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DETERMINANTS

The notion of a determinant appeared at the end of 17th century in works of
Leibniz (1646–1716) and a Japanese mathematician, Seki Kova, also known as
Takakazu (1642–1708). Leibniz did not publish the results of his studies related
with determinants. The best known is his letter to l’Hospital (1693) in which
Leibniz writes down the determinant condition of compatibility for a system of three
linear equations in two unknowns. Leibniz particularly emphasized the usefulness
of two indices when expressing the coe�cients of the equations. In modern terms
he actually wrote about the indices i, j in the expression xi =

�
j aijyj .

Seki arrived at the notion of a determinant while solving the problem of finding
common roots of algebraic equations.

In Europe, the search for common roots of algebraic equations soon also became
the main trend associated with determinants. Newton, Bezout, and Euler studied
this problem.

Seki did not have the general notion of the derivative at his disposal, but he
actually got an algebraic expression equivalent to the derivative of a polynomial.
He searched for multiple roots of a polynomial f(x) as common roots of f(x) and
f �(x). To find common roots of polynomials f(x) and g(x) (for f and g of small
degrees) Seki got determinant expressions. The main treatise by Seki was published
in 1674; there applications of the method are published, rather than the method
itself. He kept the main method in secret confiding only in his closest pupils.

In Europe, the first publication related to determinants, due to Cramer, ap-
peared in 1750. In this work Cramer gave a determinant expression for a solution
of the problem of finding the conic through 5 fixed points (this problem reduces to
a system of linear equations).

The general theorems on determinants were proved only ad hoc when needed to
solve some other problem. Therefore, the theory of determinants had been develop-
ing slowly, left behind out of proportion as compared with the general development
of mathematics. A systematic presentation of the theory of determinants is mainly
associated with the names of Cauchy (1789–1857) and Jacobi (1804–1851).

1. Basic properties of determinants

The determinant of a square matrix A =
��aij

��n

1
is the alternated sum

�

�

(�1)�a1�(1)a2�(2) . . . an�(n),

where the summation is over all permutations � � Sn. The determinant of the
matrix A =

��aij

��n

1
is denoted by det A or |aij |n1 . If detA �= 0, then A is called

invertible or nonsingular.
The following properties are often used to compute determinants. The reader

can easily verify (or recall) them.
1. Under the permutation of two rows of a matrix A its determinant changes

the sign. In particular, if two rows of the matrix are identical, detA = 0.
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2. If A and B are square matrices, det
�

A C
0 B

�
= detA · det B.

3. |aij |n1 =
�n

j=1(�1)i+jaijMij , where Mij is the determinant of the matrix
obtained from A by crossing out the ith row and the jth column of A (the row
(echelon) expansion of the determinant or, more precisely, the expansion with respect
to the ith row).

(To prove this formula one has to group the factors of aij , where j = 1, . . . , n,
for a fixed i.)

4.
�������

��1 + µ�1 a12 . . . a1n
...

... · · ·
...

��n + µ�n an2 . . . ann

�������
= �

������

�1 a12 . . . a1n
...

... · · ·
...

�n an2 . . . ann

������
+µ

�������

�1 a12 . . . a1n
...

... · · ·
...

�n an2 . . . ann

�������
.

5. det(AB) = det A det B.
6. det(AT ) = det A.

1.1. Before we start computing determinants, let us prove Cramer’s rule. It
appeared already in the first published paper on determinants.

Theorem (Cramer’s rule). Consider a system of linear equations

x1ai1 + · · · + xnain = bi (i = 1, . . . , n),

i.e.,
x1A1 + · · · + xnAn = B,

where Aj is the jth column of the matrix A =
��aij

��n

1
. Then

xi det(A1, . . . , An) = det (A1, . . . , B, . . . , An) ,

where the column B is inserted instead of Ai.

Proof. Since for j �= i the determinant of the matrix det(A1, . . . , Aj , . . . , An),
a matrix with two identical columns, vanishes,

det(A1, . . . , B, . . . , An) = det (A1, . . . ,
�

xjAj , . . . , An)

=
�

xj det(A1, . . . , Aj , . . . , An) = xi det(A1, . . . , An). �

If det(A1, . . . , An) �= 0 the formula obtained can be used to find solutions of a
system of linear equations.

1.2. One of the most often encountered determinants is the Vandermonde de-
terminant, i.e., the determinant of the Vandermonde matrix

V (x1, . . . , xn) =

�������

1 x1 x2
1 . . . xn�1

1
...

...
... · · ·

...
1 xn x2

n . . . xn�1
n

�������
=

�

i>j

(xi � xj).

To compute this determinant, let us subtract the (k � 1)-st column multiplied
by x1 from the kth one for k = n, n � 1, . . . , 2. The first row takes the form
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(1, 0, 0, . . . , 0), i.e., the computation of the Vandermonde determinant of order n
reduces to a determinant of order n�1. Factorizing each row of the new determinant
by bringing out xi � x1 we get

V (x1, . . . , xn) =
�

i>1

(xi � x1)

�������

1 x2 x2
2 . . . xn�2

1
...

...
... · · ·

...
1 xn x2

n . . . xn�2
n

�������
.

For n = 2 the identity V (x1, x2) = x2 � x1 is obvious, hence,

V (x1, . . . , xn) =
�

i>j

(xi � xj).

Many of the applications of the Vandermonde determinant are occasioned by
the fact that V (x1, . . . , xn) = 0 if and only if there are two equal numbers among
x1, . . . , xn.

1.3. The Cauchy determinant |aij |n1 , where aij = (xi + yj)�1, is slightly more
di�cult to compute than the Vandermonde determinant.

Let us prove by induction that

|aij |n1 =

�
i>j

(xi � xj)(yi � yj)
�
i,j

(xi + yj)
.

For a base of induction take |aij |11 = (x1 + y1)�1.
The step of induction will be performed in two stages.
First, let us subtract the last column from each of the preceding ones. We get

a�ij = (xi + yj)�1 � (xi + yn)�1 = (yn � yj)(xi + yn)�1(xi + yj)�1 for j �= n.

Let us take out of each row the factors (xi + yn)�1 and take out of each column,
except the last one, the factors yn � yj . As a result we get the determinant |bij |n1 ,
where bij = aij for j �= n and bin = 1.

To compute this determinant, let us subtract the last row from each of the
preceding ones. Taking out of each row, except the last one, the factors xn � xi

and out of each column, except the last one, the factors (xn + yj)�1 we make it
possible to pass to a Cauchy determinant of lesser size.

1.4. A matrix A of the form�

��������

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . . . . . . . .

...

0 0 0
. . . 1 0

0 0 0 . . . 0 1
a0 a1 a2 . . . an�2 an�1

�

��������

is called Frobenius’ matrix or the companion matrix of the polynomial

p(�) = �n � an�1�
n�1 � an�2�

n�2 � · · ·� a0.

With the help of the expansion with respect to the first row it is easy to verify by
induction that

det(�I �A) = �n � an�1�
n�1 � an�2�

n�2 � · · ·� a0 = p(�).
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1.5. Let bi, i � Z, such that bk = bl if k � l (mod n) be given; the matrix��aij

��n

1
, where aij = bi�j , is called a circulant matrix.

Let �1, . . . , �n be distinct nth roots of unity; let

f(x) = b0 + b1x + · · · + bn�1x
n�1.

Let us prove that the determinant of the circulant matrix |aij |n1 is equal to

f(�1)f(�2) . . . f(�n).

It is easy to verify that for n = 3 we have
�

�
1 1 1
1 �1 �2

1

1 �2 �2
2

�

�

�

�
b0 b2 b1

b1 b0 b2

b2 b1 b0

�

�

�

�
f(1) f(1) f(1)
f(�1) �1f(�1) �2

1f(�1)
f(�2) �2f(�2) �2

2f(�2)

�

�

= f(1)f(�1)f(�2)

�

�
1 1 1
1 �1 �2

1

1 �2 �2
2

�

� .

Therefore,
V (1, �1, �2)|aij |31 = f(1)f(�1)f(�2)V (1, �1, �2).

Taking into account that the Vandermonde determinant V (1, �1, �2) does not
vanish, we have:

|aij |31 = f(1)f(�1)f(�2).

The proof of the general case is similar.

1.6. A tridiagonal matrix is a square matrix J =
��aij

��n

1
, where aij = 0 for

|i� j| > 1.
Let ai = aii for i = 1, . . . , n, let bi = ai,i+1 and ci = ai+1,i for i = 1, . . . , n � 1.

Then the tridiagonal matrix takes the form
�

�����������

a1 b1 0 . . . 0 0 0
c1 a2 b2 . . . 0 0 0

0 c2 a3
. . . 0 0 0

...
...

...
. . . . . .

...
...

0 0 0
. . . an�2 bn�2 0

0 0 0 . . . cn�2 an�1 bn�1

0 0 0 . . . 0 cn�1 an

�

�����������

.

To compute the determinant of this matrix we can make use of the following
recurrent relation. Let �0 = 1 and �k = |aij |k1 for k � 1.

Expanding
��aij

��k

1
with respect to the kth row it is easy to verify that

�k = ak�k�1 � bk�1ck�1�k�2 for k � 2.

The recurrence relation obtained indicates, in particular, that �n (the determinant
of J) depends not on the numbers bi, cj themselves but on their products of the
form bici.
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The quantity

(a1 . . . an) =

�����������������

a1 1 0 . . . 0 0 0
�1 a2 1 . . . 0 0 0

0 �1 a3
. . . 0 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . an�2 1 0

0 0 0
. . . �1 an�1 1

0 0 0 . . . 0 �1 an

�����������������

is associated with continued fractions, namely:

a1 +
1

a2 +
1

a3+...
+

1

an�1 +
1
an

=
(a1a2 . . . an)
(a2a3 . . . an)

.

Let us prove this equality by induction. Clearly,

a1 +
1
a2

=
(a1a2)
(a2)

.

It remains to demonstrate that

a1 +
1

(a2a3 . . . an)
(a3a4 . . . an)

=
(a1a2 . . . an)
(a2a3 . . . an)

,

i.e., a1(a2 . . . an) + (a3 . . . an) = (a1a2 . . . an). But this identity is a corollary of the
above recurrence relation, since (a1a2 . . . an) = (an . . . a2a1).

1.7. Under multiplication of a row of a square matrix by a number � the de-
terminant of the matrix is multiplied by �. The determinant of the matrix does
not vary when we replace one of the rows of the given matrix with its sum with
any other row of the matrix. These statements allow a natural generalization to
simultaneous transformations of several rows.

Consider the matrix
�

A11 A12

A21 A22

�
, where A11 and A22 are square matrices of

order m and n, respectively.
Let D be a square matrix of order m and B a matrix of size n�m.

Theorem.

����
DA11 DA12

A21 A22

���� = |D| · |A| and
����

A11 A12

A21 + BA11 A22 + BA12.

���� = |A|

Proof. �
DA11 DA12

A21 A22

�
=

�
D 0
0 I

��
A11 A12

A21 A22

�
and

�
A11 A12

A21 + BA11 A22 + BA12

�
=

�
I 0
B I

� �
A11 A12

A21 A22

�
. �
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Problems

1.1. Let A =
��aij

��n

1
be skew-symmetric, i.e., aij = �aji, and let n be odd.

Prove that |A| = 0.
1.2. Prove that the determinant of a skew-symmetric matrix of even order does

not change if to all its elements we add the same number.
1.3. Compute the determinant of a skew-symmetric matrix An of order 2n with

each element above the main diagonal being equal to 1.
1.4. Prove that for n � 3 the terms in the expansion of a determinant of order

n cannot be all positive.
1.5. Let aij = a|i�j|. Compute |aij |n1 .

1.6. Let �3 =

�������

1 �1 0 0
x h �1 0
x2 hx h �1
x3 hx2 hx h

�������
and define �n accordingly. Prove that

�n = (x + h)n.
1.7. Compute |cij |n1 , where cij = aibj for i �= j and cii = xi.
1.8. Let ai,i+1 = ci for i = 1, . . . , n, the other matrix elements being zero. Prove

that the determinant of the matrix I + A + A2 + · · ·+ An�1 is equal to (1� c)n�1,
where c = c1 . . . cn.

1.9. Compute |aij |n1 , where aij = (1� xiyj)�1.
1.10. Let aij =

�n+i
j

�
. Prove that |aij |m0 = 1.

1.11. Prove that for any real numbers a, b, c, d, e and f

������

(a + b)de� (d + e)ab ab� de a + b� d� e
(b + c)ef � (e + f)bc bc� ef b + c� e� f
(c + d)fa� (f + a)cd cd� fa c + d� f � a

������
= 0.

Vandermonde’s determinant.
1.12. Compute

�������

1 x1 . . . xn�2
1 (x2 + x3 + · · · + xn)n�1

...
... · · ·

...
...

1 xn . . . xn�2
n (x1 + x2 + · · · + xn�1)n�1

�������
.

1.13. Compute �������

1 x1 . . . xn�2
1 x2x3 . . . xn

...
... · · ·

...
...

1 xn . . . xn�2
n x1x2 . . . xn�1

�������
.

1.14. Compute |aik|n0 , where aik = �n�k
i (1 + �2

i )k.
1.15. Let V =

��aij

��n

0
, where aij = xj�1

i , be a Vandermonde matrix; let Vk be
the matrix obtained from V by deleting its (k + 1)st column (which consists of the
kth powers) and adding instead the nth column consisting of the nth powers. Prove
that

detVk = �n�k(x1, . . . , xn) det V.

1.16. Let aij =
�in

j

�
. Prove that |aij |r1 = nr(r+1)/2 for r � n.
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1.17. Given k1, . . . , kn � Z, compute |aij |n1 , where

ai,j =

�
�

�

1
(ki + j � i)!

for ki + j � i � 0 ,

aij = 0 for ki + j � i < 0.

1.18. Let sk = p1xk
1 + · · · + pnxk

n, and ai,j = si+j . Prove that

|aij |n�1
0 = p1 . . . pn

�

i>j

(xi � xj)2.

1.19. Let sk = xk
1 + · · · + xk

n. Compute
��������

s0 s1 . . . sn�1 1
s1 s2 . . . sn y
...

... · · ·
...

...
sn sn+1 . . . s2n�1 yn

��������
.

1.20. Let aij = (xi + yj)n. Prove that

|aij |n0 =
�

n

1

�
. . .

�
n

n

�
·
�

i>k

(xi � xk)(yk � yi).

1.21. Find all solutions of the system
�
��

��

�1 + · · · + �n = 0
. . . . . . . . . . . .

�n
1 + · · · + �n

n = 0

in C.
1.22. Let �k(x0, . . . , xn) be the kth elementary symmetric function. Set: �0 = 1,

�k(�xi) = �k(x0, . . . , xi�1, xi+1, . . . , xn). Prove that if aij = �i(�xj) then |aij |n0 =�
i<j(xi � xj).

Relations among determinants.
1.23. Let bij = (�1)i+jaij . Prove that |aij |n1 = |bij |n1 .
1.24. Prove that

�������

a1c1 a2d1 a1c2 a2d2

a3c1 a4d1 a3c2 a4d2

b1c3 b2d3 b1c4 b2d4

b3c3 b4d3 b3c4 b4d4

�������
=

����
a1 a2

a3 a4

���� ·
����
b1 b2

b3 b4

���� ·
����
c1 c2

c3 c4

���� ·
����
d1 d2

d3 d4

���� .

1.25. Prove that
�����������

a1 0 0 b1 0 0
0 a2 0 0 b2 0
0 0 a3 0 0 b3

b11 b12 b13 a11 a12 a13

b21 b22 b23 a21 a22 a23

b31 b32 b33 a31 a32 a33

�����������

=

������

a1a11 � b1b11 a2a12 � b2b12 a3a13 � b3b13

a1a21 � b1b21 a2a22 � b2b22 a3a23 � b3b23

a1a31 � b1b31 a2a32 � b2b32 a3a33 � b3b33

������
.
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1.26. Let sk =
�n

i=1 aki. Prove that

������

s1 � a11 . . . s1 � a1n
... · · ·

...
sn � an1 . . . sn � ann

������
= (�1)n�1(n� 1)

������

a11 . . . a1n
... · · ·

...
an1 . . . ann

������
.

1.27. Prove that
�������

� n
m1

� � n
m1�1

�
. . .

� n
m1�k

�

...
... · · ·

...� n
mk

� � n
mk�1

�
. . .

� n
mk�k

�

�������
=

�������

� n
m1

� �n+1
m1

�
. . .

�n+k
m1

�

...
... · · ·

...� n
mk

� �n+1
mk

�
. . .

�n+k
mk

�

�������
.

1.28. Let �n(k) = |aij |n0 , where aij =
�k+i

2j

�
. Prove that

�n(k) =
k(k + 1) . . . (k + n� 1)

1 · 3 . . . (2n� 1)
�n�1(k � 1).

1.29. Let Dn = |aij |n0 , where aij =
� n+i
2j�1

�
. Prove that Dn = 2n(n+1)/2.

1.30. Given numbers a0, a1, ..., a2n, let bk =
�k

i=0(�1)i
�k

i

�
ai (k = 0, . . . , 2n);

let aij = ai+j , and bij = bi+j . Prove that |aij |n0 = |bij |n0 .

1.31. Let A =
�

A11 A12

A21 A22

�
and B =

�
B11 B12

B21 B22

�
, where A11 and B11, and

also A22 and B22, are square matrices of the same size such that rank A11 = rank A
and rank B11 = rank B. Prove that

����
A11 B12

A21 B22

���� ·
����
A11 A12

B21 B22

���� = |A + B| · |A11| · |B22| .

1.32. Let A and B be square matrices of order n. Prove that |A| · |B| =�n
k=1 |Ak| · |Bk|, where the matrices Ak and Bk are obtained from A and B, re-

spectively, by interchanging the respective first and kth columns, i.e., the first
column of A is replaced with the kth column of B and the kth column of B is
replaced with the first column of A.

2. Minors and cofactors

2.1. There are many instances when it is convenient to consider the determinant
of the matrix whose elements stand at the intersection of certain p rows and p
columns of a given matrix A. Such a determinant is called a pth order minor of A.
For convenience we introduce the following notation:

A

�
i1 . . . ip
k1 . . . kp

�
=

�������

ai1k1 ai1k2 . . . ai1kp

...
... · · ·

...
aipk1 aipk2 . . . aipkp

�������
.

If i1 = k1, . . . , ip = kp, the minor is called a principal one.

2.2. A nonzero minor of the maximal order is called a basic minor and its order
is called the rank of the matrix.
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Theorem. If A
� i1...ip

k1...kp

�
is a basic minor of a matrix A, then the rows of A

are linear combinations of rows numbered i1, . . . , ip and these rows are linearly
independent.

Proof. The linear independence of the rows numbered i1, . . . , ip is obvious since
the determinant of a matrix with linearly dependent rows vanishes.

The cases when the size of A is m� p or p�m are also clear.
It su�ces to carry out the proof for the minor A

�1 ...p
1 ...p

�
. The determinant

��������

a11 . . . a1p a1j

... · · ·
...

...
ap1 . . . app apj

ai1 . . . aip aij

��������

vanishes for j � p as well as for j > p. Its expansion with respect to the last column
is a relation of the form

a1jc1 + a2jc2 + · · · + apjcp + aijc = 0,

where the numbers c1, . . . , cp, c do not depend on j (but depend on i) and c =
A

�1 ...p
1 ...p

�
�= 0. Hence, the ith row is equal to the linear combination of the first p

rows with the coe�cients
�c1

c
, . . . ,

�cp

c
, respectively. �

2.2.1. Corollary. If A
� i1 ...ip

k1 ...kp

�
is a basic minor then all rows of A belong to

the linear space spanned by the rows numbered i1, . . . , ip; therefore, the rank of A is
equal to the maximal number of its linearly independent rows.

2.2.2. Corollary. The rank of a matrix is also equal to the maximal number
of its linearly independent columns.

2.3. Theorem (The Binet-Cauchy formula). Let A and B be matrices of size
n�m and m� n, respectively, and n � m. Then

detAB =
�

1�k1<k2<···<kn�m

Ak1...knBk1...kn ,

where Ak1...kn is the minor obtained from the columns of A whose numbers are
k1, . . . , kn and Bk1...kn is the minor obtained from the rows of B whose numbers
are k1, . . . , kn.

Proof. Let C = AB, cij =
�m

k=1 aikbki. Then

detC =
�

�

(�1)�
�

k1

a1k1bk1�(1) · · ·
�

kn

bkn�(n)

=
m�

k1,...,kn=1

a1k1 . . . ankn

�

�

(�1)�bk1�(1) . . . bkn�(n)

=
m�

k1,...,kn=1

a1k1 . . . anknBk1...kn .
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The minor Bk1...kn is nonzero only if the numbers k1, . . . , kn are distinct; there-
fore, the summation can be performed over distinct numbers k1, . . . , kn. Since
B�(k1)...�(kn) = (�1)�Bk1...kn for any permutation � of the numbers k1, . . . , kn,
then

m�

k1,...,kn=1

a1k1 . . . anknBk1...kn =
�

k1<k2<···<kn

(�1)�a1�(1) . . . an�(n)B
k1...kn

=
�

1�k1<k2<···<kn�m

Ak1...knBk1...kn . �

Remark. Another proof is given in the solution of Problem 28.7

2.4. Recall the formula for expansion of the determinant of a matrix with respect
to its ith row:

(1) |aij |n1 =
n�

j=1

(�1)i+jaijMij,

where Mij is the determinant of the matrix obtained from the matrix A =
��aij

��n

1
by deleting its ith row and jth column. The number Aij = (�1)i+jMij is called
the cofactor of the element aij in A.

It is possible to expand a determinant not only with respect to one row, but also
with respect to several rows simultaneously.

Fix rows numbered i1, . . . , ip, where i1 < i2 < · · · < ip. In the expansion of
the determinant of A there occur products of terms of the expansion of the minor
A

�i1 ...ip

j1 ...jp

�
by terms of the expansion of the minor A

�ip+1 ...in

jp+1 ...jn

�
, where j1 < · · · <

jp; ip+1 < · · · < in; jp+1 < · · · < jn and there are no other terms in the expansion
of the determinant of A.

To compute the signs of these products let us shu�e the rows and the columns
so as to place the minor A

�i1 ...ip

j1 ...jp

�
in the upper left corner. To this end we have to

perform

(i1 � 1) + · · · + (ip � p) + (j1 � 1) + · · · + (jp � p) � i + j (mod 2)

permutations, where i = i1 + · · · + ip, j = j1 + · · · + jp.
The number (�1)i+jA

�ip+1 ...in

jp+1 ...jn

�
is called the cofactor of the minor A

�i1 ...ip

j1 ...jp

�
.

We have proved the following statement:

2.4.1. Theorem (Laplace). Fix p rows of the matrix A. Then the sum of
products of the minors of order p that belong to these rows by their cofactors is
equal to the determinant of A.

The matrix adjA = (Aij)T is called the (classical) adjoint1 of A. Let us prove
that A · (adjA) = |A| · I. To this end let us verify that

�n
j=1 aijAkj = �ki|A|.

For k = i this formula coincides with (1). If k �= i, replace the kth row of A with
the ith one. The determinant of the resulting matrix vanishes; its expansion with
respect to the kth row results in the desired identity:

0 =
n�

j=1

a�kjAkj =
n�

j=1

aijAkj .

1We will briefly write adjoint instead of the classical adjoint.
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If A is invertible then A�1 =
adjA
|A| .

2.4.2. Theorem. The operation adj has the following properties:
a) adj AB = adj B · adj A;
b) adj XAX�1 = X(adjA)X�1;
c) if AB = BA then (adjA)B = B(adjA).

Proof. If A and B are invertible matrices, then (AB)�1 = B�1A�1. Since for
an invertible matrix A we have adjA = A�1|A|, headings a) and b) are obvious.
Let us consider heading c).

If AB = BA and A is invertible, then

A�1B = A�1(BA)A�1 = A�1(AB)A�1 = BA�1.

Therefore, for invertible matrices the theorem is obvious.
In each of the equations a) – c) both sides continuously depend on the elements of

A and B. Any matrix A can be approximated by matrices of the form A� = A+ �I
which are invertible for su�ciently small nonzero �. (Actually, if a1, . . . , ar is the
whole set of eigenvalues of A, then A� is invertible for all � �= �ai.) Besides, if
AB = BA, then A�B = BA�. �

2.5. The relations between the minors of a matrix A and the complementary to
them minors of the matrix (adj A)T are rather simple.

2.5.1. Theorem. Let A =
��aij

��n

1
, (adjA)T = |Aij |n1 , 1 � p < n. Then

�������

A11 . . . A1p

... · · ·
...

Ap1 . . . App

�������
= |A|p�1

�������

ap+1,p+1 . . . ap+1,n

... · · ·
...

an,p+1 . . . ann

�������
.

Proof. For p = 1 the statement coincides with the definition of the cofactor
A11. Let p > 1. Then the identity

�

������

A11 . . . A1p

... · · ·
...

Ap1 . . . App

A1,p+1 . . . A1n

... · · ·
...

Ap,p+1 . . . Apn

0 I

�

������

�

�
a11 . . . an1
... · · ·

...
a1n . . . ann

�

�

=

������������

|A| 0
· · ·

0 |A|
0

a1,p+1 . . .
... · · ·

a1n . . .

. . . an,p+1

· · ·
...

. . . ann

������������

.

implies that
�������

A11 . . . A1p

... · · ·
...

Ap1 . . . App

�������
· |A| = |A|p ·

�������

ap+1,p+1 . . . ap+1,n

... · · ·
...

an,p+1 . . . ann

�������
.
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If |A| �= 0, then dividing by |A| we get the desired conclusion. For |A| = 0 the
statement follows from the continuity of the both parts of the desired identity with
respect to aij . �

Corollary. If A is not invertible then rank(adjA) � 1.

Proof. For p = 2 we get

����
A11 A12

A21 A22

���� = |A| ·

������

a33 . . . a3n
... · · ·

...
an3 . . . ann

������
= 0.

Besides, the transposition of any two rows of the matrix A induces the same trans-
position of the columns of the adjoint matrix and all elements of the adjoint matrix
change sign (look what happens with the determinant of A and with the matrix
A�1 for an invertible A under such a transposition). �

Application of transpositions of rows and columns makes it possible for us to
formulate Theorem 2.5.1 in the following more general form.

2.5.2. Theorem (Jacobi). Let A =
��aij

��n

1
, (adjA)T =

��Aij

��n

1
, 1 � p < n,

� =
�

i1 . . . in
j1 . . . jn

�
an arbitrary permutation. Then

�������

Ai1j1 . . . Ai1jp

... · · ·
...

Aipj1 . . . Aipjp

�������
= (�1)�

�������

aip+1,jp+1 . . . aip+1,jn

... · · ·
...

ain,jp+1 . . . ain,jn

�������
· |A|p�1.

Proof. Let us consider matrix B =
��bkl

��n

1
, where bkl = aikjl . It is clear that

|B| = (�1)�|A|. Since a transposition of any two rows (resp. columns) of A induces
the same transposition of the columns (resp. rows) of the adjoint matrix and all
elements of the adjoint matrix change their sings, Bkl = (�1)�Aikjl .

Applying Theorem 2.5.1 to matrix B we get

�������

(�1)�Ai1j1 . . . (�1)�Ai1jp

... · · ·
...

(�1)�Aipj1 . . . (�1)�Aipjp

�������
= ((�1)�)p�1

�������

aip+1,jp+1 . . . aip+1,jn

... · · ·
...

ain,jp+1 . . . ain,jn

�������
.

By dividing the both parts of this equality by ((�1)�)p we obtain the desired. �

2.6. In addition to the adjoint matrix of A it is sometimes convenient to consider
the compound matrix

��Mij

��n

1
consisting of the (n � 1)st order minors of A. The

determinant of the adjoint matrix is equal to the determinant of the compound one
(see, e.g., Problem 1.23).

For a matrix A of size m� n we can also consider a matrix whose elements are

rth order minors A

�
i1 . . . ir
j1 . . . jr

�
, where r � min(m,n). The resulting matrix
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Cr(A) is called the rth compound matrix of A. For example, if m = n = 3 and
r = 2, then

C2(A) =

�

�������

A

�
12
12

�
A

�
12
13

�
A

�
12
23

�

A

�
13
12

�
A

�
13
13

�
A

�
13
23

�

A

�
23
12

�
A

�
23
13

�
A

�
23
23

�

�

�������
.

Making use of Binet–Cauchy’s formula we can show that Cr(AB) = Cr(A)Cr(B).
For a square matrix A of order n we have the Sylvester identity

det Cr(A) = (det A)p, where p =
�

n� 1
r � 1

�
.

The simplest proof of this statement makes use of the notion of exterior power
(see Theorem 28.5.3).

2.7. Let 1 � m � r < n, A =
��aij

��n

1
. Set An = |aij |n1 , Am = |aij |m1 . Consider

the matrix Sr
m,n whose elements are the rth order minors of A containing the left

upper corner principal minor Am. The determinant of Sr
m,n is a minor of order�n�m

r�m

�
of Cr(A). The determinant of Sr

m,n can be expressed in terms of Am and
An.

Theorem (Generalized Sylvester’s identity, [Mohr,1953]).

(1) |Sr
m,n| = Ap

mAq
n, where p =

�
n�m� 1

r �m

�
, q =

�
n�m� 1
r �m� 1

�
.

Proof. Let us prove identity (1) by induction on n. For n = 2 it is obvious.
The matrix Sr

0,n coincides with Cr(A) and since |Cr(A)| = Aq
n, where q =

�n�1
r�1

�

(see Theorem 28.5.3), then (1) holds for m = 0 (we assume that A0 = 1). Both
sides of (1) are continuous with respect to aij and, therefore, it su�ces to prove
the inductive step when a11 �= 0.

All minors considered contain the first row and, therefore, from the rows whose
numbers are 2, . . . , n we can subtract the first row multiplied by an arbitrary factor;
this operation does not a�ect det(Sr

m,n). With the help of this operation all elements
of the first column of A except a11 can be made equal to zero. Let A be the matrix
obtained from the new one by strikinging out the first column and the first row, and
let S

r�1
m�1,n�1 be the matrix composed of the minors of order r � 1 of A containing

its left upper corner principal minor of order m� 1.
Obviously, Sr

m,n = a11S
r�1
m�1,n�1 and we can apply to S

r�1
m�1,n�1 the inductive

hypothesis (the case m � 1 = 0 was considered separately). Besides, if Am�1 and
An�1 are the left upper corner principal minors of orders m � 1 and n � 1 of A,
respectively, then Am = a11Am�1 and An = a11An�1. Therefore,

|Sr
m,n| = at

11A
p1
m�1A

q1
n�1 = at�p1�q1

11 Ap1
m Aq1

n ,

where t =
�n�m

r�m

�
, p1 =

�n�m�1
r�m

�
= p and q1 =

�n�m�1
r�m�1

�
= q. Taking into account

that t = p + q, we get the desired conclusion. �
Remark. Sometimes the term “Sylvester’s identity” is applied to identity (1)

not only for m = 0 but also for r = m + 1, i.e., |Sm+1
m,n | = An�m

m An
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2.8 Theorem (Chebotarev). Let p be a prime and � = exp(2�i/p). Then all
minors of the Vandermonde matrix

��aij

��p�1

0
, where aij = �ij, are nonzero.

Proof (Following [Reshetnyak, 1955]). Suppose that
��������

�k1l1 . . . �k1lj

�k2l1 . . . �k2lj

... · · ·
...

�kj l1 . . . �kj lj

��������
= 0.

Then there exist complex numbers c1, . . . , cj not all equal to 0 such that the linear
combination of the corresponding columns with coe�cients c1, . . . , cj vanishes, i.e.,
the numbers �k1 , . . . , �kj are roots of the polynomial c1xl1 + · · · + cjxlj . Let

(1) (x� �k1) . . . (x� �kj ) = xj � b1x
j�1 + · · · ± bj .

Then

(2) c1x
l1 + · · · + cjx

lj = (b0x
j � b1x

j�1 + · · · ± bj)(asx
s + · · · + a0),

where b0 = 1 and as �= 0. For convenience let us assume that bt = 0 for t > j
and t < 0. The coe�cient of xj+s�t in the right-hand side of (2) is equal to
±(asbt � as�1bt�1 + · · · ± a0bt�s). The degree of the polynomial (2) is equal to
s + j and it is only the coe�cients of the monomials of degrees l1, . . . , lj that may
be nonzero and, therefore, there are s + 1 zero coe�cients:

asbt � as�1bt�1 + · · · ± a0bt�s = 0 for t = t0, t1, . . . , ts

The numbers a0, . . . , as�1, as are not all zero and therefore, |ckl|s0 = 0 for ckl = bt,
where t = tk � l.

Formula (1) shows that bt can be represented in the form ft(�), where ft is a
polynomial with integer coe�cients and this polynomial is the sum of

�j
t

�
powers

of �; hence, ft(1) =
�j

t

�
. Since ckl = bt = ft(�), then |ckl|s0 = g(�) and g(1) = |c�kl|s0,

where c�kl =
� j
tk�l

�
. The polynomial q(x) = xp�1+· · ·+x+1 is irreducible over Z (see

Appendix 2) and q(�) = 0. Therefore, g(x) = q(x)�(x), where � is a polynomial
with integer coe�cients (see Appendix 1). Therefore, g(1) = q(1)�(1) = p�(1), i.e.,
g(1) is divisible by p.

To get a contradiction it su�ces to show that the number g(1) = |c�kl|s0, where
c�kl =

� j
tk�l

�
, 0 � tk � j + s and 0 < j + s � p� 1, is not divisible by p. It is easy

to verify that � = |c�kl|s0 = |akl|s0, where akl =
�j+l

tk

�
(see Problem 1.27). It is also

clear that�
j + l

t

�
=

�
1� t

j + l + 1

�
. . .

�
1� t

j + s

��
j + s

t

�
= �s�l(t)

�
j + s

t

�
.

Hence,

� =
s�

�=0

�
j + s

t�

�
��������

�s(t0) �s�1(t0) . . . 1
�s(t1) �s�1(t1) . . . 1

...
... · · ·

...
�s(ts) �s�1(ts) . . . 1

��������
= ±

s�

�=0

��
j + s

t�

�
A�

� �

µ>�

(tµ � t�),

where A0, A1, . . . , As are the coe�cients of the highest powers of t in the polynomi-
als �0(t),�1(t), . . . ,�s(t), respectively, where �0(t) = 1; the degree of �i(t) is equal
to i. Clearly, the product obtained has no irreducible fractions with numerators
divisible by p, because j + s < p. �
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Problems

2.1. Let An be a matrix of size n�n. Prove that |A+�I| = �n +
�n

k=1 Sk�n�k,
where Sk is the sum of all

�n
k

�
principal kth order minors of A.

2.2. Prove that
��������

a11 . . . a1n x1
... · · ·

...
...

an1 . . . ann xn

y1 . . . yn 0

��������
= �

�

i,j

xiyjAij ,

where Aij is the cofactor of aij in
��aij

��n

1
.

2.3. Prove that the sum of principal k-minors of AT A is equal to the sum of
squares of all k-minors of A.

2.4. Prove that
��������

u1a11 . . . una1n

a21 . . . a2n
... · · ·

...
an1 . . . ann

��������
+ · · · +

��������

a11 . . . a1n

a21 . . . a2n
... · · ·

...
u1an1 . . . unann

��������
= (u1 + · · · + un)|A|.

Inverse and adjoint matrices

2.5. Let A and B be square matrices of order n. Compute
�

�
I A C
0 I B
0 0 I

�

�
�1

.

2.6. Prove that the matrix inverse to an invertible upper triangular matrix is
also an upper triangular one.

2.7. Give an example of a matrix of order n whose adjoint has only one nonzero
element and this element is situated in the ith row and jth column for given i and
j.

2.8. Let x and y be columns of length n. Prove that

adj(I � xyT ) = xyT + (1� yT x)I.

2.9. Let A be a skew-symmetric matrix of order n. Prove that adjA is a sym-
metric matrix for odd n and a skew-symmetric one for even n.

2.10. Let An be a skew-symmetric matrix of order n with elements +1 above
the main diagonal. Calculate adjAn.

2.11. The matrix adj(A� �I) can be expressed in the form
�n�1

k=0 �kAk, where
n is the order of A. Prove that:

a) for any k (1 � k � n� 1) the matrix AkA�Ak�1 is a scalar matrix;
b) the matrix An�s can be expressed as a polynomial of degree s� 1 in A.
2.12. Find all matrices A with nonnegative elements such that all elements of

A�1 are also nonnegative.
2.13. Let � = exp(2�i/n); A =

��aij

��n

1
, where aij = �ij . Calculate the matrix

A�1.
2.14. Calculate the matrix inverse to the Vandermonde matrix V .


