DETERMINANTS

The notion of a determinant appeared at the end of 17 th century in works of Leibniz (1646-1716) and a Japanese mathematician, Seki Kova, also known as Takakazu (1642-1708). Leibniz did not publish the results of his studies related with determinants. The best known is his letter to l'Hospital (1693) in which Leibniz writes down the determinant condition of compatibility for a system of three linear equations in two unknowns. Leibniz particularly emphasized the usefulness of two indices when expressing the coefficients of the equations. In modern terms he actually wrote about the indices i, j in the expression $x_{i}=\sum_{j} a_{i j} y_{j}$.

Seki arrived at the notion of a determinant while solving the problem of finding common roots of algebraic equations.

In Europe, the search for common roots of algebraic equations soon also became the main trend associated with determinants. Newton, Bezout, and Euler studied this problem.

Seki did not have the general notion of the derivative at his disposal, but he actually got an algebraic expression equivalent to the derivative of a polynomial. He searched for multiple roots of a polynomial $f(x)$ as common roots of $f(x)$ and $f^{\prime}(x)$. To find common roots of polynomials $f(x)$ and $g(x)$ (for f and g of small degrees) Seki got determinant expressions. The main treatise by Seki was published in 1674; there applications of the method are published, rather than the method itself. He kept the main method in secret confiding only in his closest pupils.

In Europe, the first publication related to determinants, due to Cramer, appeared in 1750. In this work Cramer gave a determinant expression for a solution of the problem of finding the conic through 5 fixed points (this problem reduces to a system of linear equations).

The general theorems on determinants were proved only ad hoc when needed to solve some other problem. Therefore, the theory of determinants had been developing slowly, left behind out of proportion as compared with the general development of mathematics. A systematic presentation of the theory of determinants is mainly associated with the names of Cauchy (1789-1857) and Jacobi (1804-1851).

1. Basic properties of determinants

The determinant of a square matrix $A=\left\|a_{i j}\right\|_{1}^{n}$ is the alternated sum

$$
\sum_{\sigma}(-1)^{\sigma} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

where the summation is over all permutations $\sigma \in S_{n}$. The determinant of the matrix $A=\left\|a_{i j}\right\|_{1}^{n}$ is denoted by $\operatorname{det} A$ or $\left|a_{i j}\right|_{1}^{n}$. If $\operatorname{det} A \neq 0$, then A is called invertible or nonsingular.

The following properties are often used to compute determinants. The reader can easily verify (or recall) them.

1. Under the permutation of two rows of a matrix A its determinant changes the sign. In particular, if two rows of the matrix are identical, $\operatorname{det} A=0$.
2. If A and B are square matrices, $\operatorname{det}\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)=\operatorname{det} A \cdot \operatorname{det} B$.
3. $\left|a_{i j}\right|_{1}^{n}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}$, where $M_{i j}$ is the determinant of the matrix obtained from A by crossing out the i th row and the j th column of A (the row (echelon) expansion of the determinant or, more precisely, the expansion with respect to the ith row).
(To prove this formula one has to group the factors of $a_{i j}$, where $j=1, \ldots, n$, for a fixed i.)
4.

$$
\left|\begin{array}{cccc}
\lambda \alpha_{1}+\mu \beta_{1} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & \ldots & \vdots \\
\lambda \alpha_{n}+\mu \beta_{n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|=\lambda\left|\begin{array}{cccc}
\alpha_{1} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & \ldots & \vdots \\
\alpha_{n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|+\mu\left|\begin{array}{cccc}
\beta_{1} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & \ldots & \vdots \\
\beta_{n} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

5. $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$.
6. $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$.
1.1. Before we start computing determinants, let us prove Cramer's rule. It appeared already in the first published paper on determinants.

Theorem (Cramer's rule). Consider a system of linear equations

$$
x_{1} a_{i 1}+\cdots+x_{n} a_{i n}=b_{i} \quad(i=1, \ldots, n)
$$

i.e.,

$$
x_{1} A_{1}+\cdots+x_{n} A_{n}=B
$$

where A_{j} is the j th column of the matrix $A=\left\|a_{i j}\right\|_{1}^{n}$. Then

$$
x_{i} \operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, B, \ldots, A_{n}\right),
$$

where the column B is inserted instead of A_{i}.
Proof. Since for $j \neq i$ the determinant of the matrix $\operatorname{det}\left(A_{1}, \ldots, A_{j}, \ldots, A_{n}\right)$, a matrix with two identical columns, vanishes,

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}, \ldots, B, \ldots, A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, \sum x_{j} A_{j}, \ldots, A_{n}\right) \\
& \quad=\sum x_{j} \operatorname{det}\left(A_{1}, \ldots, A_{j}, \ldots, A_{n}\right)=x_{i} \operatorname{det}\left(A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

If $\operatorname{det}\left(A_{1}, \ldots, A_{n}\right) \neq 0$ the formula obtained can be used to find solutions of a system of linear equations.
1.2. One of the most often encountered determinants is the Vandermonde determinant, i.e., the determinant of the Vandermonde matrix

$$
V\left(x_{1}, \ldots, x_{n}\right)=\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{i>j}\left(x_{i}-x_{j}\right) .
$$

To compute this determinant, let us subtract the $(k-1)$-st column multiplied by x_{1} from the k th one for $k=n, n-1, \ldots, 2$. The first row takes the form
$(1,0,0, \ldots, 0)$, i.e., the computation of the Vandermonde determinant of order n reduces to a determinant of order $n-1$. Factorizing each row of the new determinant by bringing out $x_{i}-x_{1}$ we get

$$
V\left(x_{1}, \ldots, x_{n}\right)=\prod_{i>1}\left(x_{i}-x_{1}\right)\left|\begin{array}{ccccc}
1 & x_{2} & x_{2}^{2} & \ldots & x_{1}^{n-2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-2}
\end{array}\right|
$$

For $n=2$ the identity $V\left(x_{1}, x_{2}\right)=x_{2}-x_{1}$ is obvious, hence,

$$
V\left(x_{1}, \ldots, x_{n}\right)=\prod_{i>j}\left(x_{i}-x_{j}\right)
$$

Many of the applications of the Vandermonde determinant are occasioned by the fact that $V\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if there are two equal numbers among x_{1}, \ldots, x_{n}.
1.3. The Cauchy determinant $\left|a_{i j}\right|_{1}^{n}$, where $a_{i j}=\left(x_{i}+y_{j}\right)^{-1}$, is slightly more difficult to compute than the Vandermonde determinant.

Let us prove by induction that

$$
\left|a_{i j}\right|_{1}^{n}=\frac{\prod_{i>j}\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)}{\prod_{i, j}\left(x_{i}+y_{j}\right)} .
$$

For a base of induction take $\left|a_{i j}\right|_{1}^{1}=\left(x_{1}+y_{1}\right)^{-1}$.
The step of induction will be performed in two stages.
First, let us subtract the last column from each of the preceding ones. We get

$$
a_{i j}^{\prime}=\left(x_{i}+y_{j}\right)^{-1}-\left(x_{i}+y_{n}\right)^{-1}=\left(y_{n}-y_{j}\right)\left(x_{i}+y_{n}\right)^{-1}\left(x_{i}+y_{j}\right)^{-1} \text { for } j \neq n
$$

Let us take out of each row the factors $\left(x_{i}+y_{n}\right)^{-1}$ and take out of each column, except the last one, the factors $y_{n}-y_{j}$. As a result we get the determinant $\left|b_{i j}\right|_{1}^{n}$, where $b_{i j}=a_{i j}$ for $j \neq n$ and $b_{i n}=1$.

To compute this determinant, let us subtract the last row from each of the preceding ones. Taking out of each row, except the last one, the factors $x_{n}-x_{i}$ and out of each column, except the last one, the factors $\left(x_{n}+y_{j}\right)^{-1}$ we make it possible to pass to a Cauchy determinant of lesser size.
1.4. A matrix A of the form

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
a_{0} & a_{1} & a_{2} & \ldots & a_{n-2} & a_{n-1}
\end{array}\right)
$$

is called Frobenius' matrix or the companion matrix of the polynomial

$$
p(\lambda)=\lambda^{n}-a_{n-1} \lambda^{n-1}-a_{n-2} \lambda^{n-2}-\cdots-a_{0} .
$$

With the help of the expansion with respect to the first row it is easy to verify by induction that

$$
\operatorname{det}(\lambda I-A)=\lambda^{n}-a_{n-1} \lambda^{n-1}-a_{n-2} \lambda^{n-2}-\cdots-a_{0}=p(\lambda) .
$$

1.5. Let $b_{i}, i \in \mathbb{Z}$, such that $b_{k}=b_{l}$ if $k \equiv l(\bmod n)$ be given; the matrix $\left\|a_{i j}\right\|_{1}^{n}$, where $a_{i j}=b_{i-j}$, is called a circulant matrix.

Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be distinct nth roots of unity; let

$$
f(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}
$$

Let us prove that the determinant of the circulant matrix $\left|a_{i j}\right|_{1}^{n}$ is equal to

$$
f\left(\varepsilon_{1}\right) f\left(\varepsilon_{2}\right) \ldots f\left(\varepsilon_{n}\right)
$$

It is easy to verify that for $n=3$ we have

$$
\begin{array}{r}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \varepsilon_{1} & \varepsilon_{1}^{2} \\
1 & \varepsilon_{2} & \varepsilon_{2}^{2}
\end{array}\right)\left(\begin{array}{lll}
b_{0} & b_{2} & b_{1} \\
b_{1} & b_{0} & b_{2} \\
b_{2} & b_{1} & b_{0}
\end{array}\right)\left(\begin{array}{ccc}
f(1) & f(1) & f(1) \\
f\left(\varepsilon_{1}\right) & \varepsilon_{1} f\left(\varepsilon_{1}\right) & \varepsilon_{1}^{2} f\left(\varepsilon_{1}\right) \\
f\left(\varepsilon_{2}\right) & \varepsilon_{2} f\left(\varepsilon_{2}\right) & \varepsilon_{2}^{2} f\left(\varepsilon_{2}\right)
\end{array}\right) \\
=f(1) f\left(\varepsilon_{1}\right) f\left(\varepsilon_{2}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \varepsilon_{1} & \varepsilon_{1}^{2} \\
1 & \varepsilon_{2} & \varepsilon_{2}^{2}
\end{array}\right) .
\end{array}
$$

Therefore,

$$
V\left(1, \varepsilon_{1}, \varepsilon_{2}\right)\left|a_{i j}\right|_{1}^{3}=f(1) f\left(\varepsilon_{1}\right) f\left(\varepsilon_{2}\right) V\left(1, \varepsilon_{1}, \varepsilon_{2}\right) .
$$

Taking into account that the Vandermonde determinant $V\left(1, \varepsilon_{1}, \varepsilon_{2}\right)$ does not vanish, we have:

$$
\left|a_{i j}\right|_{1}^{3}=f(1) f\left(\varepsilon_{1}\right) f\left(\varepsilon_{2}\right) .
$$

The proof of the general case is similar.
1.6. A tridiagonal matrix is a square matrix $J=\left\|a_{i j}\right\|_{1}^{n}$, where $a_{i j}=0$ for $|i-j|>1$.

Let $a_{i}=a_{i i}$ for $i=1, \ldots, n$, let $b_{i}=a_{i, i+1}$ and $c_{i}=a_{i+1, i}$ for $i=1, \ldots, n-1$. Then the tridiagonal matrix takes the form

$$
\left(\begin{array}{ccccccc}
a_{1} & b_{1} & 0 & \ldots & 0 & 0 & 0 \\
c_{1} & a_{2} & b_{2} & \ldots & 0 & 0 & 0 \\
0 & c_{2} & a_{3} & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & a_{n-2} & b_{n-2} & 0 \\
0 & 0 & 0 & \ldots & c_{n-2} & a_{n-1} & b_{n-1} \\
0 & 0 & 0 & \ldots & 0 & c_{n-1} & a_{n}
\end{array}\right)
$$

To compute the determinant of this matrix we can make use of the following recurrent relation. Let $\Delta_{0}=1$ and $\Delta_{k}=\left|a_{i j}\right|_{1}^{k}$ for $k \geq 1$.

Expanding $\left\|a_{i j}\right\|_{1}^{k}$ with respect to the k th row it is easy to verify that

$$
\Delta_{k}=a_{k} \Delta_{k-1}-b_{k-1} c_{k-1} \Delta_{k-2} \text { for } k \geq 2
$$

The recurrence relation obtained indicates, in particular, that Δ_{n} (the determinant of J) depends not on the numbers b_{i}, c_{j} themselves but on their products of the form $b_{i} c_{i}$.

The quantity

$$
\left(a_{1} \ldots a_{n}\right)=\left|\begin{array}{ccccccc}
a_{1} & 1 & 0 & \ldots & 0 & 0 & 0 \\
-1 & a_{2} & 1 & \ldots & 0 & 0 & 0 \\
0 & -1 & a_{3} & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \\
0 & 0 & 0 & \ddots & a_{n-2} & 1 & 0 \\
0 & 0 & 0 & \ddots & -1 & a_{n-1} & 1 \\
0 & 0 & 0 & \ldots & 0 & -1 & a_{n}
\end{array}\right|
$$

is associated with continued fractions, namely:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+.}}=\frac{\left(a_{1} a_{2} \ldots a_{n}\right)}{\left(a_{2} a_{3} \ldots a_{n}\right)}
$$

Let us prove this equality by induction. Clearly,

$$
a_{1}+\frac{1}{a_{2}}=\frac{\left(a_{1} a_{2}\right)}{\left(a_{2}\right)}
$$

It remains to demonstrate that

$$
a_{1}+\frac{1}{\frac{\left(a_{2} a_{3} \ldots a_{n}\right)}{\left(a_{3} a_{4} \ldots a_{n}\right)}}=\frac{\left(a_{1} a_{2} \ldots a_{n}\right)}{\left(a_{2} a_{3} \ldots a_{n}\right)}
$$

i.e., $a_{1}\left(a_{2} \ldots a_{n}\right)+\left(a_{3} \ldots a_{n}\right)=\left(a_{1} a_{2} \ldots a_{n}\right)$. But this identity is a corollary of the above recurrence relation, since $\left(a_{1} a_{2} \ldots a_{n}\right)=\left(a_{n} \ldots a_{2} a_{1}\right)$.
1.7. Under multiplication of a row of a square matrix by a number λ the determinant of the matrix is multiplied by λ. The determinant of the matrix does not vary when we replace one of the rows of the given matrix with its sum with any other row of the matrix. These statements allow a natural generalization to simultaneous transformations of several rows.

Consider the matrix $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$, where A_{11} and A_{22} are square matrices of order m and n, respectively.

Let D be a square matrix of order m and B a matrix of size $n \times m$.
Theorem. $\left|\begin{array}{cc}D A_{11} & D A_{12} \\ A_{21} & A_{22}\end{array}\right|=|D| \cdot|A|$ and $\left|\begin{array}{cc}A_{11} & A_{12} \\ A_{21}+B A_{11} & A_{22}+B A_{12} \cdot\end{array}\right|=|A|$
Proof.

$$
\begin{gathered}
\left(\begin{array}{cc}
D A_{11} & D A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
D & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \text { and } \\
\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21}+B A_{11} & A_{22}+B A_{12}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
B & I
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
\end{gathered}
$$

Problems

1.1. Let $A=\left\|a_{i j}\right\|_{1}^{n}$ be skew-symmetric, i.e., $a_{i j}=-a_{j i}$, and let n be odd. Prove that $|A|=0$.
1.2. Prove that the determinant of a skew-symmetric matrix of even order does not change if to all its elements we add the same number.
1.3. Compute the determinant of a skew-symmetric matrix A_{n} of order $2 n$ with each element above the main diagonal being equal to 1 .
1.4. Prove that for $n \geq 3$ the terms in the expansion of a determinant of order n cannot be all positive.
1.5. Let $a_{i j}=a^{|i-j|}$. Compute $\left|a_{i j}\right|_{1}^{n}$.
1.6. Let $\Delta_{3}=\left|\begin{array}{cccc}1 & -1 & 0 & 0 \\ x & h & -1 & 0 \\ x^{2} & h x & h & -1 \\ x^{3} & h x^{2} & h x & h\end{array}\right|$ and define Δ_{n} accordingly. Prove that $\Delta_{n}=(x+h)^{n}$.
1.7. Compute $\left|c_{i j}\right|_{1}^{n}$, where $c_{i j}=a_{i} b_{j}$ for $i \neq j$ and $c_{i i}=x_{i}$.
1.8. Let $a_{i, i+1}=c_{i}$ for $i=1, \ldots, n$, the other matrix elements being zero. Prove that the determinant of the matrix $I+A+A^{2}+\cdots+A^{n-1}$ is equal to $(1-c)^{n-1}$, where $c=c_{1} \ldots c_{n}$.
1.9. Compute $\left|a_{i j}\right|_{1}^{n}$, where $a_{i j}=\left(1-x_{i} y_{j}\right)^{-1}$.
1.10. Let $a_{i j}=\binom{n+i}{j}$. Prove that $\left|a_{i j}\right|_{0}^{m}=1$.
1.11. Prove that for any real numbers a, b, c, d, e and f

$$
\left|\begin{array}{lll}
(a+b) d e-(d+e) a b & a b-d e & a+b-d-e \\
(b+c) e f-(e+f) b c & b c-e f & b+c-e-f \\
(c+d) f a-(f+a) c d & c d-f a & c+d-f-a
\end{array}\right|=0 .
$$

Vandermonde's determinant.
1.12. Compute

$$
\left|\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{1}^{n-2} & \left(x_{2}+x_{3}+\cdots+x_{n}\right)^{n-1} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n-2} & \left(x_{1}+x_{2}+\cdots+x_{n-1}\right)^{n-1}
\end{array}\right| .
$$

1.13. Compute

$$
\left|\begin{array}{ccccc}
1 & x_{1} & \ldots & x_{1}^{n-2} & x_{2} x_{3} \ldots x_{n} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n-2} & x_{1} x_{2} \ldots x_{n-1}
\end{array}\right|
$$

1.14. Compute $\left|a_{i k}\right|_{0}^{n}$, where $a_{i k}=\lambda_{i}^{n-k}\left(1+\lambda_{i}^{2}\right)^{k}$.
1.15. Let $V=\left\|a_{i j}\right\|_{0}^{n}$, where $a_{i j}=x_{i}^{j-1}$, be a Vandermonde matrix; let V_{k} be the matrix obtained from V by deleting its $(k+1)$ st column (which consists of the k th powers) and adding instead the nth column consisting of the nth powers. Prove that

$$
\operatorname{det} V_{k}=\sigma_{n-k}\left(x_{1}, \ldots, x_{n}\right) \operatorname{det} V
$$

1.16. Let $a_{i j}=\binom{i n}{j}$. Prove that $\left|a_{i j}\right|_{1}^{r}=n^{r(r+1) / 2}$ for $r \leq n$.
1.17. Given $k_{1}, \ldots, k_{n} \in \mathbb{Z}$, compute $\left|a_{i j}\right|_{1}^{n}$, where

$$
a_{i, j}=\left\{\begin{aligned}
\frac{1}{\left(k_{i}+j-i\right)!} & \text { for } k_{i}+j-i \geq 0 \\
a_{i j}=0 & \text { for } k_{i}+j-i<0
\end{aligned}\right.
$$

1.18. Let $s_{k}=p_{1} x_{1}^{k}+\cdots+p_{n} x_{n}^{k}$, and $a_{i, j}=s_{i+j}$. Prove that

$$
\left|a_{i j}\right|_{0}^{n-1}=p_{1} \ldots p_{n} \prod_{i>j}\left(x_{i}-x_{j}\right)^{2}
$$

1.19. Let $s_{k}=x_{1}^{k}+\cdots+x_{n}^{k}$. Compute

$$
\left|\begin{array}{ccccc}
s_{0} & s_{1} & \ldots & s_{n-1} & 1 \\
s_{1} & s_{2} & \ldots & s_{n} & y \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
s_{n} & s_{n+1} & \ldots & s_{2 n-1} & y^{n}
\end{array}\right|
$$

1.20. Let $a_{i j}=\left(x_{i}+y_{j}\right)^{n}$. Prove that

$$
\left|a_{i j}\right|_{0}^{n}=\binom{n}{1} \ldots\binom{n}{n} \cdot \prod_{i>k}\left(x_{i}-x_{k}\right)\left(y_{k}-y_{i}\right)
$$

1.21. Find all solutions of the system

$$
\left\{\begin{array}{l}
\lambda_{1}+\cdots+\lambda_{n}=0 \\
\cdots \cdots \cdots \\
\lambda_{1}^{n}+\cdots+\lambda_{n}^{n}=0
\end{array}\right.
$$

in \mathbb{C}.
1.22. Let $\sigma_{k}\left(x_{0}, \ldots, x_{n}\right)$ be the k th elementary symmetric function. Set: $\sigma_{0}=1$, $\sigma_{k}\left(\widehat{x}_{i}\right)=\sigma_{k}\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$. Prove that if $a_{i j}=\sigma_{i}\left(\widehat{x}_{j}\right)$ then $\left|a_{i j}\right|_{0}^{n}=$ $\prod_{i<j}\left(x_{i}-x_{j}\right)$.

Relations among determinants.
1.23. Let $b_{i j}=(-1)^{i+j} a_{i j}$. Prove that $\left|a_{i j}\right|_{1}^{n}=\left|b_{i j}\right|_{1}^{n}$.
1.24. Prove that

$$
\left|\begin{array}{llll}
a_{1} c_{1} & a_{2} d_{1} & a_{1} c_{2} & a_{2} d_{2} \\
a_{3} c_{1} & a_{4} d_{1} & a_{3} c_{2} & a_{4} d_{2} \\
b_{1} c_{3} & b_{2} d_{3} & b_{1} c_{4} & b_{2} d_{4} \\
b_{3} c_{3} & b_{4} d_{3} & b_{3} c_{4} & b_{4} d_{4}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right| \cdot\left|\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right| \cdot\left|\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right| \cdot\left|\begin{array}{ll}
d_{1} & d_{2} \\
d_{3} & d_{4}
\end{array}\right|
$$

1.25. Prove that
$\left|\begin{array}{cccccc}a_{1} & 0 & 0 & b_{1} & 0 & 0 \\ 0 & a_{2} & 0 & 0 & b_{2} & 0 \\ 0 & 0 & a_{3} & 0 & 0 & b_{3} \\ b_{11} & b_{12} & b_{13} & a_{11} & a_{12} & a_{13} \\ b_{21} & b_{22} & b_{23} & a_{21} & a_{22} & a_{23} \\ b_{31} & b_{32} & b_{33} & a_{31} & a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{ccc}a_{1} a_{11}-b_{1} b_{11} & a_{2} a_{12}-b_{2} b_{12} & a_{3} a_{13}-b_{3} b_{13} \\ a_{1} a_{21}-b_{1} b_{21} & a_{2} a_{22}-b_{2} b_{22} & a_{3} a_{23}-b_{3} b_{23} \\ a_{1} a_{31}-b_{1} b_{31} & a_{2} a_{32}-b_{2} b_{32} & a_{3} a_{33}-b_{3} b_{33}\end{array}\right|$.
1.26. Let $s_{k}=\sum_{i=1}^{n} a_{k i}$. Prove that

$$
\left|\begin{array}{ccc}
s_{1}-a_{11} & \ldots & s_{1}-a_{1 n} \\
\vdots & \ldots & \vdots \\
s_{n}-a_{n 1} & \ldots & s_{n}-a_{n n}
\end{array}\right|=(-1)^{n-1}(n-1)\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ldots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|
$$

1.27. Prove that
1.28. Let $\Delta_{n}(k)=\left|a_{i j}\right|_{0}^{n}$, where $a_{i j}=\binom{k+i}{2 j}$. Prove that

$$
\Delta_{n}(k)=\frac{k(k+1) \ldots(k+n-1)}{1 \cdot 3 \ldots(2 n-1)} \Delta_{n-1}(k-1)
$$

1.29. Let $D_{n}=\left|a_{i j}\right|_{0}^{n}$, where $a_{i j}=\binom{n+i}{2 j-1}$. Prove that $D_{n}=2^{n(n+1) / 2}$.
1.30. Given numbers $a_{0}, a_{1}, \ldots, a_{2 n}$, let $b_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} a_{i} \quad(k=0, \ldots, 2 n)$; let $a_{i j}=a_{i+j}$, and $b_{i j}=b_{i+j}$. Prove that $\left|a_{i j}\right|_{0}^{n}=\left|b_{i j}\right|_{0}^{n}$.
1.31. Let $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ and $B=\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$, where A_{11} and B_{11}, and also A_{22} and B_{22}, are square matrices of the same size such that $\operatorname{rank} A_{11}=\operatorname{rank} A$ and $\operatorname{rank} B_{11}=\operatorname{rank} B$. Prove that

$$
\left|\begin{array}{ll}
A_{11} & B_{12} \\
A_{21} & B_{22}
\end{array}\right| \cdot\left|\begin{array}{ll}
A_{11} & A_{12} \\
B_{21} & B_{22}
\end{array}\right|=|A+B| \cdot\left|A_{11}\right| \cdot\left|B_{22}\right|
$$

1.32. Let A and B be square matrices of order n. Prove that $|A| \cdot|B|=$ $\sum_{k=1}^{n}\left|A_{k}\right| \cdot\left|B_{k}\right|$, where the matrices A_{k} and B_{k} are obtained from A and B, respectively, by interchanging the respective first and k th columns, i.e., the first column of A is replaced with the k th column of B and the k th column of B is replaced with the first column of A.

2. Minors and cofactors

2.1. There are many instances when it is convenient to consider the determinant of the matrix whose elements stand at the intersection of certain p rows and p columns of a given matrix A. Such a determinant is called a pth order minor of A. For convenience we introduce the following notation:

$$
\left.A\left(\begin{array}{c}
i_{1} \\
k_{1}
\end{array} \ldots i_{p}\right)=\left\lvert\, \begin{array}{cccc}
a_{i_{1} k_{1}} & a_{i_{1} k_{2}} & \ldots & a_{i_{1} k_{p}} \\
k_{1} & \ldots & k_{p}
\end{array}\right.\right)=\left\lvert\, \begin{gathered}
\\
\vdots \\
a_{i_{p} k_{1}} \\
a_{i_{p} k_{2}} \\
\ldots
\end{gathered}\right.
$$

If $i_{1}=k_{1}, \ldots, i_{p}=k_{p}$, the minor is called a principal one.
2.2. A nonzero minor of the maximal order is called a basic minor and its order is called the rank of the matrix.

Theorem. If $A\binom{i_{1} \ldots i_{p}}{k_{1} \ldots k_{p}}$ is a basic minor of a matrix A, then the rows of A are linear combinations of rows numbered i_{1}, \ldots, i_{p} and these rows are linearly independent.

Proof. The linear independence of the rows numbered i_{1}, \ldots, i_{p} is obvious since the determinant of a matrix with linearly dependent rows vanishes.

The cases when the size of A is $m \times p$ or $p \times m$ are also clear.
It suffices to carry out the proof for the minor $A\binom{1 \ldots p}{1 \ldots p}$. The determinant

$$
\left|\begin{array}{cccc}
a_{11} & \ldots & a_{1 p} & a_{1 j} \\
\vdots & \ldots & \vdots & \vdots \\
a_{p 1} & \ldots & a_{p p} & a_{p j} \\
a_{i 1} & \ldots & a_{i p} & a_{i j}
\end{array}\right|
$$

vanishes for $j \leq p$ as well as for $j>p$. Its expansion with respect to the last column is a relation of the form

$$
a_{1 j} c_{1}+a_{2 j} c_{2}+\cdots+a_{p j} c_{p}+a_{i j} c=0
$$

where the numbers c_{1}, \ldots, c_{p}, c do not depend on j (but depend on i) and $c=$ $A\binom{1 \ldots p}{1 \ldots p} \neq 0$. Hence, the i th row is equal to the linear combination of the first p rows with the coefficients $\frac{-c_{1}}{c}, \ldots, \frac{-c_{p}}{c}$, respectively.
2.2.1. Corollary. If $A\binom{i_{1} \ldots i_{p}}{k_{1} \ldots k_{p}}$ is a basic minor then all rows of A belong to the linear space spanned by the rows numbered i_{1}, \ldots, i_{p}; therefore, the rank of A is equal to the maximal number of its linearly independent rows.
2.2.2. Corollary. The rank of a matrix is also equal to the maximal number of its linearly independent columns.
2.3. Theorem (The Binet-Cauchy formula). Let A and B be matrices of size $n \times m$ and $m \times n$, respectively, and $n \leq m$. Then

$$
\operatorname{det} A B=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq m} A_{k_{1} \ldots k_{n}} B^{k_{1} \ldots k_{n}}
$$

where $A_{k_{1} \ldots k_{n}}$ is the minor obtained from the columns of A whose numbers are k_{1}, \ldots, k_{n} and $B^{k_{1} \ldots k_{n}}$ is the minor obtained from the rows of B whose numbers are k_{1}, \ldots, k_{n}.

Proof. Let $C=A B, c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k i}$. Then

$$
\begin{aligned}
\operatorname{det} C & =\sum_{\sigma}(-1)^{\sigma} \sum_{k_{1}} a_{1 k_{1}} b_{k_{1} \sigma(1)} \ldots \sum_{k_{n}} b_{k_{n} \sigma(n)} \\
& =\sum_{k_{1}, \ldots, k_{n}=1}^{m} a_{1 k_{1}} \ldots a_{n k_{n}} \sum_{\sigma}(-1)^{\sigma} b_{k_{1} \sigma(1)} \ldots b_{k_{n} \sigma(n)} \\
& =\sum_{k_{1}, \ldots, k_{n}=1}^{m} a_{1 k_{1}} \ldots a_{n k_{n}} B^{k_{1} \ldots k_{n}} .
\end{aligned}
$$

The minor $B^{k_{1} \ldots k_{n}}$ is nonzero only if the numbers k_{1}, \ldots, k_{n} are distinct; therefore, the summation can be performed over distinct numbers k_{1}, \ldots, k_{n}. Since $B^{\tau\left(k_{1}\right) \ldots \tau\left(k_{n}\right)}=(-1)^{\tau} B^{k_{1} \ldots k_{n}}$ for any permutation τ of the numbers k_{1}, \ldots, k_{n}, then

$$
\begin{aligned}
\sum_{k_{1}, \ldots, k_{n}=1}^{m} a_{1 k_{1}} \ldots a_{n k_{n}} B^{k_{1} \ldots k_{n}} & =\sum_{k_{1}<k_{2}<\cdots<k_{n}}(-1)^{\tau} a_{1 \tau(1)} \ldots a_{n \tau(n)} B^{k_{1} \ldots k_{n}} \\
& =\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq m} A_{k_{1} \ldots k_{n}} B^{k_{1} \ldots k_{n}} .
\end{aligned}
$$

Remark. Another proof is given in the solution of Problem 28.7
2.4. Recall the formula for expansion of the determinant of a matrix with respect to its i th row:

$$
\begin{equation*}
\left|a_{i j}\right|_{1}^{n}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}, \tag{1}
\end{equation*}
$$

where $M_{i j}$ is the determinant of the matrix obtained from the matrix $A=\left\|a_{i j}\right\|_{1}^{n}$ by deleting its i th row and j th column. The number $A_{i j}=(-1)^{i+j} M_{i j}$ is called the cofactor of the element $a_{i j}$ in A.

It is possible to expand a determinant not only with respect to one row, but also with respect to several rows simultaneously.

Fix rows numbered i_{1}, \ldots, i_{p}, where $i_{1}<i_{2}<\cdots<i_{p}$. In the expansion of the determinant of A there occur products of terms of the expansion of the minor $A\left(\begin{array}{lll}i_{1} & \ldots i_{p} \\ j_{1} & \ldots j_{p}\end{array}\right)$ by terms of the expansion of the minor $A\binom{i_{p+1} \ldots i_{n}}{j_{p+1} \ldots j_{n}}$, where $j_{1}<\cdots<$ $j_{p} ; i_{p+1}<\cdots<i_{n} ; j_{p+1}<\cdots<j_{n}$ and there are no other terms in the expansion of the determinant of A.

To compute the signs of these products let us shuffle the rows and the columns so as to place the minor $A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}$ in the upper left corner. To this end we have to perform

$$
\left(i_{1}-1\right)+\cdots+\left(i_{p}-p\right)+\left(j_{1}-1\right)+\cdots+\left(j_{p}-p\right) \equiv i+j \quad(\bmod 2)
$$

permutations, where $i=i_{1}+\cdots+i_{p}, j=j_{1}+\cdots+j_{p}$.
The number $(-1)^{i+j} A\binom{i_{p+1} \ldots i_{n}}{j_{p+1} \ldots j_{n}}$ is called the cofactor of the minor $A\binom{i_{1} \ldots i_{p}}{j_{1} \ldots j_{p}}$.
We have proved the following statement:
2.4.1. Theorem (Laplace). Fix p rows of the matrix A. Then the sum of products of the minors of order p that belong to these rows by their cofactors is equal to the determinant of A.

The matrix adj $A=\left(A_{i j}\right)^{T}$ is called the (classical) adjoint ${ }^{1}$ of A. Let us prove that $A \cdot(\operatorname{adj} A)=|A| \cdot I$. To this end let us verify that $\sum_{j=1}^{n} a_{i j} A_{k j}=\delta_{k i}|A|$.

For $k=i$ this formula coincides with (1). If $k \neq i$, replace the k th row of A with the i th one. The determinant of the resulting matrix vanishes; its expansion with respect to the k th row results in the desired identity:

$$
0=\sum_{j=1}^{n} a_{k j}^{\prime} A_{k j}=\sum_{j=1}^{n} a_{i j} A_{k j} .
$$

[^0]If A is invertible then $A^{-1}=\frac{\operatorname{adj} A}{|A|}$.
2.4.2. Theorem. The operation adj has the following properties:
a) $\operatorname{adj} A B=\operatorname{adj} B \cdot \operatorname{adj} A$;
b) $\operatorname{adj} X A X^{-1}=X(\operatorname{adj} A) X^{-1}$;
c) if $A B=B A$ then $(\operatorname{adj} A) B=B(\operatorname{adj} A)$.

Proof. If A and B are invertible matrices, then $(A B)^{-1}=B^{-1} A^{-1}$. Since for an invertible matrix A we have adj $A=A^{-1}|A|$, headings a) and b) are obvious. Let us consider heading c).

If $A B=B A$ and A is invertible, then

$$
A^{-1} B=A^{-1}(B A) A^{-1}=A^{-1}(A B) A^{-1}=B A^{-1}
$$

Therefore, for invertible matrices the theorem is obvious.
In each of the equations a) - c) both sides continuously depend on the elements of A and B. Any matrix A can be approximated by matrices of the form $A_{\varepsilon}=A+\varepsilon I$ which are invertible for sufficiently small nonzero ε. (Actually, if a_{1}, \ldots, a_{r} is the whole set of eigenvalues of A, then A_{ε} is invertible for all $\varepsilon \neq-a_{i}$.) Besides, if $A B=B A$, then $A_{\varepsilon} B=B A_{\varepsilon}$.
2.5. The relations between the minors of a matrix A and the complementary to them minors of the matrix $(\operatorname{adj} A)^{T}$ are rather simple.
2.5.1. Theorem. Let $A=\left\|a_{i j}\right\|_{1}^{n},(\operatorname{adj} A)^{T}=\left|A_{i j}\right|_{1}^{n}, 1 \leq p<n$. Then

$$
\left|\begin{array}{ccc}
A_{11} & \ldots & A_{1 p} \\
\vdots & \ldots & \vdots \\
A_{p 1} & \ldots & A_{p p}
\end{array}\right|=|A|^{p-1}\left|\begin{array}{ccc}
a_{p+1, p+1} & \ldots & a_{p+1, n} \\
\vdots & \ldots & \vdots \\
a_{n, p+1} & \ldots & a_{n n}
\end{array}\right| .
$$

Proof. For $p=1$ the statement coincides with the definition of the cofactor A_{11}. Let $p>1$. Then the identity

$$
\begin{aligned}
\left(\begin{array}{cccccc}
A_{11} & \ldots & A_{1 p} & A_{1, p+1} & \ldots & A_{1 n} \\
\vdots & \ldots & \vdots & \vdots & \ldots & \vdots \\
A_{p 1} & \ldots & A_{p p} & A_{p, p+1} & \ldots & A_{p n} \\
& 0 & & & I &
\end{array}\right) & \left(\begin{array}{ccc}
a_{11} & \ldots & a_{n 1} \\
\vdots & \ldots & \vdots \\
a_{1 n} & \ldots & a_{n n}
\end{array}\right) \\
& =\left|\begin{array}{ccccc}
|A| & & 0 & \\
0 & \ldots & |A| & \\
a_{1, p+1} & \ldots & \ldots & a_{n, p+1} \\
\vdots & \ldots & \ldots & \vdots \\
a_{1 n} & \ldots & \ldots & a_{n n}
\end{array}\right| .
\end{aligned}
$$

implies that

$$
\left|\begin{array}{ccc}
A_{11} & \ldots & A_{1 p} \\
\vdots & \ldots & \vdots \\
A_{p 1} & \ldots & A_{p p}
\end{array}\right| \cdot|A|=|A|^{p} .\left|\begin{array}{ccc}
a_{p+1, p+1} & \ldots & a_{p+1, n} \\
\vdots & \ldots & \vdots \\
a_{n, p+1} & \ldots & a_{n n}
\end{array}\right|
$$

If $|A| \neq 0$, then dividing by $|A|$ we get the desired conclusion. For $|A|=0$ the statement follows from the continuity of the both parts of the desired identity with respect to $a_{i j}$.

Corollary. If A is not invertible then $\operatorname{rank}(\operatorname{adj} A) \leq 1$.
Proof. For $p=2$ we get

$$
\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=|A| \cdot\left|\begin{array}{ccc}
a_{33} & \ldots & a_{3 n} \\
\vdots & \ldots & \vdots \\
a_{n 3} & \ldots & a_{n n}
\end{array}\right|=0
$$

Besides, the transposition of any two rows of the matrix A induces the same transposition of the columns of the adjoint matrix and all elements of the adjoint matrix change sign (look what happens with the determinant of A and with the matrix A^{-1} for an invertible A under such a transposition).

Application of transpositions of rows and columns makes it possible for us to formulate Theorem 2.5.1 in the following more general form.
2.5.2. Theorem (Jacobi). Let $A=\left\|a_{i j}\right\|_{1}^{n},(\operatorname{adj} A)^{T}=\left\|A_{i j}\right\|_{1}^{n}, 1 \leq p<n$, $\sigma=\left(\begin{array}{lll}i_{1} & \ldots & i_{n} \\ j_{1} & \ldots & j_{n}\end{array}\right)$ an arbitrary permutation. Then

$$
\left|\begin{array}{ccc}
A_{i_{1} j_{1}} & \ldots & A_{i_{1} j_{p}} \\
\vdots & \ldots & \vdots \\
A_{i_{p} j_{1}} & \ldots & A_{i_{p} j_{p}}
\end{array}\right|=(-1)^{\sigma}\left|\begin{array}{ccc}
a_{i_{p+1}, j_{p+1}} & \ldots & a_{i_{p+1}, j_{n}} \\
\vdots & \ldots & \vdots \\
a_{i_{n}, j_{p+1}} & \ldots & a_{i_{n}, j_{n}}
\end{array}\right| \cdot|A|^{p-1} .
$$

Proof. Let us consider matrix $B=\left\|b_{k l}\right\|_{1}^{n}$, where $b_{k l}=a_{i_{k} j_{l}}$. It is clear that $|B|=(-1)^{\sigma}|A|$. Since a transposition of any two rows (resp. columns) of A induces the same transposition of the columns (resp. rows) of the adjoint matrix and all elements of the adjoint matrix change their sings, $B_{k l}=(-1)^{\sigma} A_{i_{k} j_{l}}$.

Applying Theorem 2.5.1 to matrix B we get

$$
\left|\begin{array}{ccc}
(-1)^{\sigma} A_{i_{1} j_{1}} & \ldots & (-1)^{\sigma} A_{i_{1} j_{p}} \\
\vdots & \ldots & \vdots \\
(-1)^{\sigma} A_{i_{p} j_{1}} & \ldots & (-1)^{\sigma} A_{i_{p} j_{p}}
\end{array}\right|=\left((-1)^{\sigma}\right)^{p-1}\left|\begin{array}{ccc}
a_{i_{p+1}, j_{p+1}} & \ldots & a_{i_{p+1}, j_{n}} \\
\vdots & \ldots & \vdots \\
a_{i_{n}, j_{p+1}} & \ldots & a_{i_{n}, j_{n}}
\end{array}\right|
$$

By dividing the both parts of this equality by $\left((-1)^{\sigma}\right)^{p}$ we obtain the desired.
2.6. In addition to the adjoint matrix of A it is sometimes convenient to consider the compound matrix $\left\|M_{i j}\right\|_{1}^{n}$ consisting of the $(n-1)$ st order minors of A. The determinant of the adjoint matrix is equal to the determinant of the compound one (see, e.g., Problem 1.23).

For a matrix A of size $m \times n$ we can also consider a matrix whose elements are r th order minors $A\left(\begin{array}{lll}i_{1} & \ldots & i_{r} \\ j_{1} & \ldots & j_{r}\end{array}\right)$, where $r \leq \min (m, n)$. The resulting matrix
$C_{r}(A)$ is called the r th compound matrix of A. For example, if $m=n=3$ and $r=2$, then

$$
C_{2}(A)=\left(\begin{array}{ccc}
A\binom{12}{12} & A\binom{12}{13} & A\binom{12}{23} \\
A\binom{13}{12} & A\binom{13}{13} & A\binom{13}{23} \\
A\binom{23}{12} & A\binom{23}{13} & A\binom{23}{23}
\end{array}\right) .
$$

Making use of Binet-Cauchy's formula we can show that $C_{r}(A B)=C_{r}(A) C_{r}(B)$. For a square matrix A of order n we have the Sylvester identity

$$
\operatorname{det} C_{r}(A)=(\operatorname{det} A)^{p}, \text { where } p=\binom{n-1}{r-1} .
$$

The simplest proof of this statement makes use of the notion of exterior power (see Theorem 28.5.3).
2.7. Let $1 \leq m \leq r<n, A=\left\|a_{i j}\right\|_{1}^{n}$. Set $A_{n}=\left|a_{i j}\right|_{1}^{n}, A_{m}=\left|a_{i j}\right|_{1}^{m}$. Consider the matrix $S_{m, n}^{r}$ whose elements are the r th order minors of A containing the left upper corner principal minor A_{m}. The determinant of $S_{m, n}^{r}$ is a minor of order $\binom{n-m}{r-m}$ of $C_{r}(A)$. The determinant of $S_{m, n}^{r}$ can be expressed in terms of A_{m} and A_{n}.

Theorem (Generalized Sylvester's identity, [Mohr, 1953]).

$$
\begin{equation*}
\left|S_{m, n}^{r}\right|=A_{m}^{p} A_{n}^{q}, \text { where } p=\binom{n-m-1}{r-m}, q=\binom{n-m-1}{r-m-1} \text {. } \tag{1}
\end{equation*}
$$

Proof. Let us prove identity (1) by induction on n. For $n=2$ it is obvious.
The matrix $S_{0, n}^{r}$ coincides with $C_{r}(A)$ and since $\left|C_{r}(A)\right|=A_{n}^{q}$, where $q=\binom{n-1}{r-1}$ (see Theorem 28.5.3), then (1) holds for $m=0$ (we assume that $A_{0}=1$). Both sides of (1) are continuous with respect to $a_{i j}$ and, therefore, it suffices to prove the inductive step when $a_{11} \neq 0$.

All minors considered contain the first row and, therefore, from the rows whose numbers are $2, \ldots, n$ we can subtract the first row multiplied by an arbitrary factor; this operation does not affect $\operatorname{det}\left(S_{m, n}^{r}\right)$. With the help of this operation all elements of the first column of A except a_{11} can be made equal to zero. Let \bar{A} be the matrix obtained from the new one by strikinging out the first column and the first row, and let $\bar{S}_{m-1, n-1}^{r-1}$ be the matrix composed of the minors of order $r-1$ of \bar{A} containing its left upper corner principal minor of order $m-1$.

Obviously, $S_{m, n}^{r}=a_{11} \bar{S}_{m-1, n-1}^{r-1}$ and we can apply to $\bar{S}_{m-1, n-1}^{r-1}$ the inductive hypothesis (the case $m-1=0$ was considered separately). Besides, if \bar{A}_{m-1} and \bar{A}_{n-1} are the left upper corner principal minors of orders $m-1$ and $n-1$ of A, respectively, then $A_{m}=a_{11} \bar{A}_{m-1}$ and $A_{n}=a_{11} \bar{A}_{n-1}$. Therefore,

$$
\left|S_{m, n}^{r}\right|=a_{11}^{t} \bar{A}_{m-1}^{p_{1}} \bar{A}_{n-1}^{q_{1}}=a_{11}^{t-p_{1}-q_{1}} A_{m}^{p_{1}} A_{n}^{q_{1}},
$$

where $t=\binom{n-m}{r-m}, p_{1}=\binom{n-m-1}{r-m}=p$ and $q_{1}=\binom{n-m-1}{r-m-1}=q$. Taking into account that $t=p+q$, we get the desired conclusion.

Remark. Sometimes the term "Sylvester's identity" is applied to identity (1) not only for $m=0$ but also for $r=m+1$, i.e., $\left|S_{m, n}^{m+1}\right|=A_{m}^{n-m} A_{n}$
2.8 Theorem (Chebotarev). Let p be a prime and $\varepsilon=\exp (2 \pi i / p)$. Then all minors of the Vandermonde matrix $\left\|a_{i j}\right\|_{0}^{p-1}$, where $a_{i j}=\varepsilon^{i j}$, are nonzero.

Proof (Following [Reshetnyak, 1955]). Suppose that

$$
\left|\begin{array}{ccc}
\varepsilon^{k_{1} l_{1}} & \ldots & \varepsilon^{k_{1} l_{j}} \\
\varepsilon^{k_{2} l_{1}} & \ldots & \varepsilon^{k_{2} l_{j}} \\
\vdots & \ldots & \vdots \\
\varepsilon^{k_{j} l_{1}} & \ldots & \varepsilon^{k_{j} l_{j}}
\end{array}\right|=0
$$

Then there exist complex numbers c_{1}, \ldots, c_{j} not all equal to 0 such that the linear combination of the corresponding columns with coefficients c_{1}, \ldots, c_{j} vanishes, i.e., the numbers $\varepsilon^{k_{1}}, \ldots, \varepsilon^{k_{j}}$ are roots of the polynomial $c_{1} x^{l_{1}}+\cdots+c_{j} x^{l_{j}}$. Let

$$
\begin{equation*}
\left(x-\varepsilon^{k_{1}}\right) \ldots\left(x-\varepsilon^{k_{j}}\right)=x^{j}-b_{1} x^{j-1}+\cdots \pm b_{j} . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
c_{1} x^{l_{1}}+\cdots+c_{j} x^{l_{j}}=\left(b_{0} x^{j}-b_{1} x^{j-1}+\cdots \pm b_{j}\right)\left(a_{s} x^{s}+\cdots+a_{0}\right), \tag{2}
\end{equation*}
$$

where $b_{0}=1$ and $a_{s} \neq 0$. For convenience let us assume that $b_{t}=0$ for $t>j$ and $t<0$. The coefficient of x^{j+s-t} in the right-hand side of (2) is equal to $\pm\left(a_{s} b_{t}-a_{s-1} b_{t-1}+\cdots \pm a_{0} b_{t-s}\right)$. The degree of the polynomial (2) is equal to $s+j$ and it is only the coefficients of the monomials of degrees l_{1}, \ldots, l_{j} that may be nonzero and, therefore, there are $s+1$ zero coefficients:

$$
a_{s} b_{t}-a_{s-1} b_{t-1}+\cdots \pm a_{0} b_{t-s}=0 \text { for } t=t_{0}, t_{1}, \ldots, t_{s}
$$

The numbers $a_{0}, \ldots, a_{s-1}, a_{s}$ are not all zero and therefore, $\left|c_{k l}\right|_{0}^{s}=0$ for $c_{k l}=b_{t}$, where $t=t_{k}-l$.

Formula (1) shows that b_{t} can be represented in the form $f_{t}(\varepsilon)$, where f_{t} is a polynomial with integer coefficients and this polynomial is the sum of $\binom{j}{t}$ powers of ε; hence, $f_{t}(1)=\binom{j}{t}$. Since $c_{k l}=b_{t}=f_{t}(\varepsilon)$, then $\left|c_{k l}\right|_{0}^{s}=g(\varepsilon)$ and $g(1)=\left|c_{k l}^{\prime}\right|_{0}^{s}$, where $c_{k l}^{\prime}=\binom{{ }^{j}}{t_{k}-l}$. The polynomial $q(x)=x^{p-1}+\cdots+x+1$ is irreducible over \mathbb{Z} (see Appendix 2) and $q(\varepsilon)=0$. Therefore, $g(x)=q(x) \varphi(x)$, where φ is a polynomial with integer coefficients (see Appendix 1). Therefore, $g(1)=q(1) \varphi(1)=p \varphi(1)$, i.e., $g(1)$ is divisible by p.

To get a contradiction it suffices to show that the number $g(1)=\left|c_{k l}^{\prime}\right|_{0}^{s}$, where $c_{k l}^{\prime}=\binom{j}{t_{k}-l}, 0 \leq t_{k} \leq j+s$ and $0<j+s \leq p-1$, is not divisible by p. It is easy to verify that $\Delta=\left|c_{k l}^{\prime}\right|_{0}^{s}=\left|a_{k l}\right|_{0}^{s}$, where $a_{k l}=\binom{j+l}{t_{k}}$ (see Problem 1.27). It is also clear that

$$
\binom{j+l}{t}=\left(1-\frac{t}{j+l+1}\right) \ldots\left(1-\frac{t}{j+s}\right)\binom{j+s}{t}=\varphi_{s-l}(t)\binom{j+s}{t} .
$$

Hence,
$\Delta=\prod_{\lambda=0}^{s}\binom{j+s}{t_{\lambda}}\left|\begin{array}{cccc}\varphi_{s}\left(t_{0}\right) & \varphi_{s-1}\left(t_{0}\right) & \ldots & 1 \\ \varphi_{s}\left(t_{1}\right) & \varphi_{s-1}\left(t_{1}\right) & \ldots & 1 \\ \vdots & \vdots & \ldots & \vdots \\ \varphi_{s}\left(t_{s}\right) & \varphi_{s-1}\left(t_{s}\right) & \ldots & 1\end{array}\right|= \pm \prod_{\lambda=0}^{s}\left(\binom{j+s}{t_{\lambda}} A_{\lambda}\right) \prod_{\mu>\nu}\left(t_{\mu}-t_{\nu}\right)$,
where $A_{0}, A_{1}, \ldots, A_{s}$ are the coefficients of the highest powers of t in the polynomials $\varphi_{0}(t), \varphi_{1}(t), \ldots, \varphi_{s}(t)$, respectively, where $\varphi_{0}(t)=1$; the degree of $\varphi_{i}(t)$ is equal to i. Clearly, the product obtained has no irreducible fractions with numerators divisible by p, because $j+s<p$.

Problems

2.1. Let A_{n} be a matrix of size $n \times n$. Prove that $|A+\lambda I|=\lambda^{n}+\sum_{k=1}^{n} S_{k} \lambda^{n-k}$, where S_{k} is the sum of all $\binom{n}{k}$ principal k th order minors of A.
2.2. Prove that

$$
\left|\begin{array}{cccc}
a_{11} & \ldots & a_{1 n} & x_{1} \\
\vdots & \ldots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n} & x_{n} \\
y_{1} & \ldots & y_{n} & 0
\end{array}\right|=-\sum_{i, j} x_{i} y_{j} A_{i j},
$$

where $A_{i j}$ is the cofactor of $a_{i j}$ in $\left\|a_{i j}\right\|_{1}^{n}$.
2.3. Prove that the sum of principal k-minors of $A^{T} A$ is equal to the sum of squares of all k-minors of A.
2.4. Prove that

$$
\left|\begin{array}{ccc}
u_{1} a_{11} & \ldots & u_{n} a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & \ldots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|+\cdots+\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & \ldots & \vdots \\
u_{1} a_{n 1} & \ldots & u_{n} a_{n n}
\end{array}\right|=\left(u_{1}+\cdots+u_{n}\right)|A|
$$

Inverse and adjoint matrices

2.5 . Let A and B be square matrices of order n. Compute

$$
\left(\begin{array}{ccc}
I & A & C \\
0 & I & B \\
0 & 0 & I
\end{array}\right)^{-1} .
$$

2.6. Prove that the matrix inverse to an invertible upper triangular matrix is also an upper triangular one.
2.7. Give an example of a matrix of order n whose adjoint has only one nonzero element and this element is situated in the i th row and j th column for given i and j.
2.8. Let x and y be columns of length n. Prove that

$$
\operatorname{adj}\left(I-x y^{T}\right)=x y^{T}+\left(1-y^{T} x\right) I .
$$

2.9. Let A be a skew-symmetric matrix of order n. Prove that adj A is a symmetric matrix for odd n and a skew-symmetric one for even n.
2.10. Let A_{n} be a skew-symmetric matrix of order n with elements +1 above the main diagonal. Calculate adj A_{n}.
2.11. The matrix $\operatorname{adj}(A-\lambda I)$ can be expressed in the form $\sum_{k=0}^{n-1} \lambda^{k} A_{k}$, where n is the order of A. Prove that:
a) for any $k(1 \leq k \leq n-1)$ the matrix $A_{k} A-A_{k-1}$ is a scalar matrix;
b) the matrix A_{n-s} can be expressed as a polynomial of degree $s-1$ in A.
2.12. Find all matrices A with nonnegative elements such that all elements of A^{-1} are also nonnegative.
2.13. Let $\varepsilon=\exp (2 \pi i / n) ; A=\left\|a_{i j}\right\|_{1}^{n}$, where $a_{i j}=\varepsilon^{i j}$. Calculate the matrix A^{-1}.
2.14. Calculate the matrix inverse to the Vandermonde matrix V.

[^0]: ${ }^{1}$ We will briefly write adjoint instead of the classical adjoint.

