calculate the value of the forms Wl = dX2 1\ dX3, w2 = Xl dX3 1\ dX2, and 
W3 = dX3 1\ dr2 (r2 = xi + + xD, on the pair of vectors = (1, 1, 1), 11 = (1,2,3) at the 
point x = (2, 0, 0). 

ANSWER. wl = 1, W2 = -2, W3 = -8. 

PRQBLEM 10. Let XI> ... , xn : M IR be functions on a manifold which form a local coordinate 
system on some region. Show that every differential form on this region can be written uniquely in 
the form 

Wk = 2: ail ..... iJX) dXil 1\ ... 1\ dXik' 
i 1 < ... < ik 

EXAMPLE. Change of variables in a form. Suppose that we are given two 
coordinate systems on 1R3 : Xl' X2' X3 and Yl' Y2' Y3' Let Q) be a 2-form on 1R3. 

Then, by the theorem above, Q) can be written in the system of x-coordinates 
as Q) = Xl dX2 1\ dX3 + X2 dX3 1\ dXl + X3 dX1 1\ dX2' where Xl' X 2, 
and X 3 are functions of Xl' X2' and X3' and in the system of y-coordinates as 
Q) = Yl dYz 1\ dY3 + Y2 dY3 1\ dYl + Y3 dYl 1\ dY2' where Yl, Y2, and Y3 
are functions of Yl' Y2' and Y3. 

PROBLEM 11. Given the form written in the x-coordinates (i.e., the Xi) and the change ofvariables 
formulas x = x(y), write the form in y-coordinates, i.e., find Y. 

Solution. We have dXi = (iJXJiJYI) dYI + (iJXJiJY2) dY2 + (iJXJiJY3) dY3' Therefore, 

( iJX2 iJX2 iJX2 ) (iJX3 iJX3 iJX3 ) 
dX2 1\ dX3 = -iJ dYI + -iJ dY2 + -iJ dY3 1\ -iJ dYI + -iJ dY2 + -iJ dY3' 

Yl Y2 Y3 Y1 Y2 Y3 

from which we get 

Y3 = XIID(X2' X3)1 + X2ID(X3, XI)1 + X3ID(XIoX2)I,etc. 
D(YI> Y2) D(YI, Y2) D(ylo Y2) 

E Appendix. Differential forms in three-dimensional spaces 

Let M be a three-dimensional oriented riemannian manifold (in all future 
examples M will be euc1idean three-space 1R3). Let Xh X2' and X3 be loeal 
coordinates, and let the square of the length element have the form 

ds2 = El dXI + E2 + E3 

(i.e., the co ordinate system is triply orthogonal). 

PROBLEM 12. Find EI> E2 , and E3 for cartesian coordinates x, y, z, for cylindrical coordinates 
r, <p, z and for spherical coordinates R, <p, (J in the euclidean space 1R 3 (Figure 144). 

ANSWER. 

ds2 = dx2 + dyl + dz2 = dr2 + r 2 drp2 + dz2 = dR 2 + R2 coS 2 (J d<p2 + R2 d(J2. 

We let eh e2, and e3 denote the unit vectors in the coordinate directions. 
These three vectors form a basis of the tangent space. 
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z 

x 

Figure 144 Problem 12 

PROBLEM 13. Find the values ofthe forms dx" dX2, and dX3 on the vectors eh e2 , and e3 . 

ANSWER. dXi(ei) = I/JE;, the rest are zero. In particular, for cartesian coordinates dx(e,) = 
dy(ey ) = dz(ez ) = 1; for cylindrical coordinates dr(e,) = dz(ez ) = 1 and = l/r (Figure 
145), for spherical coordinates dR(eR ) = 1, dq>(e",) = I/R cos 8 and d8(eo) = 1/R. 

The metric and orientation on the manifold M furnish the tangent space 
to M at every point with the structure of an oriented euclidean three-dimen-
sional space. In terms of this structure, we can talk about scalar, vector, and 
tripIe scalar products. 

PROBLEM 14. Calculate [ei' e2J, (eR' eo), and (e., e" ey ). 

ANSWER. e3 , 0, 1. 

In an oriented euclidean three-space every vector A corresponds to a 
I-form w1 and a 2-form , defined by the conditions 

The correspondence between vector fields and forms does not depend on 
the system of coordinates, but only on the euclidean structure and orienta-
tion. Therefore, every vector field A on our manifold M corresponds to a 
differential I-form w1 on M and a differential2-form on M. 

z 

........,.--t---... y 

x 

Figure 145 Problem 13 
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7: Differential forms 

The formulas for changing from fields to forms and back have a different 
form in each co ordinate system. Suppose that in the coordinates Xl' X2, and 
X3 described above, the vector field has the form 

A = Alel + A 2 e2 + A 3 e3 

(the components Ai are smooth functions on M). The corresponding I-form 
wl decomposes over the basis dXi' and the corresponding 2-form over the 
basis dXi /\ dx j' 

PROBLEM 15. Given the components ofthe vector field A, find the decompositions ofthe I-form 
wi and the 2-form wi. 

Solution. We have wi(e,) = (A, e,) = A,. Also, (a, dx, + a2 dX2 + a3 dX3)(e1) = 

a, dx,(e1) = atlftt. From this we get that a, = A1ftt, so that 

In the same way, we have wx = (A, e2 , e3) = A,. Also, 

Hence,O(, = A 1JE 2 E3 , i.e., 

In particular, in cartesian, cylindrical, and spherical coordinates on the vector field 

corresponds to the I-form 

and the 2-form 

wl = Ax dy A dz + Ay dz A dx + A. dx A dy 

= rAr dqJ A dz + A dz A dr + rA. dr A dqJ 

= R2 cos eAR dqJ A de + RA .. de A dR + R cos eA. dR A dqJ. 

An example of a vector field on a manifold M is the gradient of a function 
!: M - IR. Recall that the gradient of a function is the vector field grad! 
corresponding to the differential: 

= dj, l.e., d!(;) = (grad!, ;) 'I;. 

PROBLEM 16. Find the components of the gradient of a function in the basis e" e2 , e3 . 

Solution. We have df = (af/ax,) dx, + (af/ax 2) dX2 + (af/ax3) dX3' By the problem above 

180 



35: Integration of differential forms 

In particular, in cartesian, cylindrical, and spherical coordinates 

of of of of 10f of 
grad f = - e + - e + - e = - e + - - e + - e GX x GY Y oz Z Gr r r oep q> GZ Z 

Gf 1 Gf 1 cf 
= -eR + ---e + --ee. 

GR R cos 0 Gep q> R GO 

35 Integration of differential forms 

We define here the concepts of a chain, the boundary of a chain, and the integration of a form 
over a chain. 

The integral of a differential form is a higher-dimensional generalization of such ideas as the 
flux of a fluid across a surface or the work of a force along a path. 

A The integral of aI-form along a path 

We begin by integrating al-form w l on a manifold M. Let 

y: [0 S t S 1] -+ M 

be a smooth map (the "path of integration "). The integral of the form 
w l on the path y is defined as a limit of Riemann sums. Every Riemann sum 
consists ofthe values ofthe form w l on some tangent vectors (Figure 146): 

Iwl = lim t 
y d .... O i= 1 

The tangent vectors are constructed in the following way. The interval 
Ost s 1 is divided into parts L\i: ti S t S ti + 1 by the points ti. The inter val 
L\i can be looked at as a tangent vector Ai to the taxis at the point ti. 1ts 
image in the tangent space to M at the point yeti) is 

= dyl,,(Ai)E TMy(t;)· 

The sum has a limit as the largest of the intervals L\i tends to zero. It is 
called the integral of the I-form wl along the path y. 

The definition of the integral of a k-form along a k-dimensional surface 
follows an analogous pattern. The surface of integration is partitioned into 

Ili , .. , 
ti 

Figure 146 Integrating aI-form along a path 

181 



7: Differential forms 

Figure 147 Integrating a 2-form over a surface 

small curvilinear k-dimensional parallelepipeds (Figure 147); these paral-
lelepipeds are replaced by parallelepipeds in the tangent space. The sum of the 
values of the form on the parallelepipeds in the tangent space approaches 
the integral as the partition is refined. We will first consider a particular case. 

B The integral of a k-form on oriented euclidean space [Rk 

Let Xl' ... , Xk be an oriented coordinate system on Then every k-form 
on is proportional to the form dXI /\ ... /\ dXk' i.e., it has the form 
rok = qJ(X)dXI /\ ... /\ dXk' where qJ(x) is a smooth function. 

Let D be a bounded convex polyhedron in (Figure 148). By definition, 
the integral of the form rok on D is the integral of the function qJ: 

where the integral on the right is understood to be the usuallimit of Riemann 
sums. 

Such adefinition follows the pattern outlined above, since in this case the 
tangent space to the manifold is identified with the manifold. 

PROBLEM 1. Show that SD rok depends linearlyon rok• 

PROBLEM 2. Show that ifwe divide D into two distinct polyhedra D 1 and D2 , then 

In the general case (a k-form on an n-dimensional space) it is not so easy 
to identify the elements ofthe partition with tangent parallelepipeds; we will 
consider this case below. 

Figure 148 Integrating a k-form in k-dimensional space 
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35: Integration of differential forms 

C The behavior of differential forms under maps 

.Let f: M N be a differentiable map of a smooth manifold M to a smooth 
manifold N, and let w be a differential k-form on N (Figure 149). Then, a 
well-defined k-form arises also on M: it is denoted by f*w and is defined by 
the relation 

(f*W)(;b .. ··' ;k) = W(f*;l"" ,f*;k) 

for any tangent vectors ;1' ... , ;k E TMx · Here f* is the differential of the 
map f In other words, the value of the form f*w on the vectors ;1' ... , ;k is 
equal to the value of w on the images of these vectors. 

f*w 

Figure 149 A form on N induces a form on M. 

EXAMPLE. If Y = f(x l , Xz) = xi + and w = dy, then 

f*w = 2xI dXI + 2xz dxz. 

PROBLEM 3. Show thatf*w is a k-form on M. 

PROBLEM 4. Show that the mapf* preserves operations on forms: 

f*()'1 W 1 + Azwz) = Ad*(w l ) + Az !*(wz), 

!*(WI 1\ wz) = (f*w l ) 1\ (f*wz). 

PROBLEM 5. Let g: L ..... M be a differentiable map. Show that (fg)* = g*f*. 

PROBLEM 6. Let D1 and Dz be two compact, convex polyhedra in the oriented k-dimensional 
space IRk and f: D1 ..... Dz a differentiable map which is an orientation-preserving diffeomor-
phism55 of the interior of D I onto the interior of Dz. Then, for any differential k-form wk on Dz , 

Hint. This is the change of variables theorem for a multiple integral: 

f iJ(YI"'" Yn) f ---- cp(y(x»dxI ... dXn = cp(y)dYI ... dYn' 
D, iJ(XI' ... , X n) D, 

55 i.e., one-to-one with a differentiable inverse. 
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7: Differential forms 

D Integration of a k-form on an n-dimensional manifold 

Let Q) be a differential k-form on an n-dimensional manifold M. Let D be a 
bounded convex k-dimensional polyhedron in k-dimensional euclidean 
space (Figure 150). The role of "path of integration" will be played by a 

Figure 150 Singular k-dimensional polyhedron 

k-dimensional ce1l 56 (1 of M represented by a tripIe Q) = (D,J, Or) consisting 
of 

1. a convex polyhedron D c 
2. a differentiable map f: D -+ M, and 
3. an orientation on denoted by Or. 

Definition. The integral of the k-form Q) over the k-dimensional cell (1 is the 
integral of the corresponding form over the polyhedron D 

r w = r f*w. 
"1I JD 

PROBLEM 7. Show that the integral depends linearlyon the form: 

The k-dimensional cell which differs from (1 only by the choice of orienta-
tion is called the negative of (1 and is denoted by - (1 or - 1 . (1 (Figure 151). 

Figure 151 Problem 8 

PROBLEM 8. Show that, under a change of orientation, the integral changes sign: 

f w = - f w. 
-(1 J(1 

56 The cellu is usually called a singular k-dimensional polyhedron. 
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35: Integration of differential forms 

E Chains 

The set f(D) is not necessarily a smooth submanifold of M. It could have 
"self-intersections" or "folds" and could even be reduced to a point. How-
ever, even in the one-dimensional case, it is clear that it is inconvenient to 
restrict ourselves to contours of integration consisting of one piece: it is 
useful to be able to consider contours consisting of several pieces which can 
be traversed in either direction, perhaps more than once. The analogous 
concept in higher dimensions is called a chain. 

Definition. A chain of dimension n on a manifold M consists of a finite collection 
of n-dimensional oriented cells 0"1' ... , 0", in M and integers mt> ... , m" 
called multiplicities (the multiplicities can be positive, negative, or zero). 
A chain is denoted by 

We introduce the natural identifications 

m10" + m20" = (mI + m2)0" 

00" = 0 

PROBLEM 9. Show that the set of all k-chains on M forms a commutative group if we define the 
addition of chains by the formula 

F Example: the boundary of a polyhedron 

Let D be a convex oriented k-dimensional polyhedron in k-dimensional 
euclidean space IRk • The boundary of Dis the (k - l)-chain aD on IRk defined 
in the following way (Figure 152). 

The cells 0"; of the chain aD are the (k - 1)-dimensional faces D; of the 
polyhedron D, together with maps Ji: D; -+ IRk embedding the faces in IRk and 
orientations Or; defined below; the multiplicities are equal to 1: 

Rule of orientation of the boundary. Let e1, ••• , ek be an oriented frame in 
IRk• Let D; be one ofthe faces of D. We choose an interior point of Di and there 

Figure 152 Oriented boundary 
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construct a vector 0 outwardly normal to the polyhedron D. An orienting 
frame for the face Di will be a frame f1, ... , fk - 1 on Di such that the frame 
(0, f 1, ... , fk - 1) is oriented correctly (i.e., the same way as the frame e1, ... , ek). 

The boundary oj a chain is defined in an analogous way. Let (1 = (D,f, Or) 
be a k-dimensional cell in the manifold M. Its boundary 0(1 is the (k - 1) 
chain: 0(1 = L (1i consisting of the cells (1i = (Dj, j;, Ori), where the Di are 
the (k - 1)-dimensional faces of D, Ori are orientations chosen by the rule 
above, andj; are the restrictions ofthe mappingj: D M to the face Di • 

The boundary OCk of the k-dimensional chain Ck in M is the sum of the 
boundaries of the cells of Ck with multiplicities (Figure 153): 

OCk = 0(ml(11 + ... + mr(1r) = ml 0(11 + ... + mr O(1r. 

Obviously, OCk is a (k - 1)-chain on M. 57 

Figure 153 Boundary of a chain 

PROBLEM 10. Show that the boundary of the boundary of any chain is zero: OOCk = o. 
Hint. By the linearity of 0 it is enough to show that ooD = 0 for a convex polyhedron D. It 

remains to verify that every (k - 2)-dimensional face of Dappears in ooD twice, with opposite 
signs. It is enough to prove this for k = 2 (planar cross-sections). 

G The integral of a form over a chain 

Let oi be a k-form on M, and Ck a k-chain on M, Ck = L mi(1i. The integral 
ojthejorm wk over the chain Ck is the sum ofthe integrals on the cells, counting 
multiplicities: 

PROBLEM 11. Show that the integral depends linearlyon the form: 

PROBLEM 12. Show that integration of a fixed form wk on chains Ck defines a homomorphism from 
the group of chains to the line. 

57 We are taking k > 1 here. One-dimensional chains are included in the general scheme if we 
make the following definitions: a zero-dimensional chain consists of a collection of points with 
multiplicities; the boundary of an oriented interval ih is B - A (the point B with multiplicity 1 
and A with multiplicity -1); the boundary of a point is empty. 
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35: Integration of differential farms 

EXAMPLE 1. Let M be the plane {(p, q)}, w 1 the form pdq, and CI the chain consisting of one cell (J 

with multiplicity 1 : 

[0 ==:; t ==:; 2n] 1. (P = cos t, q = sin t). 

Then Sct pdq = n. In general, ifachain CI represents the boundary ofaregion G(Figure 154), then 
Sct pdq is equal to the area of G with sign + or - depending on whether the pair of vectors 
(outward normal, oriented boundary vector) has the same or opposite orientation as the pair 
(P axis, q axis). 

q 

Figure 154 The integral of the form p dq over the boundary of a region is equal to the 
area of the region. 

EXAMPLE 2. Let M be the oriented three-dimensional euclidean space 1R3 . Then every I-form on 
M corresponds to some vector field A (w 1 = wl), where 

The integral of wl. on a chain CI representing a curve 1 is called the circulation of the field A 
over the curve I: 

f wl. = f(A, dl). 
ct 1 

Every 2-form on M also corresponds to some field A (w2 = wl, where 1\) = (A, 1\». 
The integral of the form wi on a chain C2 representing an oriented surface S is called the 

flux of the field A through the surface S: 

f wi = f (A, dn). 
" s 

PROBLEM 13. Find thefluxofthe fieldA = (l/R 2)eR overthesurfaceofthe spherex2 + y2 + Z2 = 
1, oriented by the vectors ex , ey at the point z = 1. Find the flux ofthe same field over the surface 
of the ellipsoid (x2/a2) + (y2/b 2) + Z2 = 1 oriented the same way. 

Hint. Cf. Section 36H. 

PROBLEM 14. Suppose that, in the 2n-dimensional space IR· = {(Pb"" P.; ql,"" q.)}, we are 
given a 2-chain C2 representing a two-dimensional oriented surface S with boundary I. Find 

f dpl 1\ dql + ... + dp. 1\ dq. and fpldql + ... + p.dq •. 
n I 

ANSWER. The sum of the oriented areas of the projection of S on the two-dimensional coordinate 
planes Pi. qi' 
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36 Exterior differentiation 
We define here exterior differentiation of k-forms and prove Stokes' theorem: the integral ofthe 
derivative of a form over a chain is equal to the integral of the form itself over the boundary of 
the chain. 

A Example: lhe divergence of a veclor field 

The exterior derivative of a k-form w on a manifold M is a (k + 1)-form dw 
on the same manifold. Going from a form to its exterior derivative is analo-
gous to forming the differential of a function or the divergence of a vector 
field. We recall the definition of divergence. 

Figure 155 Definition of divergence of a vector field 

Let A be a vector field on the oriented euclidean three-space 1R3, and let S 
be the boundary of a parallelepiped II with edges ;1';2' and;3 at the vertex x 
(Figure 155). Consider the ("outward ") ftux of the field A through the 
surface S: 

F(ll) = {(A, dn). 

If the parallelepiped II is very smalI, the ftux F is approximately propor-
tional to the product of the volume of the parallelepiped, V = (;1> ;2' ;3), 
and the "source density" at the point x. This is the limit 

I. F(ell) 
Im--

,-+0 e3V 

where ell is the parallelepiped with edges This limit does not 
depend on the choice of the parallelepiped II but only on the point x, and is 
called the divergence, div A, of the field A at x. 

To go to higher-dimensional cases, we note that the "ftux of A through a 
surface element" is the 2-form which we called wl. The divergence, then, 
is the density in the expression for the 3-form 

w3 = div A dx 1\ dy 1\ dz, 

W3(;1' ;2, ;3) = div A . V(;1> ;2' ;3), 

characterizing the "sources in an elementary parallelepiped." 
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36: Exterior differentiation 

The exterior derivative dwk of a k-form wk on an n-dimensional manifold 
M may be defined as the principal multilinear part of the integral of wk over 
the boundaries of (k + 1)-dimensional parallelepipeds. 

B Definition 0/ the exterior derivative 

We define the value ofthe form dw on k + 1 vectors;1> ... , ;k+ 1 tangent to M 
at x. To do this, we choose some coordinate system in a neighborhood of x 
on M, i.e., a differentiable map f of a neighborhood of the point 0 in euclidean 
space to a neighborhood of x in M (Figure 156). 

Figure 156 The curvilinear parallelepiped rr. 

The pre-images of the vectors ;1' ... , ;k+1 E TMx under the differential 
of f lie in the tangent space to at O. This tangent space can be naturally 
identified with so we may consider the pre-images to be vectors 

;1, ... , ;t+ 1 E 

We take the parallelepiped IT* in spanned by these vectors (strictly 
speaking, we must look at the standard oriented cube in 1 and its linear 
map onto IT*, taking the edges e10 ••• , ek + 1 to ;1, ... , ;t+ 10 as a (k + 1)-
dimensional cell in The map f takes the parallelepiped IT to a (k + 1)-
dimensional cell on M (a "curvilinear parallelepiped "). The boundary of the 
cell IT is a k-chain, aIT. Consider the integral of the form wk on the boundary 
aIT of IT: 

EXAMPLE. We will call a smooth function cp: M R a O-form on M. The integral of the O-form cp 
on the O-chain Co = L miAi (where the mi are integers and the Ai points of M) is 

f cp = L miCP(A;). 
Co 

Then the definition above gives the "increment" = CP(XI) - cp(x) (Figure 157) of the 
function cp, and the principallinear part of at 0 is simply the differential of cp. 

PROBLEM 1. Show that the function ... , I) is skew-symmetric with respect to 

It turns out that the principal (k + 1)-linear part of the "increment" 
... , 1) is an exterior (k + 1)-form on the tangent space TMx to M 
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7: Differential forms 

Figure 157 The integral over the boundary of a one-dimensional parallelepiped is the 
change in the function. 

at x. This form does not depend on the coordinate system that was used to 
define the curvilinear parallelepiped n. It is called the exterior derivative, or 
differential, of the form wk (at the point x) and is denoted by dwk• 

C A theorem on exterior derivatives 

Theorem. There is a unique (k + 1)-form Cl on TM" which is the principal 
(k + 1 )-linear part at 0 of the integral over the boundary of a curvilinear 
parallelepiped, F(;l, ... , ;k+ 1); i.e., 

(1) (e --+ 0). 

The form Cl does not depend on the choice of coordinates involved in the 
definition of F. Ij, in the local coordinate system xl> ... , x n on M, the form 
wk is written as 

then Cl is written as 

(2) Cl = dwk = " da· . /\ dx· /\ ... /\ dx· . l.J 11, ... , lk '. 'k 

We will carry out the proof of this theorem for the case of a form w1 = 
a(x1, X2)dX1 on the Xl> X2 plane. The proof in the general case is entirely 
analogous, but the calculations are somewhat longer. 

We calculate F(;,1I), Le., the integral of w1 on the boundary ofthe paral-
lelogram n with sides ; and 11 and vertex at 0 (Figure 158). The chain an is 

-=--------..... X1 

Figure 158 Theorem on exterior derivatives 
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given by the mappings of the interval 0 5 t 5 1 to the plane t t 
+ 1)t, t 1)t, and t 1) + with multiplicities 1, 1, -1, and -1. Therefore, 

i oi = L1 - + 1))Hl - [a(1)t) - a(1)t + dt 
ön 0 

where = dXl(;)' 111 = dXl(1)), = dX2(;)' and 112 = dX2(1)) are the 
components of the vectors and 1). But 

(Ja (Ja 
a(;t + 1)) - a(;t) = 111 + 112 + 1)2) 

uXj uX2 

(the derivatives are taken at Xl = X2 = 0). In the same way 

(Ja (Ja 
a(1)t + ;) - a(1)t) = + + 1)2). 

uXl uX2 

By using these expressions in the integral, we find that 

The principal bilinear part of F, as promised in (1), turns out to be the value 
of the exterior 2-form 

on the pair of vectors 1). Thus the form obtained is given by formula (2), 
since 

Finally, if the coordinate system XI> X2 is changed to another (Figure 159), 
the parallelogram IT is changed to a nearby curvilinear parallelogram IT', so 
that the difference in the values of the integrals, fön 0)1 - fön' 0)1 will be 
small of more than second order (prove it I). 0 

Figure 159 Independence of the exterior derivative from the coordinate system 
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PROBLEM 2. Carry out the proof of the theorem in the general case. 

PROBLEM 3. Prove the formulas for differentiating a sum and a product: 

d(w 1 + W2) = dW 1 + dW2' 

and 

PROBLEM 4. Show that the differential of a differential is equal to zero: dd = O. 

PROBLEM 5. Letf: M N be a smooth map and W a k-form on N. Show thatf*(dw) = d(f*w). 

D Stokes' formula 

One of the most important corollaries of the theorem on exterior derivatives 
is the Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincare for-
mula: 

(3) i W = fdW, 
oe e 

where c is any (k + l)-chain on a manifold M and W is any k-form on M. 
To prove this formula it is sufficient to prove it for the case when the chain 

consists of one cell (1. We assurne first that this cell (1 is given by an oriented 
parallelepiped n c (RH 1 (Figure 160). 

r , 
I I 

"i 

Figure 160 Proof of Stokes' formula for a parallelepiped 

We partition n into NH 1 small equal parallelepipeds ni similar to n. 
Then, clearly, 

i Nk+l i 
on W = Fj, where Fi = on/w, 

By formula (1) we have 

Fi = ... , ;i+ 1) + o(N-(k+ 1), 

where ;L ... , 1 are the edges of ni • But Ir:; 1 ... , 1) is a 
Riemann sum for f n dw. It is easy to verify that o(N-(k+ 1) is uniform, so 

Nk+l Nk+l 

lim L F j = lim L dW(;i1, ... , 1) = r dw. 
N-+oo i= 1 N-+oo i= 1 Jn 
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Finally, we obtain 

Formula (3) follows automatically from this for any chain whose polyhedra 
are parallelepipeds. 

To prove formula (3) for any convex polyhedron D, it is enough to prove 
it for a simplex,58 since D can always be partitioned into simplices (Figure 
161): 

oD = LoD j • 

Figure 161 Division of a convex polyhedron into simplices 

Figure 162 Proof of Stokes' formula for a simplex 

We will prove formula (3) for a simplex. Notice that a k-dimensional 
oriented cube can be mapped onto a k-dimensional simplex so that: 

1. The interior of the cube goes diffeomorphically, with its orientation 
preserved, onto the interior of the simplex; 

2. The interiors of some (k - 1)-dimensional faces of the cube go diffeo-
morphically, with their orientations preserved, onto the interiors of the 
faces of the simplex; the images of the remaining (k - 1)-dimensional 
faces of the cube lie in the (k - 2)-dimensional faces of the simplex. 

For example, for k = 2 such a map of the cube 0 :s: Xl> X2 :s: 1 onto the 
triangle is given by the formula Yl = Xl' Y2 = X1X2 (Figure 162). Then, 

58 A two-dimensional simplex is a triangle, a three-dimensional simplex is iI tetrahedron, a 
k-dimensional simplex is the convex hull of k + 1 points in IR" which do not He in any k - 1-
dimensional plane. 

EXAMPLE: {x E IRk : Xi 0 and l:r-l XI :s; I}. 
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formula (3) for the simplex follows from formula (3) for the cube and the 
change ofvariables theorem (cf. Section 35C). 

EXAMPLE 1. Consider the i-form 

on 1R2n with coordinates Pt, ... ,Pn' qt, ... , qn' Then dwt = dpt 1\ dqt + ... 
+ dPn 1\ dqn = dp 1\ dq, so 

f' f dp 1\ dq = f p dq. 
JC2 JaC2 

In particular, if C2 is a closed surface (OC2 = 0), then He2 dp 1\ dq = O. 

E Example 2- Vector analysis 

In a three-dimensional oriented riemannian space M, every vector field A 
corresponds to al-form wl and a 2-form wi . Therefore, exterior differentia-
tion can be considered as an operation on vectors. 

Exterior differentiation of O-forms (functions), i-forms, and 2-forms cor-
respond to the operations of gradient, curl, and divergence defined by the 
relations 

df= dwi = (div A)w3 

(the form w3 is the volume element on M). Thus, it follows from (3) that 

f(y) - fex) = i gradf dl if 01 = y - x 

iAdl = JiCUrlA.dn ifoS = 1 

Ji A dn = JJL (div A)w3 if oD = S. 

PROBLEM 5. Show that 

div[A, B] = (eurl A, B) - (eurl B, A), 

eurl aA = [grad a, A] + a eurl A, 

div aA = (grad a, A) + a div A. 

Hint. By the formula for differentiating the product offorms, 

= d(wi/\ wA) = dwl /\ wA - wi /\ dwä· 

PROBLEM 6. Show that eurl grad = div curl = O. 
Hint. dd = O. 
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36: Exterior differentiation 

F Appendix 1: Vector operations in triply orthogonal systems 

Let Xl' X2, X3 be a triply orthogonal coordinate system on M, ds2 = 
EI dxf + E2 + E3 and ei the coordinate unit vectors (cf. Section 
34F). 

PROBLEM 7. Given the cornponents of a vector field A = Alel + A2 e2 + A3e3, find the corn-
ponents of its cur!. 

Solution. According to Section 34F 

Therefore, 

According to Section 34F, we have 

In particular, in cartesian, cylindrical, and spherical coordinates on 1R 3, 

( ßAz ßAy) (ßAx ßAz) (ßAy ßAx ) curlA- --- e + --- e + --- e - fu x fu b y b z 

= (ßA z _ ßrA")er + (ßAr _ ßAz)e + (ßrA .. _ ßAr)ez 
r ßcp ßz ßz ßr .. r ßr ßcp 

= _1_ (ßAe _ ßA .. cos (J)eR + (aAR _ aRAe)e + (aRA .. __ 1_ ßAR)ee. 
R cos (J ßcp ao R a(J aR" R aR cos 0 acp 

PROBLEM 9. Find the divergence ofthe field A = Alel + A2 e2 + A3 e3 • 

Solution. wl = AlJE2E3 dX2 /\ dX3 + .... Therefore, 

By the definition of divergence, 

This rneans 
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7: Differential forms 

In particular, in cartesian, cylindrical, and spherical coordinates on 

. oAx oA, oA. 1 (orA, OA,,) oA. 
dlVA=-+-+-=- -+- +-

OX oy OZ r or ocp oz 

= __ 1_ (OR 2 COS (JA R + oRA" + oR COS (JA 8). 

R2 COS (J oR ocp 00 

PROBLEM 10. The Laplace operator on M is the operator Ö = div grad. Find its expression in 
the coordinates Xi' 

ANSWER. 

In particular, on 

1 [0 ( 2 Oj) 0 (1 (1) 0 ( of)] 
= R2 COS (J oR R cos (J oR + ocp cos (J ocp + 0(J cos (J 0(J . 

G Appendix 2: Closed forms and cycles 

The flux of an incompressible fluid (without sourees) across the boundary 
of a region D is equal to zero. We will formulate a higher-dimensional 
analogue to this obvious assertion. The higher-dimensional analogue of an 
incompressible fluid is called a closed form. The field A has no sources if 
div A = O. 

DefinitiolL A differential form w on a manifold M is closed if its exterior 
derivative is zero: dw = O. 

In particular, the 2-form wi corresponding to a field A without sources 
is c1osed. Also, we have, by Stokes' formula (3): 

Theorem. The integral of a closedform wk over the boundary of any (k + 1)-
dimensional chain Ck+ 1 is equal to zero: 

i Wk = 0 if dwk = O. 
ÖCk+ I 

PROBLEM 11. Show that the differential of a form is always c1osed. 

On the other hand, there are c10sed forms which are not differentials. For 
example, take for M the three-dimensional euc1idean space 1R3 without 0: 
M = [R3 - 0, with the 2-form being the flux of the field A = (1/R 2)eR 

(Figure 163).1t is easy to convince oneselfthat div A = 0, so that our 2-form 

196 



36: Exterior differentiation 

Figure 163 The field A 

w1 is c1osed. At the same time, the ftux over any sphere with center 0 is equal 
to 4n. We will show that the integral of the differential of a form over the 
sphere must be zero. 

Definition. A cycle on a manifold M is a chain whose boundary is equal to 
zero. 

The oriented surface of our sphere can be considered to be a cyc1e. It 
immediate1y follows from Stokes' formula (3) that 

Theorem. The integral of a differential over any cycle is equal to zero: 

i dwk = 0 ijOCk+l = O. 
Ck+ 1 

Thus, our 2-form w1 is not the differential of any I-form. 
The existence of c10sed forms on M which are not differentials is related 

to the topological properties of M. One can show that every c10sed k-form 
on a vector space is the differential of some (k + 1 )-form (Poincare's lemma). 

PROBLEM 12. Prove Poineare's lemma for I-forms. 
Hint. Consider ro1 = qJ(X 1)' 

PROBLEM 13. Show that in a veetor space the integral of a closed form over any eycle is zero. 
Hint. Construet a (k + 1)-ehain whose boundary is the given eyele (Figure 164). 

F;gure 164 Cone over a eyde 
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7: Differential forms 

Name1y, for any chain c consider the "cone over c with vertex 0." Ifwe denote the operation 
of constructing a cone by p, then 

(the identity map). 

Therefore, if the chain c is cIosed, iJ(pc) = c. 

PROBLEM. Show that every cIosed form on a vector space is an exterior derivative. 
Hint. Use the cone construction. Let w· be a differential k-form on [R". We define a (k - 1)-

form (the "co-cone over w") pw· in the following way: for any chain C._I 

It is easy to see that the (k - 1)-form pw· exists and is unique; its value on the vectors ;1""';" 
tangent to [R" at x, is equal to 

It is easy to see that 

d o p+p o d=1 (the identity map). 

Therefore, if the form w· is cIosed, d(pw·) = w·. 

PROBLEM. Let X be a vector field on M and w a differential k-form. We define a differential 
(k - 1)-form ixw (the interior derivative of w by X) by the relation 

(ix w)(;1> ... , ;.- d = w(X';1> ... , ;.-1)' 

Prove the homotopy formula 

ixd + dix = Lx, 

where Lx is the differentiation operator in the direction of the field X. 
[The action of Lx on a form is defined, using the phase flow {gI} of the fie1d X, by the relation 

Lx is called the Lie derivative or jisherman's derivative: the flow carries all possible differential-
geometric objects past the fisherman, and the fisherman sits there and differentiates them.J 

Hint. We denote by H the "homotopy operator" associating to a k-chain y: u -+ M the 
(k + 1)-chain Hy: (I x u) ...... M according to the formula (H1')(t, x) = gl1'(X) (where I = [0, IJ). 
Then 

gly - l' = iJ(H1') + H(iJy). 

PROBLEM. Prove the formula for differentiating a vector product on three-dimensional eucIidean 
space (or on a riemannian manifold): 

cud[a, bJ = {a, b} + a div b - b diva 

(where {a, b} = Lab is the Poisson bracket ofthe vector fields, cf. Section 39). 
Hint. If, is the yolume element, then 

diva = dia' and {a,b} = Lab; 

by using these relations and the fact that d, = 0, it is easy to derive the formula for curl[a, b J from 
the homotopy formula. 
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36: Exterior differentiation 

H Appendix 3: Cohomology and homology 

The set of all k-forms on M forms a vector space, the closed k-forms a sub-
space and the differentials of (k + 1)-forms a subspace of the subspace of 
closed forms. The quotient space 

(closed forms) = Hk(M IR) 
(differentials) , 

is called the k-th cohomology group of the manifold M. An element of this 
group is a class of closed forms differing from one another only by a differ-
ential. 

PROBLEM 14. Show that for the circIe SI we have H 1(St, IR) = IR. 

The dimension ofthe space Hk(M, IR) is called the k-th Betti number of M. 

PROBLEM 15. Find the first Betti number of the torus T 2 = SI X SI. 

The flux of an incompressible fluid (without sources) over the surfaces of 
two concentric spheres is the same. In general, when integrating a closed form 

Figure 165 Homologous cycles 

over a k-dimensional cycle, we can replace the cycle with another one pro-
vided that their difference is the boundary of a (k + 1)-chain (Figure 165): 

if a - b = OCk + 1 and dwk = O. 
Poincare called two such cycles a and b homologous. 
With a suitable definition59 ofthe group of chains on a manifold M and its 

59 For this our group {cd must be made smaller by identifying pieces which differ only by the 
choice of parametrization ! or the choice of polyhedron D. In particular, we may assume that 
D is always one and the same simplex or cube. Furthermore, we must take every degenerate 
k-cell (D, f, Or)to be zero, i.e.,(D, f, Or) = Oif! = !2 . ft, where!l: D -+ D' andD' hasdimension 
smaller than k. 
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7: Differential farms 

subgroups of cycles and boundaries (i.e., cycles homologous to zero), the 
quotient group 

(cycles) = Hk M 
(boundaries) () 

is called the k-th homology group of M. 
An element of this group is a class of cycles homologous to one another. 
The rank of this group is also equal to the k-th Betti number of M (" De-

Rham's Theorem "). 
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