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Abstract

For a time series, a plot of sample covariances is a popular way to assess its dependence
properties. In this paper we give a systematic characterization of the asymptotic behavior
of sample covariances of long-memory linear processes. Central and noncentral limit
theorems are obtained for sample covariances with bounded as well as unbounded lags.
It is shown that the limiting distribution depends in a very interesting way on the strength
of dependence, the heavy-tailedness of the innovations, and the magnitude of the lags.
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1. Introduction

Auto-covariance functions play a fundamental role in time series analysis and they are used
in various inference problems, including parameter estimation and hypothesis testing. They
are naturally estimated by sample covariances. Hence, the convergence problem of sample
covariances is of critical importance. There is a substantial literature on properties of sample
covariance estimates; see, for example, Bartlett (1946), Hannan (1970, pp. 220–229, 326–
333), (1976), Anderson (1971, pp. 438–500), Hall and Heyde (1980, pp. 182–194), Porat
(1987), Brockwell and Davis (1991, pp. 220–237), Phillips and Solo (1992), Berlinet and
Francq (1999), Wu and Min (2005), among others. However, many of the earlier results are for
sample covariance estimates with bounded lags. The latter restriction is quite severe. To better
understand the dependence structure of a time series, we would like to know the behavior of
sample covariances at large lags, namely at lags which increase to infinity with respect to sample
sizes. This is especially so in the study of long-memory or long-range dependent processes
since for such processes we are particularly interested in covariances at large lags.

The asymptotic problem of sample covariances at large lags is quite challenging. As
mentioned in Harris et al. (2003), the primary reason for the difficulty is that the standard
asymptotic results, such as the functional central limit theorem, stochastic integral convergence,
and long-run variance estimation, are not directly applicable since the lag kn depends on
the sample size n in such a way that kn → ∞. Recently, researchers have made several
important breakthroughs and derived central limit theorems for sample covariances at lags
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kn with kn → ∞. Keenan (1997) obtained a central limit theorem for sample covariances
at lags kn with kn → ∞ under the severe restriction kn = o(log n). Harris et al. (2003)
substantially extended the range of kn for short-memory linear processes. Wu (2008) obtained
a central limit theorem for sample covariances of nonlinear time series with a very wide range
of kn. However, all those results concern short-memory processes in which the covariances
are absolutely summable. The techniques therein are not directly applicable to long-memory
processes.

For long-memory processes, Hosking (1996) obtained central and noncentral limit theorems
for sample covariances with bounded lags. Here the terminology noncentral limit theorem refers
to the result that the limiting distribution is not normal, instead, it is the Rosenblatt process
(see Rosenblatt (1979)). In Hosking’s result, the restriction that the lag k is bounded is quite
severe, since in the study of long-memory processes, we often want to study the behavior of
sample covariances at large lags. Chung (2002) generalized Hosking’s result to multivariate
long-memory processes. Again, in Chung’s setting the lags are bounded. A result for sample
covariances of long-memory processes with unbounded lags is given in Dai (2004), who derived
the uniform convergence of sample covariances. However, the latter paper does not provide an
asymptotic distributional theory for sample covariances. For an inferential theory, we need to
have a distributional theory.

In this paper we shall consider the asymptotic behavior of sample covariances of long-
memory linear processes with bounded as well as unbounded lags. Consider the linear process

Xk = µ +
∞∑
i=0

aiεk−i ,

where the εi, i ∈ Z, are independent and identically distributed (i.i.d.) innovations with mean 0
and finite variance, µ is the mean, and the ai are real coefficients of the form

ai = i−β�(i), i ∈ N,

where 1
2 < β < 1 and � is a slowly varying function (see Bingham et al. (1989, pp. 26–28)).

By the Karamata theorem in the latter book, we can show that the covariance function γk =
cov(X0, Xk) = E(ε2

0)
∑∞

i=0 aiai+k satisfies

γk ∼ Cβ E(ε2
0)

�2(k)

k2β−1 , where Cβ =
∫ ∞

0
(u + u2)−β du, (1)

as k → ∞. Here, for two real sequences (bk) and (ck), we write bk ∼ ck if limk→∞ bk/ck = 1.
Since 1

2 < β < 1, the γk are not summable, thus meaning long-range dependence or long
memory. Given the sample (Xi)

n
i=1, if µ is known then we can naturally estimate γk by

γ̌k = 1

n

n∑
i=k+1

(Xi − µ)(Xi−k − µ), 0 ≤ k < n,

and let γ̌−k = γ̌k . If µ is unknown, we can estimate γk by the sample covariance

γ̂k = 1

n

n∑
i=k+1

(Xi − X̄n)(Xi−k − X̄n), 0 ≤ k < n, where X̄n = 1

n

n∑
i=1

Xi. (2)
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Estimation of γk allows us to assess the strength of dependence of the process by examining
the auto-covariance function plot. Based on (1), we can estimate the long-memory parameter
β by performing a linear regression for the model log γ̂k ∼ α0 + α1 log k over k = ln, ln +
1, . . . , un, where α0 is the intercept, α1 = 1 − 2β, ln → ∞, and un/n → 0. Let (α̂0, α̂1)

be the least squares estimate. Then β can be estimated by β̂ = 1
2 − α̂1/2, and its confidence

interval can be constructed if an asymptotic distributional theory of (γ̂ln , . . . , γ̂un) is available.
Long-memory processes have been studied for several decades. However, the asymptotic
distributional problem for γ̂kn with large kn has been rarely touched.

Here we shall present a systematic asymptotic theory for γ̌k and γ̂k . It is shown that their
asymptotic behavior depends in a very interesting way on the strength of dependence, the
heavy-tailedness of the innovations, and the magnitude of the lags. The rest of the paper is
organized as follows. Our main results are stated in Section 2. Some of the proofs are given in
Section 3. In our proofs we have extensively applied the martingale approximation techniques,
which in many situations lead to optimal and nearly optimal results.

2. Main results

Before presenting our main results, we shall first introduce some notation. For a random
variable Z, write Z ∈ Lp, p > 0, if ‖Z‖p := (E |Z|p)1/p < ∞ and, for p = 2, write
‖Z‖ = ‖Z‖2. Denote by ‘⇒’ the weak convergence and by ‘	’ the matrix transpose. Let
Fi = (. . . , εi−1, εi), i ∈ Z, and define the projection operator

Pi · = E(· | Fi ) − E(· | Fi−1). (3)

In Theorems 1–6, below, we assume that µ = 0 and deal with
∑n

i=1 XiXi−k . As mentioned in
Remark 1, below, they also hold for

∑n
i=1+k XiXi−k = nγ̌k .

Theorem 1. Let k be a fixed nonnegative integer, and let E(Xi) = 0; let

Yi = (Xi, Xi−1, . . . , Xi−k)
	 and �k = (γ0, γ1, . . . , γk)

	.

Assume that εi ∈ L4 and that
∞∑
i=1

i1/2−2β�4(i) < ∞. (4)

Then
1√
n

n∑
i=1

(XiYi − �k) ⇒ N [0, E(D0D
	
0 )], (5)

where D0 = ∑∞
i=0 P0(XiYi) ∈ L2 and P0 is the projection operator (3).

Theorem 1 provides a central limit theorem for sample covariances when the dependence
is relatively weak in the sense that (4) holds. Note that, by properties of slowly varying
functions, (4) is satisfied if 3

4 < β < 1. In the boundary case, β = 3
4 , condition (4) becomes∑∞

i=1 �4(i)/i < ∞, which is a sharp condition for a
√

n-central limit theorem. Indeed, as
indicated by Theorem 3, below, if

∑∞
i=1 �4(i)/i = ∞, then we no longer have a

√
n-central

limit theorem, though the asymptotic normality still holds. Similar results have been obtained
in Hosking (1996), Hall and Hyde (1980, pp. 148–153), Wu and Min (2005), among others.
However, the results therein are not as sharp and general as Theorem 1. For example, Hosking
(1996) required that limi→∞ �(i) exists, and Proposition 1 of Wu and Min (2005) required
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that
∑∞

i=1 i1/2a2
i < ∞, or

∑∞
i=1 �2(i)/i < ∞, which is stronger than (4) at the boundary case,

β = 3
4 .

Theorem 1 requires k to be bounded. It turns out that, interestingly, under the same condition
(4), we can also have asymptotic normality under the natural and mild condition on kn: kn → ∞
and kn/n → 0. More interestingly, in Theorem 2, below, the limiting distribution N(0, �h) in
(6) does not depend on the speed of kn growing to infinity. This interesting property has been
discovered in Theorem 2 of Wu (2009) which concerns short-range-dependent processes.

Theorem 2. Let Wi = (Xi, Xi−1, . . . , Xi−h+1)
	, where h ∈ N is fixed. Let kn → ∞, kn/n →

0, E(εi) = 0, and εi ∈ L4, and assume that (4) holds. Then we have

1√
n

n∑
i=1

[XiWi−kn − E(XknW0)] ⇒ N(0, �h), (6)

where �h is an h × h matrix with entries

σab =
∑
j∈Z

γj+aγj+b =
∑
j∈Z

γjγj+b−a =: σa−b, 1 ≤ a, b ≤ h.

A key step in proving Theorems 1 and 2 is that we approximate
∑n

i=1(XiXi−k − γk) by the
martingale

Mn,k =
n∑

l=1

Dl,k, where Dl,k = εl

−1∑
j=−∞

(γk+j + γk−j )εl+j + γk(ε
2
l − E ε2

l ).

See (17) and Lemma 1, below, for more details. Note that D1,k, D2,k, . . . , are martingale
differences. The above martingale approximation provides an interesting insight into the
Bartlett formula for asymptotic distributions of sample covariance functions (see, for example,
Proposition 7.3.1 of Brockwell and Davis (1991)) by noting that

E(Dl,kDl,k′) =
−1∑

j=−∞
(γk+j + γk−j )(γk′+j + γk′−j )‖ε0‖4 + γkγk′κ4,

where κ4 = ‖ε2
0 − E ε2

0‖2. In other words, Dl,k provides a probabilistic representation for the
Bartlett formula.

Theorem 3, below, concerns the boundary case, β = 3
4 , while (4) is violated. Together with

Theorem 1, they give a complete characterization of the asymptotic behavior of γ̂k with bounded
k at the boundary β = 3

4 . A special case of Theorem 3 gives Hosking’s (1996) Theorem 4(ii),
where in his setting the εi are i.i.d. Gaussian and ai ∼ ci−3/4 with some positive constant c. In
the latter case limi→∞ �(i) = c and �̄(n) = ∑n

i=1 �4(i)/i ∼ c4 log n. In Theorem 3, we recall
(1) for Cβ and Theorem 1 for Yi and �k, k ≥ 0. Then C3/4 = 5.244 115 . . . . For h ∈ N, let
Ih = (1, . . . , 1)	 be the column vector of h 1s.

Theorem 3. Assume that E(εi) = 0, εi ∈ L4, β = 3
4 , and �̄(n) = ∑n

i=1 �4(i)/i → ∞. Let G
be a standard normal random variable. Then, for fixed k ≥ 0, we have

1√
n�̄(n)

n∑
i=1

(XiYi − �k) ⇒ 2C3/4‖ε0‖2GIk+1. (7)
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In Theorem 3 it is assumed that k is bounded. It is unclear what is the asymptotic distribution
of

∑n
i=1(XiXi−k − γk) if k = kn → ∞ with kn = o(n). We conjecture that it is still

asymptotically normal and pose it as an open problem.
If the dependence is strong enough such that β < 3

4 then we can have a noncentral limit
theorem in that the limiting distribution is the Rosenblatt distribution which is non-Gaussian.
Noncentral limit theorems have a long history; see Rosenblatt (1979), Taqqu (1979), Avram
and Taqqu (1987), Ho and Hsing (1997), among others. To define the Rosenblatt distribution,
let B(s), s ∈ R, be a standard Brownian motion. For a ∈ R, let a+ = max(a, 0) be the
nonnegative part of a. For r ∈ N and β < 1

2 + 1/(2r), define the multiple Wiener–Itô (MWI)
integral

Rr,β = cr,β

∫
Sr

{∫ 1

0

[ r∏
i=1

(v − ui)
+
]−β

dv

}
dB(u1) · · · dB(ur),

where Sr = {(u1, . . . , ur ) : −∞ < u1 < · · · < ur < 1} is a simplex and cr,β is a norming
constant such that ‖Rr,β‖ = 1. For r = 2 and 1

2 < β < 3
4 , we call Rr,β the Rosenblatt

distribution. Note that R1,β is Gaussian and, for all r > 1, Rr,β is non-Gaussian (see Taqqu
(1979)). For a review of the MWI integral, see Giraitis and Taqqu (1999) and Major (1981,
pp. 22–37). For r ∈ N with r < 1/(2β − 1), define

σ 2
n,r = n2−r(2β−1)�2r (n)‖ε0‖2r

[∫ ∞
0 (x + x2)−β dx]r

r! [1 − r(β − 1/2)][1 − r(2β − 1)] . (8)

Recall Theorem 2 for Wi .

Theorem 4. Assume that E(εi) = 0, εi ∈ L4, 1
2 < β < 3

4 , �(i + 1)/�(i) − 1 = O(1/i), and
kn/n → 0. Then

1

σn,2

n∑
i=1

[XiWi−kn − E(XknW0)] ⇒ 2R2,βIh. (9)

Theorem 4 allows for a very wide range of kn, which can be bounded as well as unbounded.
An interesting feature of this theorem is that the limiting distribution R2,β does not depend on
kn, regardless of whether it is bounded or not. Chung (2002) pointed out that, in the situation
that the lag is bounded, the limiting distribution does not depend on the lag. The phenomenon
in (9) is interestingly different from Theorems 1 and 2, the mild long-memory case. The latter
two theorems assert different limiting distributions in the sense that the asymptotic variances
are different, depending on whether kn is bounded or not.

In Theorems 1–4, we assume that εi ∈ L4. If εi does not have a finite fourth moment
then we may have weak convergence to stable distributions. Recently, Horváth and Kokoszka
(2008) obtained various types of convergence rates and limiting distributions, depending on the
heaviness of tails and the strength of dependence. In their treatment, however, they assumed that
k was bounded. For Theorem 5, below, we assume that ε2

i − E ε2
i is in the domain of attraction

of a stable distribution Zα with index α ∈ (1, 2) (see Chow and Teicher (1988, pp. 448–457)),
namely there exists a slowly varying function �0(·) such that∑n

i=1(ε
2
i − E ε2

i )

n1/α�0(n)
⇒ Zα. (10)

In this case the asymptotic behavior of γ̌k depends in a very interesting way on the heavy tail
index α, the long memory index β, and the lag index λ. Here we let the lag kn be of the form
nλ�1(n), where λ ∈ (0, 1) and �1 is a slowly varying function.
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Theorem 5. Assume that (10) holds with 1 < α < 2 and 3
4 < β < 1. Let kn = nλ�1(n), where

λ ∈ (0, 1) and �1 is a slowly varying function.

(i) If λ > (α−1 − 2−1)/(2β − 1) then (6) holds.

(ii) If λ < (α−1 − 2−1)/(2β − 1) then

1

γknn
1/α�0(n)

n∑
i=1

[XiWi−kn − E(XknW0)] ⇒ ZαIh. (11)

In Theorem 5, cases (i) and (ii) suggest the dichotomy phenomenon: for small λ, we have
the weak convergence to stable distributions, while, for large λ, we still have the conventional
central limit theorem. A similar phenomenon has been discovered in Csörgő and Mielniczuk
(2000) for kernel estimation of long-memory processes. They showed that large and small
bandwidths correspond to different asymptotic distributions of the kernel estimates. See also
Surgailis (2004), Sly and Heyde (2008), Mikosch et al. (2002), and Hsieh et al. (2007) for similar
observations under different settings. In Theorem 5, the lag parameter kn plays a similar role.
Theorem 5 does not cover the boundary case λ = (α−1 − 2−1)/(2β − 1). In this case the
situation is more subtle since the growth rates of the slowly varying functions �(·), �0(·), and
�1(·) will be involved in the limiting distribution. We decide not to pursue the boundary case
since the involved manipulations seem quite tedious.

If the dependence of (Xi) is sufficiently strong such that 1
2 < β < 3

4 , then we have a different
type of dichotomy. As asserted by Theorem 6, below, the limiting distributions for large and
small lags are Rosenblatt and stable distributions, respectively.

Theorem 6. Assume that (10) holds with 1 < α < 2, 1
2 < β < 3

4 , and �(i + 1)/�(i) − 1 =
O(1/i). Let kn = nλ�1(n), where λ ∈ (0, 1) and �1 is a slowly varying function.

(i) If 2 − 2β > λ(1 − 2β) + α−1 then (9) holds.

(ii) If 2 − 2β < λ(1 − 2β) + α−1 then (11) holds.

Remark 1. It is easily seen that Theorems 1–6 are still valid if the sums
∑n

i=1 therein are
replaced by

∑n
i=1+kn

under the condition that kn = o(n). For example, let us consider (9) of
Theorem 4. Define n∗ = n − kn. By (9) and stationarity,

1

σn∗,2

n∑
i=1+kn

(XiXi−kn − γkn) ⇒ 2R2,β .

Since n∗/n → 1, we have n
2−2β∗ �2(n∗)/[n2−2β�2(n)] → 1 by properties of slowly varying

functions and, hence,

nγ̌kn − (n − kn)γkn

σn,2
= 1

σn,2

n∑
i=1+kn

(XiXi−kn − γkn) ⇒ 2R2,β . (12)

Similar claims can be made for other theorems. Additionally, the term (n − kn)γkn in (12)
can be replaced by nγkn since knγkn = O[k2−2β

n �2(kn)] = o(
√

n) if 3
4 < β < 1, knγkn =

o[√n�2(n)] = o[
√

n�̄(n)] if β = 3
4 , and knγkn = o(σn,2) if 3

4 > β > 1
2 .
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Remark 2. Under the dependence condition (4), the sample covariance estimator (2) is asymp-
totically close to γ̌k := n−1 ∑n

i=k+1 XiXi−k since

n E |γ̂k − γ̌k| ≤ E

∣∣∣∣X̄n

n∑
i=k+1

Xi

∣∣∣∣ + E

∣∣∣∣X̄n

n∑
i=k+1

Xi−k

∣∣∣∣ + E|(n − k)X̄2
n|

≤ 2‖X̄n‖σn−k,1 + n‖X̄n‖2

= O[n2−2β�2(n)],
and n2−2β�2(n) = o(

√
n) if 3

4 < β < 1 and n2−2β�2(n) = o(
√

n�̄(n)) if β = 3
4 . With simple

manipulations, we conclude that Theorems 1–3 and 5 continue to hold if Xi therein is replaced
by Xi − X̄n.

If 1
2 < β < 3

4 then the difference between γ̂k and γ̌k is no longer negligible; see Hosking
(1996), Dehling and Taqqu (1991), and Yajima (1992). Corollary 1, below, provides the
asymptotic distribution of γ̂k .

Corollary 1. Let 1
2 < β < 3

4 . Then, under the conditions of Theorem 4 or Theorem 6(i),
we have

1

σn,2

n∑
i=1+kn

[(Xi − X̄n)(Xi−kn − X̄n) − γkn ] ⇒ 2R2,β − 2(3 − 4β)1/2

(1 − β)1/2(3 − 2β)
R2

1,β . (13)

Under Theorem 6(ii), (11) still holds if Xi therein is replaced by Xi − X̄n.

3. Proofs

This section provides proofs for the results in Section 2. Without loss of generality, we
assume that ‖ε0‖ = 1 throughout the proofs. Let κ4 = ‖ε2

i − 1‖2 if εi ∈ L4. Define ai = 0
if i < 0, and let Ai = ∑∞

j=i a2
j . By Karamata’s theorem, An ∼ �2(n)n1−2β/(2β − 1) =

O(na2
n). Let

γ̇h =
∑
i∈Z

|aiai−h|.

Then, again by Karamata’s theorem, as in (1), both γh and γ̇h ∼ |h|1−2β�2(|h|)Cβ as |h| → ∞.
Note that γ̇h = γh if all ai ≥ 0.

3.1. Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need the following lemma. With this lemma, we shall first
prove Theorem 2 and then prove Theorem 1.

Lemma 1. Let i, k ≥ 0. Assume that εi ∈ L4. Then

‖P0(XiXi−k)‖ ≤ |ai |A1/2
i−k+1 + |ai−k|A1/2

i+1 + |aiai−k|‖ε2
0 − 1‖. (14)

Note that the above bound is |ai |A1/2
0 if i < k. Additionally, under (4), we have

sup
i1,i2,k

∥∥∥∥
i2∑

i=i1

P0(XiXi−k)

∥∥∥∥ = O(1) (15)
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and

lim
g→∞ sup

k

∥∥∥∥
∞∑

i=g

P0(XiXi−k)

∥∥∥∥ = 0. (16)

For l ∈ Z, let Dl,k = ∑
i∈Z

Pl (XiXi−k). Then

Dl,k = εl

−1∑
j=−∞

(γk+j + γk−j )εl+j + γk(ε
2
l − 1). (17)

Proof. Observe that P0(εj εj ′) = 0 if jj ′ = 0, and P0ε
2
0 = ε2

0 − 1. Then

P0(XiXi−k) =
∑

j,j ′∈Z

ai−j ai−k−j ′P0(εj εj ′)

= ε0

−1∑
j ′=−∞

aiai−k−j ′εj ′ + ε0

−1∑
j=−∞

ai−j ai−kεj + aiai−k(ε
2
0 − 1), (18)

which implies (14). Since γ̇h = ∑
i∈Z

|aiai−h| ∼ |h|1−2β�2(|h|)Cβ as |h| → ∞, we have

−1∑
j ′=−∞

( i2∑
i=i1

aiai−k−j ′
)2

≤
−1∑

j ′=−∞
γ̇ 2
k+j ′ = O(1).

By (18), (15) follows from a similar argument for
∑i2

i=i1
ai−j ai−k . We now prove (16). By

Schwarz’s inequality, (
∑∞

i=g aiai−k−j ′)2 ≤ AgA0 → 0 as g → ∞. By Lebesgue’s dominated
convergence theorem, as g → ∞,

sup
k

−1∑
j ′=−∞

( ∞∑
i=g

aiai−k−j ′
)2

≤ sup
k

∞∑
j ′=−∞

min(γ̇ 2
k+j ′ , AgA0) → 0.

With a similar treatment for
∑∞

i=g ai−j ai−k , we have (16) since (
∑∞

i=g aiai−k)
2 ≤ AgA0.

Since γh = ∑
i∈Z

aiai+h, (18) implies (17) with l = 0. The case in which l = 0 follows
similarly.

3.1.1. Proof of Theorem 2. Recall (17) of Lemma 1 for Dl,k . Let Mn,k = ∑n
l=1 Dl,k and

Sn,k = ∑n
l=1 XlXl−k − nγk . Due to the orthogonality of Pr , r ∈ Z, we have

‖Sn,kn − Mn,kn‖2 =
( 0∑

r=−∞
+

n∑
r=1

)
‖Pr (Sn,kn − Mn,kn)‖2. (19)

If r ≤ −3kn and 1 ≤ i ≤ n, by (14) of Lemma 1 and since Aj = O(ja2
j ) as j → ∞,

‖Pr (XiXi−kn)‖ = O(
√

i − r − kn|ai−rai−r−kn |) = O(bi−r ),

where bj = j1/2−2β�2(j), j ∈ N. For r ≤ −3kn, we have PrMn,kn = 0 and

‖Pr (Sn,kn − Mn,kn)‖ ≤
n∑

i=1

‖PrXiXi−kn‖ =
n∑

i=1

O(bi−r ). (20)
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Let p ∈ (1, (2β − 1)−1) and q = p/(p − 1). By Hölder’s inequality, if 3kn ≤ r ≤ n,∑n
i=1 bi+r ≤ (

∑n
i=1 b

p
i+r )

1/pn1/q . By Karamata’s theorem,
∑∞

i=r b
p
i = O(rb

p
r ) since p( 1

2 −
2β) < −1. Hence, since 2(1/p + 1

2 − 2β) > −1, again by Karamata’s theorem,

n∑
r=3kn

( n∑
i=1

bi+r

)2

=
n∑

r=1

O[(r1/pbrn
1/q)2]

= nO[(n1/pbnn
1/q)2]

= O[n4−4β�4(n)]
= o(n). (21)

If r > n then
∑n

i=1 bi+r = O(nbr ). Since 1 − 4β < −1, by Karamata’s theorem,

∞∑
r=1+n

( n∑
i=1

bi+r

)2

=
∞∑

r=1+n

O(n2b2
r ) = n3O(b2

n) = o(n). (22)

If 1 ≤ r ≤ n, Pr (Sn,kn − Mn,kn) = −∑∞
i=n+1 Pr (XiXi−kn). By stationarity and (16),

n−3kn∑
r=1

‖Pr (Sn,kn − Mn,kn)‖2 =
n∑

g=1+3kn

∥∥∥∥
∞∑

i=g

P0(XiXi−kn)

∥∥∥∥
2

= o(n). (23)

Hence, by (15) of Lemma 1, since kn = o(n), we have, by (19) and (20)–(23),

‖Sn,kn − Mn,kn‖2 = o(n). (24)

It remains to show the central limit theorem for Mn,kn . For a fixed m ∈ N, let

M̃n,k =
n∑

l=1

D̃l,k, where D̃l,k = εl

−k+m∑
j=−k−m

γk+j εl+j .

Since Dl,k − D̃l,k, l = 1, 2, . . . , are martingale differences,

‖M̃n,k − Mn,k‖√
n

= ‖D0,k − D̃0,k‖

≤ |γk|‖ε2
0 − 1‖ +

( −1∑
j=−∞

γ 2
k−j

)1/2

+
( −1∑

j=−∞
γ 2
k+j 1{|j+k|>m}

)1/2

.

Since γk → 0 as k → ∞ and
∑

g∈Z
γ 2
g < ∞, we have

lim sup
m→∞

lim sup
n→∞

‖M̃n,k − Mn,k‖√
n

= 0. (25)

We shall now apply the martingale central limit theorem for M̃n,kn/
√

n. By the mean ergodic
theorem, since m is fixed, we have

1

n

n∑
l=1

E(D̃2
l,k | Fl−1) = 1

n

n∑
l=1

( −k+m∑
j=−k−m

γk+j εl+j

)2

→
m∑

j=−m

γ 2
j
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in probability. Let η = ε0
∑m

j=−m γj εj−m−1. For any λ > 0, since

lim
n→∞ E(D̃2

l,k 1{|D̃l,k |≥λ
√

n}) = lim
n→∞ E(η2 1{|η|≥λ

√
n}) = 0,

which implies the Lindeberg condition. Hence, M̃n,k/
√

n ⇒ N(0,
∑m

j=−m γ 2
j ), and the theo-

rem follows from (24) and (25).

3.1.2. Proof of Theorem 1. A careful check of the proof of Theorem 2 reveals that, under (4), (24)
still holds if kn is bounded. Namely, for fixed k, we have ‖Sn,k −Mn,k‖2 = o(n). Then we can
just apply the classical martingale central limit theorem and obtain Mn,k/

√
n ⇒ N(0, ‖D0,k‖2).

Then (5) easily follows from the Cramer–Wold device.

3.2. Proof of Theorem 3

The treatment of the boundary case, β = 3
4 , is very intricate. Here we will apply the

martingale approximation technique (see Wu and Woodroofe (2004)). We first deal with the
case in which k = 0. Let

Vj = X2
j − γ0 −

∞∑
l=0

a2
l (ε

2
j−l − 1). (26)

We shall approximate
∑n

j=1 Vj by
∑n

j=1 Dj,n, where

Dj,n = εj

∞∑
h=1

2cn,hεj−h, where cn,h =
n−1∑
i=0

aiai+h. (27)

Note that D1,n, D2,n, . . . , Dn,n are martingale differences. Let

Rn =
n∑

j=1

(Vj − Dj,n).

Next we shall control ‖Rn‖. Since the Ph, h ∈ Z, are orthogonal,

‖Rn‖2 =
( −n∑

h=−∞
+

0∑
h=1−n

+
n∑

h=1

)
‖PhRn‖2. (28)

If h ≤ −n then PhRn = ∑n
i=1 PhVi , and, by independence,

−n∑
h=−∞

‖PhRn‖2 =
−n∑

h=−∞

∥∥∥∥
n∑

i=1

2ai−hεh

∞∑
j=1

ai−h+j εh−j

∥∥∥∥
2

≤ 4
−n∑

h=−∞

∞∑
j=1

( n∑
i=1

ai−hai−h+j

)2

=
−n∑

h=−∞

∞∑
j=1

O(n|a−haj−h|)2

=
−n∑

h=−∞
O(n2a2−h|h|a2−h|)

= o(n�̄(n)). (29)
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In (29) we have applied Karamata’s theorem by noting the fact that, if h ≤ −n and 1 ≤ i ≤ n,
then ai−h = O(a−h). By Lemma 4 of Wu and Min (2005), �4(n) = o(�̄(n)).

Let δ ∈ (0, 1
2 ). For 1 + �nδ� ≤ h ≤ 2n and 1 ≤ j ≤ n, we have

2n∑
l=h

|alal+j | =
2n∑
l=1

O(a2
n) = O(n−1/2�2(n)) = n−1/2o[�̄(n)1/2]. (30)

Therefore, since γ̇j ∼ j−1/2�2(j)Cβ , we have
∑n

j=1 γ̇ 2
j ∼ �̄(n)C2

β . By (30),

lim sup
n→∞

∑n
h=1

∑n
j=1(

∑2n
l=h |alal+j |)2

n�̄(n)
≤ lim sup

n→∞

∑�nδ�
h=1

∑n
j=1(

∑2n
l=h |alal+j |)2

n�̄(n)

+ lim sup
n→∞

∑n
h=1+�nδ�

∑n
j=1(

∑2n
l=h |alal+j |)2

n�̄(n)

≤ lim sup
n→∞

∑�nδ�
h=1

∑n
j=1 γ̇ 2

j

n�̄(n)

= δC2
β. (31)

Since δ > 0 can be arbitrarily small,
∑n

h=1
∑n

j=1(
∑2n

l=h |alal+j |)2 = o[n�̄(n)]. Next,

∑n
h=1

∑∞
j=1+n(

∑2n
l=h |alal+j |)2

n�̄(n)
=

∑n
h=1

∑∞
j=1+n O(a2

j )(
∑2n

l=h |al |)2

n�̄(n)

= nO(na2
n)(

∑2n
l=1 |al |)2

n�̄(n)

= O(�4(n))

�̄(n)

= o(1). (32)

We now deal with the sums
∑0

h=1−n and
∑n

h=1 in (28). By (31) and (32),

0∑
h=1−n

‖PhRn‖2 =
0∑

h=1−n

∥∥∥∥
n∑

i=1

2ai−hεh

∞∑
j=1

ai−h+j εh−j

∥∥∥∥
2

≤ 4
0∑

h=1−n

∞∑
j=1

( n∑
i=1

ai−hai−h+j

)2

= o[n�̄(n)]. (33)

For 1 ≤ h ≤ n, we have

PhRn =
n∑

i=h

PhVi − Dh,n =
n+h−1∑
i=n+1

PhVi.
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By stationarity, (31), and (32),

n∑
h=1

‖PhRn‖2 =
n∑

h=1

∥∥∥∥
n+h−1∑
i=n+1

PhVi

∥∥∥∥
2

=
n∑

h=1

∥∥∥∥
n−1∑

l=n+1−h

P0Vl

∥∥∥∥
2

≤ 4
n∑

h′=1

∞∑
j=1

(n−1∑
l=h′

alal+j

)2

= o[n�̄(n)]. (34)

Therefore, by (28) we have
‖Rn‖2 = o[n�̄(n)]. (35)

We now further approximate
∑n

i=1 Di,n by

n∑
i=1

Hi, where Hi = Hi,n = εi

n∑
j=1

2γj εi−j . (36)

Note that ‖Hi‖2 = 4
∑n

j=1 γ 2
j ∼ 4C2

β

∑n
j=1 �4(j)/j . Since �4(n) = o(�̄(n)), we have

∥∥∥∥
n∑

i=1

Hi −
n∑

i=1

Di,n

∥∥∥∥
2

= o(n�̄(n)) (37)

in view of

n∑
j=1

(cn,j − γj )
2 ≤

n∑
j=1

( ∞∑
i=n

|aiai+j |
)2

=
n∑

j=1

O(nn−2β�2(n))2 = o(�̄(n))

since β = 3
4 . It remains to show that

∑n
i=1 Hi

(n�̄(n))1/2
⇒ N(0, 4C2

β). (38)

To this end, we shall apply the martingale central limit theorem. The Lindeberg condition
trivially holds since

E H 4
i

�̄(n)2
= E(

∑n
j=1 γj ε−j )

4

�̄(n)2
≤ C

(
∑n

j=1 γ 2
j )2

�̄(n)2
= O(1)

for some constant C > 0 in view of Rosenthal’s inequality (see Hall and Heyde (1980, p. 23)).
It then suffices to verify the following convergence of conditional variances:

1

n�̄(n)

n∑
i=1

E(H 2
i | Fi−1) = 4

n�̄(n)

n∑
i=1

( n∑
j=1

γj εi−j

)2

→ 4C2
β (39)
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in probability. By the mean ergodic theorem, E|∑n
j=1 ε2

j − n| = o(n). Hence,

E

∣∣∣∣
n∑

i=1

n∑
j=1

γ 2
j (ε2

i−j − 1)

∣∣∣∣ =
n∑

j=1

γ 2
j o(n) = o(n�̄(n)).

Hence, for (39), it remains to deal with the cross product terms

n∑
i=1

∑
1≤j =j ′≤n

γjγj ′εi−j εi−j ′ =
∑

1−n≤l =l′≤n−1

εlεl′fl,l′ ,

where the coefficients

fl,l′ =
n+min(l,l′,0)∑

i=1+max(l,l′,0)

γi−lγi−l′ .

Note that |fl,l′ | ≤ ∑n
i=1 |γiγi+|l−l′|| =: µ|l−l′|. By independence,

∥∥∥∥
∑

1−n≤l =l′≤n−1

εlεl′fl,l′

∥∥∥∥
2

≤
∑

1−n≤l =l′≤n−1

2f 2
l,l′ ≤ 8n

2n∑
i=1

µ2
i .

Let 0 < δ < 1
2 and l ≥ δn. Then

µl ≤
n∑

i=1

|γi |O(n1−2β�2(n)) = O(�4(n)).

So

lim sup
n→∞

n(
∑nδ

i=1 + ∑2n
i=1+nδ)µ

2
i

n2�̄2(n)
≤ lim sup

n→∞
n2δµ2

0

n2�̄2(n)
= C2

βδ.

Let δ → 0. Then n
∑2n

i=1 µ2
i = o(n2�̄2(n)) and, hence, (39) follows. By the expression of Vj

in (26), since ε2
l − 1 ∈ L2, we have ‖ ∑n

j=1(ε
2
j − 1)‖2 ≤ κ4n and

∥∥∥∥
n∑

j=1

(X2
j − γ0 − Vj )

∥∥∥∥ ≤
∞∑
l=0

a2
l

∥∥∥∥
n∑

j=1

(ε2
j−l − 1)

∥∥∥∥ = O(
√

n). (40)

So, if k = 0, since �̄(n) → ∞, (7) with k = 0 follows from (35), (37), (38), and (40). For the
general case with finite k > 0, we replace Vj in (26) by

Vj,k = XjXj−k − γk −
∞∑
l=0

alal+k(ε
2
j−k−l − 1).

If we replace 2cn,h in (27) by
∑n−1

j=0(ah+j aj−k + ajaj+h−k) and Hj in (36) by

H
(k)
i := εi

n∑
j=1

(γj+k + γj−k)εi−j ,
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using the argument for k = 0, we similarly have

∥∥∥∥
n∑

j=1

(XjXj−k − γk) −
n∑

i=1

H
(k)
i

∥∥∥∥
2

= o(n�̄(n)).

So (7) follows if ‖ ∑n
i=1(Hi − H

(k)
i )‖2 = o(n�̄(n)), which is equivalent to

‖H0 − H
(k)
0 ‖2 =

n∑
j=1

(2γj − γj+k − γj−k)
2 = o(�̄(n)).

By (1), as j → ∞, γj+k/γj → 1. So the above relation holds since �̄(n) → ∞ and∑n
j=1[(γj − γj+k)

2 + (γj − γj−k)
2] = ∑n

j=1 o(γ 2
j ) = o(�̄(n)).

3.3. Proof of Theorem 4

By Lemmas 2 and 3, we have

∥∥∥∥
n∑

i=1

(X2
i − XiXi−kn − γ0 + γkn)

∥∥∥∥
2

= O(nk3−4β
n �4(kn)). (41)

By properties of slowly varying functions we have k
3−4β
n �4(kn) = o(n3−4β�4(n)) under kn =

o(n). It is well known that (see, for example,Avram and Taqqu (1987)), for 1
2 < β < 3

4 , we have

∑n
i=1(X

2
i − γ0)

σn,2
⇒ 2R2,β .

Hence, Theorem 4 follows.

Lemma 2. Assume that εi ∈ L4, 1
2 < β < 3

4 , and kn/n → 0. Then

∥∥∥∥
n∑

i=1

[XiXi−kn − E(XiXi−kn | Fi−kn)]
∥∥∥∥

2

= O(nk3−4β
n �4(kn)) (42)

and ∥∥∥∥
n∑

i=1

[X2
i − E(X2

i | Fi−kn)]
∥∥∥∥

2

= O(nk3−4β
n �4(kn)). (43)

Proof. Let X∗
i = Xi − E(Xi | Fi−kn). Since XiXi−kn − E(XiXi−kn | Fi−kn) = Xi−knX

∗
i ,

n∑
i=1

[XiXi−kn − E(XiXi−kn | Fi−kn)] =
n∑

i=1

Xi−knX
∗
i

=
n∑

j=2−kn

εj

min(n,j+kn−1)∑
i=max(j,1)

ai−jXi−kn . (44)
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Since the εi are i.i.d., (42) follows from the fact that, for −kn ≤ j ≤ n,

∥∥∥∥
min(n,j+kn−1)∑

i=max(j,1)

ai−jXi−kn

∥∥∥∥
2

=
min(n,j+kn−1)∑
i,i′=max(j,1)

ai−j ai′−j E(Xi−knXi′−kn
)

≤
kn−1∑

m=1−kn

|γmγ̇m|

= O(k3−4β
n �4(kn)). (45)

We now prove (43). Since X∗
i = ∑i

j=i−kn+1 ai−j εj , we have

X2
i − E(X2

i | Fi−kn) = (X∗
i )

2 − E(X∗
i )

2 + 2X∗
i

∞∑
g=kn

agεi−g.

Similarly as the argument in (44) and (45) for (42), we have

∥∥∥∥
n∑

i=1

X∗
i

∞∑
g=kn

agεi−g

∥∥∥∥
2

= O(nk3−4β
n �4(kn)).

It therefore remains to verify that

∥∥∥∥
n∑

i=1

[(X∗
i )

2 − E(X∗
i )

2]
∥∥∥∥

2

=
n∑

h=−kn

∥∥∥∥
n∑

i=1

Ph(X
∗
i )

2
∥∥∥∥

2

= O(nk3−4β
n �4(kn)). (46)

To this end, uniformly over h = −kn, 1 − kn, . . . , n, we have

∥∥∥∥
n∑

i=1

Ph(X
∗
i )

2
∥∥∥∥

2

=
∥∥∥∥

min(n,h+kn−1)∑
i=max(h,1)

[
a2
i−h(ε

2
h − 1) + 2ai−hεh

h−1∑
j=i−kn+1

ai−j εj

]∥∥∥∥
2

≤ 2γ 2
0 ‖ε2

0 − 1‖2 + 8

∥∥∥∥
h−1∑

j=max(h,1)−kn+1

εj

min(n,h+kn−1,j+kn−1)∑
i=max(h,1)

ai−j ai−h

∥∥∥∥
2

≤ 2γ 2
0 ‖ε2

0 − 1‖2 + 8
h−1∑

j=max(h,1)−kn+1

γ̇ 2
j−h

≤ 2γ 2
0 ‖ε2

0 − 1‖2 + 8
kn−1∑
m=1

γ̇ 2
m

= O(k3−4β
n �4(kn)).

So (46) holds and the proof of Lemma 2 is now complete.

Lemma 3. Under the conditions of Theorem 4, we have

∥∥∥∥
n∑

i=1

[E(X2
i − XiXi−kn | Fi−kn) − γ0 + γkn ]

∥∥∥∥
2

= O(nk3−4β
n �4(kn)). (47)
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Proof. Let di = ai − ai−kn . For i ≥ kn, we have
∑∞

j=i d2
j ≤ 4Ai−kn , and

‖P0(X
2
i − XiXi−kn)‖ =

∥∥∥∥aiε0

∞∑
j=i+1

dj εi−j + diε0

∞∑
j=i+1

aj εi−j + aidi(ε
2
0 − 1)

∥∥∥∥

≤ |ai |
( ∞∑

j=i+1

d2
j

)1/2

+ |di |A1/2
i+1 + ‖aidi(ε

2
0 − 1)‖

≤ 2|ai |A1/2
i+1−kn

+ |di |A1/2
i+1 + ‖aidi(ε

2
0 − 1)‖. (48)

If i ≥ 2kn, since �(i + 1)/�(i) − 1 = O(1/i), we have ai+1 − ai = O(ai/i) and di =
O(|ai |kn/i). By Karamata’s theorem, since

√
Ai = O(

√
i|ai |), we have, by elementary

calculations,

∞∑
i=2kn

|di |A1/2
i+1 =

∞∑
i=2kn

O

( |ai |kn

i

)
O(

√
i|ai |) = O(k

3/2−2β
n �2(kn)), (49)

∞∑
i=2kn

|ai |A1/2
i+1−kn

=
∞∑

i=2kn

O[|aiai+1−kn |(i + 1 − kn)
1/2] = O(k

3/2−2β
n �2(kn)) (50)

since, for i ≥ 2kn, aiai+1−kn = O(a2
i ), and

∞∑
i=2kn

|aidi | =
∞∑

i=2kn

O

(
a2
i kn

i

)
= O(k1−2β

n �2(kn)). (51)

For kn ≤ i < 2kn, since ai = O(akn), we have

2kn−1∑
i=kn

|ai |A1/2
i+1−kn

= O(akn)

2kn−1∑
i=kn

A
1/2
i+1−kn

= O(k
3/2−2β
n �2(kn)), (52)

and, since
∑2kn−1

i=kn
|di | ≤ 2

∑2kn−1
i=0 |ai | = O(knakn) and Ai+1 = O(kna

2
kn

),

2kn−1∑
i=kn

|di |A1/2
i+1 = O(k

1/2
n |akn |)

2kn−1∑
i=kn

|di | = O(k
3/2−2β
n �2(kn)). (53)

By Theorem 1 of Wu (2007) we have

∥∥∥∥
n∑

i=1

[E(X2
i − XiXi−kn | Fi−kn) − γ0 + γkn ]

∥∥∥∥ ≤ √
n

∞∑
i=0

‖P0 E(X2
i − XiXi−kn | Fi−kn)]‖

= √
n

∞∑
i=kn

‖P0(X
2
i − XiXi−kn)‖,

which, by inequalities (48)–(53), implies (47).
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3.4. Proof of Theorem 5

As (26), we define

Vj,k = XjXj−k − γk −
∞∑
l=0

alal+k(ε
2
j−k−l − 1). (54)

A careful check of the proof of Theorem 2 implies that (6) holds if XiXi−k − γk therein is
replaced by Vi,k . Indeed, if XiXi−k in Lemma 1 is replaced by Vi,k , then (14) becomes

‖P0Vi,k‖ ≤ |ai |A1/2
i−k+1 + |ai−k|A1/2

i+1

under the condition εi ∈ L2 and we do not need to impose εi ∈ L4. Also, (15) and (16) hold
with XiXi−k therein being replaced by Vi,k , and the approximating martingale differences Dl,k

in (17) now become

D◦
l,k = εl

−1∑
j=−∞

(γk+j + γk−j )εl+j .

The proof of Theorem 2 is still valid if we replace Mn,k by M◦
n,k = ∑n

l=1 D◦
l,k .

Let p satisfy α > p > max(1, αλ) and (2β − 1)(1 − λ) + α−1 > p−1. Since β > 1
2 and

λ ∈ (0, 1), such a p always exists. Since ε2
i − 1 satisfies (10) and p < α, E|ε2

i − 1|p < ∞.
(i) By the argument above, it suffices to show that

Qn :=
n∑

j=1

∞∑
l=0

alal+kn(ε
2
j−kn−l − 1) =

∑
g∈Z

n∑
j=1

aj−gaj−g+kn(ε
2
g−kn

− 1)

satisfies ‖Qn‖p = o(
√

n). By Burkholder’s and Minkowski’s inequalities,

‖Qn‖p
p ≤ Cp

∑
g∈Z

∣∣∣∣
n∑

j=1

aj−gaj−g+kn

∣∣∣∣
p

‖ε2
0 − 1‖p

p

= O(1)

0∑
g=−∞

∣∣∣∣
n∑

j=1

aj−gaj−g+kn

∣∣∣∣
p

+ O(n)

∣∣∣∣
n∑

j=0

|ajaj+kn |
∣∣∣∣
p

.

Since λ > (α−1 −2−1)/(2β −1), we can choose a p < α such that p−1 +λ(1−2β) < 2−1. So

n

∣∣∣∣
n∑

j=0

|ajaj+kn |
∣∣∣∣
p

= O(nγ̇
p
kn

) = O{[n1/pk1−2β
n �2(kn)]p} = o(

√
n

p
),

since kn = nλ�1(n) and �1 is a slowly varying function. Hence, similarly,

0∑
g=1−n

∣∣∣∣
n∑

j=1

aj−gaj−g+kn

∣∣∣∣
p

≤ n

∣∣∣∣
2n∑

j=1

|ajaj+kn |
∣∣∣∣
p

= o(
√

n
p
).

If g ≤ −n, by properties of slowly varying functions, for 1 ≤ j ≤ n and kn < n, aj−gaj−g+kn =
O(a2−g). Hence,

−n∑
g=−∞

∣∣∣∣
n∑

j=1

aj−gaj−g+kn

∣∣∣∣
p

=
−n∑

g=−∞
O[(na2−g)

p] = O(np+1a
2p
n ) = o(

√
n

p
)

in view of 2−1 + p−1 < 2β since 1 < p < 2 and β > 3
4 .
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(ii) We first show that (11) holds with h = 1. Introduce

Tn = Tn,kn =
n∑

j=1

∞∑
l=0

alal+kn(ε
2
j−kn−l − 1) − γkn

n∑
j=1

(ε2
j−kn

− 1).

Under 2−1 < λ(1 − 2β) + α−1, we have n1/2 = o[γknn
1/α�0(n)]. Since (6) holds with

XiXi−kn − γkn therein being replaced by Vi,kn , by (10), it suffices to show that

‖T ◦
n ‖p = o[γknn

1/α�0(n)], (55)

where

T ◦
n :=

n∑
j=1

∞∑
l=0

alal+kn(ε
2
j−l − 1) − γkn

n∑
j=1

(ε2
j − 1)

has the same distribution as Tn. To this end, note that PlT
◦
n , l = −∞, . . . , n − 1, n, are

martingale differences, we have, by Burkholder’s and Minkowski’s inequalities,

‖T ◦
n ‖p

p ≤ Cp

( 0∑
l=−∞

+
n∑

l=1

)
‖PlT

◦
n ‖p

p

≤ Cp‖ε2
0 − 1‖p

p

( 0∑
l=−∞

∣∣∣∣
n∑

j=1

aj−laj−l+kn

∣∣∣∣
p

+
n∑

l=1

∣∣∣∣
n∑

j=1

aj−laj−l+kn − γkn

∣∣∣∣
p)

. (56)

We shall apply the technique in (28)–(35). Clearly,

n∑
l=1

∣∣∣∣
n∑

j=1

aj−laj−l+kn − γkn

∣∣∣∣
p

=
n∑

l′=1

∣∣∣∣
∞∑

j=l′
ajaj+kn

∣∣∣∣
p

.

If j ≥ kn then ajaj+kn = O(a2
j ). Hence,

n∑
l=kn

∣∣∣∣
∞∑
j=l

aj aj+kn

∣∣∣∣
p

=
n∑

l=kn

∣∣∣∣
∞∑
j=l

O(a2
j )

∣∣∣∣
p

=
n∑

l=kn

O[(la2
l )

p] =
n∑

l=kn

O[lp(1−2β)�2p(l)]. (57)

If p(1 − 2β) > −1 then, by Karamata’s theorem, the above term is O[n1+p(1−2β)�2p(n)],
which is o[k1−2β

n �2(kn)n
1/α�0(n)] = o[γknn

1/α�0(n)] since 1+p(1−2β) < λ(1−2β)+α−1.
If p(1 − 2β) ≤ −1, it is easily seen that the above term is o(

√
n), which is o[γknn

1/α�0(n)]
since 2−1 < α−1 + λ(1 − 2β).

Since λ < p/α, we have

kn−1∑
l=0

∣∣∣∣
∞∑
j=l

aj aj+kn

∣∣∣∣
p

= O(knγ
p
kn

) = o[γknn
1/α�0(n)]p. (58)

If l ≥ n and 1 ≤ j ≤ n, then (
∑n

j=1 |aj+laj+l+kn |)p = O[(na2
l )

p]. By Karamata’s
theorem,

∞∑
l=n

∣∣∣∣
n∑

j=1

aj+laj+l+kn

∣∣∣∣
p

=
∞∑
l=n

O[(na2
l )

p] = O(np+1a
2p
n ) = o[γknn

1/α�0(n)]p, (59)
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since 1 + p(1 − 2β) < pλ(1 − 2β) + p/α. Hence, by (56)–(59) we have

‖T ◦
n ‖p

p ≤ Cp

∞∑
l=0

∣∣∣∣
n∑

j=1

aj+laj+l+kn

∣∣∣∣
p

+ Cp

n∑
l′=1

∣∣∣∣
∞∑

j=l′
ajaj+kn

∣∣∣∣
p

= o[γknn
1/α�0(n)]p,

which implies (55) and, hence, case (ii) with h = 1. For the case with h > 1, let

Uk = γk

n∑
j=1

(ε2
j−k − 1).

By (1), γkn − γkn+h = o(γkn). So (11) follows from (55) and

Ukn − Ukn+h = (γkn − γkn+h)

n∑
j=1

(ε2
j−kn

− 1) + γkn+hOP(1) = oP(Ukn) + γkn+hOP(1).

3.5. Proof of Theorem 6

The argument in the proof of Theorem 5 can be easily modified to prove Theorem 6. For
Vj,k defined in (54), under 1

2 < β < 3
4 , we can similarly have the noncentral limit theorem∑n

j=1 Vj,k/σn,2 ⇒ 2R2,β . Then we need to compare the magnitudes of n2−2β�2(n) and
γknn

1/α�0(n). Under (i), the former is larger, and we have the noncentral limit theorem (9);
under (ii), we have the convergence in stable distribution (11). The details are omitted since
there will be no essential extra difficulties involved.

3.6. Proof of Corollary 1

By Lemma 4, ‖∑m
i=1 Xi‖ ∼ σm,1. Since γ̌k = n−1 ∑n

i=k+1 XiXi−k , by simple algebra,

E[|n(γ̂kn − γ̌kn + X̄2
n)|] = E

∣∣∣∣X̄n

n∑
i=n−kn+1

Xi + X̄n

kn∑
i=1

Xi − knX̄
2
n

∣∣∣∣

≤ 2σn,1σkn,1

n
+ knσ

2
n,1

n2

= o[n2−2β�2(n)], (60)

in view of kn = o(n). Let Yn,r be as given in (61), below. Then Yn,1 = nX̄n and

nγ̌0 =
n∑

i=1

X2
i = 2Yn,2 +

n∑
i=−∞

( n∑
t=1

a2
t−i

)
ε2
i .

By Lemma 4, below, we have the joint convergence (Yn,1/σn,1, Yn,2/σn,2) ⇒ (R1,β , R2,β).
Hence, by (60), we have (13) in view of (41), and, by elementary calculations,

σ 2
n,1

nσn,2
→ 2(3 − 4β)1/2

(1 − β)1/2(3 − 2β)
.

Under (ii) of Theorem 6, since n2−2β�2(n) = o(γknn
1/α�0(n)), it is easily seen that (11) still

holds if Xi therein is replaced by Xi − X̄n.
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Lemma 4. Assume that E(εi) = 0 and εi ∈ L2. Recall (8) for σn,r . Let

Yn,r =
n∑

t=1

∑
0≤j1<···<jr

r∏
s=1

ajs εt−js , r ≥ 1, Yn,0 = n. (61)

For r ∈ N with r(2β − 1) < 1, we have E(Y 2
n,r ) ∼ σ 2

n,r and the joint convergence
(

Yn,1

σn,1
, . . . ,

Yn,r

σn,r

)
⇒ (R1,β , . . . , Rr,β). (62)

Lemma 4 can be proved by using the same argument as that of Lemma 5 in Surgailis (1982).
A careful check of the proof of his Lemma 5 suggests that the moment condition εi ∈ L2

suffices and the joint convergence (62) holds. We omit the details of the derivation.
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