1. Dual Learning

- **Dual Learning Framework**
 - Leverage the duality between two tasks as feedback signals to regularize training:
 - A **Two-agent game**:
 1. Primal agent: \(f: x \rightarrow y \)
 2. Dual agent: \(g: y \rightarrow x \)
 - Policy gradient is used to improve both primal and dual models

2. Multi-Agent Framework

- **Dual learning → Multi-Agent Dual Learning**
 - The evaluation quality plays a central role
 - Introduces multiple agents:
 - With similar capability and certain level of diversity
 - Can provide more reliable and robust feedback
 - Further exploit the potential of dual learning

3. MADL for Neural Machine Translation

- **NMT: MADL + Transformer**
 - Denote the dataset as \(D_x \) and \(D_y \):
 1. Pretrain \(N - 1 \) models \(f_i \) and \(g_j \), \(i, j \in \{ 1, 2, \ldots, N - 1 \} \)
 2. Let \(f = \sum_{i=1}^{N-1} f_i / (N-1) \) and \(g = \sum_{j=1}^{N-1} g_j / (N-1) \)
 - Perform offline sampling, build \(\mathcal{B}_x \) and \(\mathcal{B}_y \)
 - Compute probabilities \(P(f(x) | f(y)); P(g(x) | g(y)) \)
 - Estimate gradient with importance sampling

4. MADL for Image-to-Image Translation

- **Image Translation: MADL + CycleGAN**
 - 1. Dual learning loss:
 \[
 \ell_{\text{dual}}(D_x, D_y, f, g, \alpha) = \frac{1}{|D_x|} \sum_{(x, y) \in D_x} |x - f(\alpha g(y(x)))| + \frac{1}{|D_y|} \sum_{(y, x) \in D_y} |y - g(\alpha f(x))|
 \]
 - 2. GAN loss:
 \[
 \ell_{\text{GAN}}(f, g, \alpha) = \frac{1}{|D_x|} \sum_{(x, y) \in D_x} \log (1 - \alpha g(y(x))) + \frac{1}{|D_y|} \sum_{(y, x) \in D_y} \log (1 - \alpha f(x))
 \]

5. Conclusion

- **Proposed a multi-agent dual learning framework**:
 - Involves multiple primal and multiple dual models;
 - Extends dual learning to a more general concept;
 - Demonstrates great empirical effectiveness:
 - Achieved broad success on NMT and image translation tasks
 - Pushed forward the state-of-the-art performances
- **Future work includes**:
 - Extend MADL to more applications, e.g., question answering / generation
 - Improve training efficiency while maintaining improvements

Contact:
- yiren@illinois.edu
- Yingce.Xia@microsoft.com

University of Illinois at Urbana-Champaign
Microsoft Research
University of Science and Technology of China