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Abstract

We consider kernel density and regression estimation for a wide class of nonlinear time series models.
Asymptotic normality and uniform rates of convergence of kernel estimators are established under mild
regularity conditions. Our theory is developed under the new framework of predictive dependence measures
which are directly based on the data-generating mechanisms of the underlying processes. The imposed
conditions are different from the classical strong mixing conditions and they are related to the sensitivity
measure in the prediction theory of nonlinear time series.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal work of Engle [13] on ARCH models (autoregressive models with
conditional heteroscedasticity) and Tong [37] on TAR (threshold autoregressive) models,
nonlinear time series has received considerable attention. Since then a variety of new nonlinear
time series models have been proposed. Empirical evidence has been found in many disciplines
including computer networks, communication, econometrics, electrical engineering, finance,
geology, hydrology and other areas that the underlying random processes exhibit nonlinearity and
so the classical ARMA and ARIMA (autoregressive integrated moving-average) based models
would be inappropriate. See the excellent monographs of Priestley [29], Tong [38], Fan and
Yao [16] and Tsay [40] for examples of nonlinear time series and the related statistical inference.
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A fundamental problem in the study of nonlinear time series is that of unveiling the data-
generating mechanisms that govern the observed time series. Nonparametric methods provide
a powerful way to infer the underlying mechanisms and only mild structural assumptions are
needed. An important nonparametric procedure is the kernel method. There is an extensive
literature on the kernel estimation theory for independent and identically distributed (iid)
observations; see, for example, [36,8,43,28,25,14]. Further references can be found in [16].

In time series analysis, however, observations are typically dependent. The dependence is the
rule rather than the exception and is actually one of the primary goals of study. In the literature a
commonly adopted framework for dependence is the strong mixing condition which asserts that
the observations are asymptotically independent as the lags increase. Specifically, a stationary
process {X t }t∈Z is said to be strong mixing if the strong mixing coefficients

αn := sup{|P(A ∩ B)− P(A)P(B)| : A ∈ A0
−∞, B ∈ A∞

n } → 0, (1)

where A j
i = σ(X i , . . . , X j ), i ≤ j . Variants of strong mixing conditions include ρ-mixing,

ψ-mixing, β-mixing conditions among others [4]. A variety of asymptotic results have been
derived under various mixing rates. It is impossible to give a complete list of references
here. Representative results are [32,35,5,17] and [3] among others. Rosenblatt [31], Yu [49],
Neumann [26] and Neumann and Kreiss [27] deal with β-mixing processes. Further references
are given in the excellent reviews by Hardle et al. [20] and Tjostheim [39]. A comprehensive
account of nonparametric time series analysis is presented in [16] where numerous asymptotic
results are presented under various strong mixing conditions.

This paper advances the nonparametric estimation theory for nonlinear time series under a
new framework which is different from the one based on the classical strong mixing conditions.
In particular, we shall implement the dependence measures proposed in [46] and present a unified
asymptotic theory for kernel density and regression estimators. A huge class of time series
models can be represented in the form

Xn = J (. . . , εn−1, εn), (2)

where J is a measurable function and εn, n ∈ Z, are iid random variables; see [41,33,22,29,38].
Clearly (2) defines a stationary and causal process. We interpret (2) as a physical system with
Fn = (. . . , εn−1, εn) being the input, J being a filter and Xn being the output. Then it is natural
to interpret the dependence as the degree of dependence of the output Xn on the input Fn , which
is a sequence of innovations that drive the system.

The paper is organized as follows. Section 2 introduces predictive dependence measures [cf.
(8) and (10)], which basically quantify the degree of dependence of outputs on inputs. With those
dependence measures, we present an asymptotic theory in Sections 2 and 3 for kernel density
and regression estimation of time series. Section 4 contains applications to linear and nonlinear
processes. Proofs are given in Section 6.

Our results have several interesting features: (i) the predictive dependence measures have nice
input/output interpretations and they are directly related to the data-generating mechanisms; (ii)
with the martingale theory, the predictive dependence measures are easy to work with; (iii) on the
basis of the dependence measures, sharp results can be obtained and (iv) our conditions have a
close connection with the sensitivity measure, an important quantity appearing in the prediction
theory of stochastic processes. We expect our method and framework to be useful for other
problems in time series analysis.
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We now introduce some notation. For a random variable X , write X ∈ L p, p > 0, if
‖X‖p := [E(|X |

p)]1/p < ∞, and ‖ · ‖ := ‖ · ‖2. We say that a function g is Lipschitz
continuous on a set A with index 0 < ι ≤ 1 if there exists a constant Cg < ∞ such that
|g(x) − g(x ′)| ≤ Cg|x − x ′

|
ι for all x, x ′

∈ A. In this case, write g ∈ Cι(A). The notation C
denotes a constant whose value may vary from line to line. For a sequence of random variables
(ηn) and a sequence of positive numbers (dn), write ηn = oa.s.(dn) if ηn/dn converges to 0
almost surely and ηn = Oa.s.(dn) if ηn/dn is almost surely bounded. We can similarly define the
relations oP and OP. Let N (µ, σ 2) denote a normal distribution with mean µ and variance σ 2.

2. Kernel density estimation

A prerequisite for density estimation is that the marginal density of the process {X t } exists.
Unfortunately, X t given in (2) does not always have a density. A simple sufficient condition
for the existence of marginal density is that the conditional density exists. Recall that Fn =

(. . . , εn−1, εn). For i ∈ Z, l ∈ N, let Fl(x |Fi ) = P(X i+l ≤ x |Fi ) be the l-step-ahead conditional
distribution function of X i+l given Fi and fl(x |Fi ) =

d
dx Fl(x |Fi ) be the conditional density.

Condition 1. There exists a constant c0 < ∞ such that

sup
x∈R

f1(x |F0) ≤ c0 almost surely. (3)

Under Condition 1, it is easily seen that X i has a density f satisfying the relation f (x) =

E[ f1(x |F0)] ≤ c0. Following [30], given the data X1, . . . , Xn , the kernel density estimator of f
at x0 is

fn(x0) =
1

nbn

n−
t=1

K


x0 − X t

bn


=

1
n

n−
t=1

Kbn (x0 − X t ), (4)

where the kernel K satisfies

R K (u)du = 1, Kb(x) = K (x/b)/b and b = bn is a sequence of

bandwidths satisfying the natural condition

bn → 0 and nbn → ∞. (5)

2.1. Dependence measures

To study asymptotic properties of the density estimate fn , it is necessary to impose appropriate
dependence conditions on the underlying process {X t }. Instead of the traditional strong mixing
conditions, we shall use a different dependence measure.

Let {ε′i } be an iid copy of {εi }, F ∗

i = (. . . , ε−2, ε−1, ε
′

0, ε1, . . . , εi ) if i ≥ 0 and F ∗

i = Fi if
i < 0, and X∗

i = J (F ∗

i ). Namely F ∗

i (resp. X∗

i ) is a coupled process of Fi (resp. X i ) with ε0
replaced by an iid copy ε′0. If fk(x |F0) does not depend on ε0, then fk(x |F0) = fk(x |F ∗

0 ). So
the quantity supx ‖ fk(x |F0) − fk(x |F ∗

0 )‖, a distance between the two conditional (predictive)
distributions [Xk |F0] and [X∗

k |F ∗

0 ], measures the contribution of the innovation ε0 in predicting
the future output Xk given F0 by perturbing the input via coupling. For a formal definition, let
p > 1, k ≥ 0 and

θk,p(x) = ‖ f1+k(x |F0)− f1+k(x |F ∗

0 )‖p (6)
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Note that E[ f1(x |Fk)|F0] = f1+k(x |F0). Then

θk,p(x) = ‖E[ f1(x |Fk)− f1(x |F ∗

k )|F0,F ∗

0 ]‖p ≤ ‖ f1(x |Fk)− f1(x |F ∗

k )‖p. (7)

Define the sup-distance

θp(k) = sup
x∈R

θk,p(x) (8)

and the L p integral distance

θ̄p(k) =

[∫
R
θ

p
k,p(x)dx

]1/p

. (9)

Certainly there are other kinds of distances between probability densities, like total variational
distance, Hellinger distance and Kullback–Leibler divergence etc. It turns out that in our problem
it is more convenient to use the supremum distance (8) and the L p distance (9). If f1(·|F0) ∈ C 1,
we define the following distance on the derivatives:

ψk,p(x) = ‖ f ′

1+k(x |F0)− f ′

1+k(x |F ∗

0 )‖p,

ψp(k) = sup
x∈R

ψk,p(x),

ψ̄p(k) =

[∫
R
ψ

p
k,p(x)dx

]1/p

. (10)

These quantities play an important role in the study of asymptotic properties of fn and they allow
us to derive central limit theorems, uniform convergence rates and L p distances of fn(x)− f (x)
in a very natural way. They are easy to work with since they are directly related to the data-
generating mechanism of Xk . In Section 4 we calculate them for the widely used linear processes
and some nonlinear time series. In defining our dependence measures, we require that the
processes are of form (2). Such a requirement is not needed in the classical strong mixing
conditions and the one in [10].

2.2. L p bounds

Let p > 1 and p′
= min(2, p). For a real sequence a = {ai }i∈Z, define

Sp(n; a) =

−
j∈Z


n− j−

i=1− j

|ai |

p′

. (11)

Let θp = {θp(k)}k∈Z, where θp(k) = 0 if k < 0. We similarly define θ̄p, ψp and ψ̄p. Let

Θp(n) = Sp(n; θp), Θ̄p(n) = Sp(n; θ̄p)

Ψp(n) = Sp(n;ψp), Ψ̄p(n) = Sp(n; ψ̄p). (12)

Theorem 1 provides upper bounds for the sup-norm and integral L p norms of fn(x)− E[ fn(x)]
in terms of Θp(n) and Θ̄p(n), respectively.

Theorem 1. Let p > 1. Assume Condition 1,

R |K (v)|dv < ∞ and supv |K (v)| < ∞. Then

sup
x

‖ fn(x)− E[ fn(x)]‖p = O[(nbn)
−1/2

+ Θ1/p′

p (n)/n], (13)
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where p′
= min(2, p), and[∫
R

‖ fn(x)− E[ fn(x)]‖
p
pdx

]1/p

= O[(nbn)
1/p′

−1
+ Θ̄1/p′

p (n)/n]. (14)

In Theorem 1, the presence of Θp(n) and Θ̄p(n) is due to the dependence. In the special case
of p = 2, the quantity S2(n; a) is interestingly related to Fejér’s kernel in Fourier analysis. Let
√

−1 be the imaginary unit. For a nonnegative sequence (a j ), let

g(u) =

−
j∈Z

a j e
√

−1 ju, u ∈ R,

be its Fourier transform. Clearly the Fourier transform of the sequence a j+1 +· · ·+a j+n , j ∈ Z,

is g(u)
∑n

k=1 e−
√

−1ku . By Parseval’s identity, we have the Fejér kernel representation

2π S2(n; a) =

∫ 2π

0

g(u) n−
k=1

e−
√

−1ku


2

du =

∫ 2π

0
|g(u)|2

sin2(nu/2)

sin2(u/2)
du. (15)

If the nonnegative sequence (a j ) is summable, assume
∑

j a j = 1 and let the random variable

U have the distribution P(U = j) = a j . Then S2(n; a)/n =


P2(t < U ≤ t + n)dt/n. The
latter quantity is the mean concentration function of U [21]. So it is natural to view Sp(n; a) as
a generalized mean concentration function. Corollary 1 provides the magnitude of Sp(n; a) for
short- and long-range dependent processes, respectively.

Lemma 1. Let a = {ai }i∈Z be a real sequence, p > 1 and p′
= min(2, p). (i) If

∑
i∈Z |ai | <

∞, then Sp(n; a) = O(n) (ii) If ai = O[|i |−βℓ(|i |)], where 1/p′ < β < 1 and ℓ is a slowly
varying function, then Sp(n; a) = O{n[n1−βℓ(n)]p′

}.

Proof. (i) Let c1 =
∑

i∈Z |ai |. Then (
∑n− j

i=1− j |ai |)
p′

≤ cp′
−1

1

∑n− j
i=1− j |ai |, so Sp(n; a) ≤ ncp′

1 .
(ii) Write Sn(n; a) = In + I In , where In =

∑
j :| j |≥2n and I In =

∑
j :| j |<2n (cf (11)). By

Karamata’s theorem,
∑n

l=1 al = O[n1−βℓ(n)]. So I In = O{n[n1−βℓ(n)]p′

}. If | j | ≥ 2n, then∑n− j
i=1− j |ai | = nO[| j |−βℓ(| j |)] and hence In = O{n[n1−βℓ(n)]p′

} by another application of
Karamata’s theorem. �

Corollary 1. Assume that the conditions in Theorem 1 hold. (i) If

∞−
k=0

θp(k) < ∞, (16)

then Θp(n) = O(n) and the bound in (13) becomes O((nbn)
−1/2). Similarly, if

∞−
k=1

θ̄p(k) < ∞, (17)

then Θ̄p(n) = O(n). (ii) Let θp(k) = k−βℓ(k), where 1/p′ < β < 1 and ℓ is a slowly
varying function. Then Θp(n) ∼ n[n1−βℓ(n)]p′

and the bound in (13) becomes O[(nbn)
−1/2

+

n1/p′
−βℓ(n)]. The same bound holds for Θ̄1/p′

p (n) if θ̄p(k) = k−βℓ(k).
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Note that the quantity θp(k) = supx ‖ f1+k(x |F0)− f1+k(x |F ∗

0 )‖p measures the contribution
of the innovation ε0 in predicting Xk+1 given F0. Condition (16) indicates that the cumulative
contribution of the input ε0 in predicting future values {Xk}k≥1 is finite, thus suggesting short-
range dependence. See [46] for more discussions. The other condition (17) can be similarly
interpreted in terms of the L p integral norm.

Corollary 1(ii) shows the interesting dichotomous phenomenon [7,44]: If bn = o[n2β−1−2/p′

ℓ−2(n)], then the first term (nbn)
−1/2 dominates and it is same as the one obtained under short-

range dependence. On the other hand, however, if we have a large bandwidth bn such that
n2β−1−2/p′

ℓ−2(n) = o(bn), then the second term n1/p′
−βℓ(n) dominates. The overall bound

depends on the interplay between the bandwidth bn and the long-range dependence parameter β.

Corollary 2. Let the conditions in Theorem 1 be satisfied. Assume f ∈ C 2,

R u2

|K (u)|du < ∞

and

R uK (u)du = 0. (i) If supx | f ′′(x)| < ∞, then

sup
x

‖ fn(x)− f (x)‖p = O[b2
n + (nbn)

−1/2
+ Θ1/p′

p (n)/n]. (18)

(ii) If

R | f ′′(u)|pdu < ∞, then[∫
R

‖ fn(x)− f (x)‖p
pdx

]1/p

= O[b2
n + (nbn)

1/p′
−1

+ Θ̄1/p′

p (n)/n]. (19)

Proof. Let the bias Bn(x) = E fn(x)− f (x). Since

R uK (u)du = 0,

Bn(x) =

∫
R

K (u)[ f (x − bnu)− f (x)+ bnu f ′(x)]du.

Case (i) is well-known and it easily follows from Taylor’s expansion. For (ii), we have

|Bn(x)| ≤

∫
R

|K (u)|
b2

nu2

2

∫ 1

0
| f ′′(x − bnut)|dtdu

= O(b2
n)

∫ 1

0

∫
R

| f ′′(x − bnut)|K̃ (u)dudt,

where K̃ (v) = v2 K (v)/

R u2

|K (u)|du. Then (19) follows from∫
R

|Bn(x)|
pdx = O(b2p

n )

∫
R

∫ 1

0

∫
R

| f ′′(x − bnut)|p K̃ (u)dudtdx = O(b2p
n ). �

2.3. Uniform bounds

Theorem 2. Assume that, for some ι, a > 0, K ∈ Cι is a bounded function with bounded support,
and that X i ∈ La . Further assume Condition 1, Θ̄2(n)+ Ψ̄2(n) = O[nαℓ(n)], where α ≥ 1 and
ℓ is a slowly varying function, and log n = o(nbn). Then

sup
x∈R

| fn(x)− E[ fn(x)]| = O


log n

nbn
+ nα/2−1ℓ̃(n)


almost surely. (20)

Here ℓ̃ is another slowly varying function.
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If

R uK (u)du = 0 and supx | f ′′(x)| < ∞, then the bias Bn(x) = E fn(x) − f (x) satisfies

supx |Bn(x)| = O(b2
n). If additionally α < 8/5, then for bn ≍ (n−1 log n)1/5, by Theorem 2, we

have

sup
x∈R

| fn(x)− f (x)| = O(n−1 log n)2/5 almost surely. (21)

Stute [34] showed that, if X i are iid, then (n/ log n)2/5 sup|x |≤c | fn(x) − f (x)|/ f (x) converges
almost surely to a non-zero constant if inf|x |≤c f (x) > 0, c > 0. So (21) gives the optimal
convergence rate (n−1 log n)2/5. Section 5 contains a comparison study of Theorem 2 and results
obtained under strong mixing conditions. Bickel and Rosenblatt [2] obtained a deep result on
asymptotic distributional properties of sup0≤x≤1 | fn(x)− E[ fn(x)]| for iid random variables X i .
Their result is generalized by Neumann [26] to geometrically β-mixing processes; see also [23]
for some recent contributions.

3. Kernel regression estimation

Nonparametric techniques play an important role in assessing the relationship between pre-
dictors and responses if the form of the functional relation is unknown. A popular nonparametric
procedure is the Nadaraya–Watson estimator. To formulate the regression problem, we consider
the model

Yn = G(Xn, ηn), (22)

where ηn, n ∈ Z, are also iid and ηn is independent of Fn−1 = (. . . , εn−2, εn−1). An important
special example of (22) is the autoregressive model

Xn+1 = R(Xn, εn+1) (23)

on letting ηn = εn+1 and Yn = Xn+1. Given the data (X i , Yi ), 0 ≤ i ≤ n, let

Tn(x) =
1
n

n−
t=1

Yt Kbn (x − X t ). (24)

Then the Nadaraya–Watson estimator of the regression function

g(x0) = E(Yn|Xn = x0) = E[G(x0, η0)] (25)

has the form

gn(x0) =
Tn(x0)

fn(x0)
. (26)

Here we shall present an asymptotic theory for gn(x0). In particular, under mild regularity con-
ditions on G and f , we shall provide a central limit theorem and a uniform convergence rate for
gn(x0)− g(x0). Let

Vp(x) = E[|G(x, ηn)|
p
] and σ 2(x) = V2(x)− g2(x). (27)

The following regularity conditions on K are needed.

Condition 2. The kernel K is symmetric and bounded on R: supu∈R |K (u)| ≤ K0,

R K (u)du =

1 and K has bounded support; namely, K (x) = 0 if |x | ≥ c for some c > 0.
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Theorem 3. Let p > 2. Assume Conditions 1 and 2, V2, g ∈ C(R) and that Vp(x) is bounded
on a neighborhood of x0. Further assume that

bnΘ2(n) = o(n) and nbn → ∞. (28)

Let κ =


K 2(u)du. Then
nbn{Tn(x0)− E[Tn(x0)]} ⇒ N [0, V2(x0) f (x0)κ]. (29)

In Theorem 3, (29) can be used to prove central limit theorems for kernel density and
Nadaraya–Watson estimates (cf. Corollary 3). For G ≡ 1, Tn(x) = fn(x) is the kernel density
estimate and one has (29) with V2 ≡ 1. Wu [46] obtained asymptotic normality of fn under the
condition

∑
∞

k=0 θ2(k) < ∞. In this case Θ2(n) = O(n) and (28) is automatically satisfied under
the natural bandwidth condition (5). Clearly condition (28) also allows long-memory processes.
Wu and Mielniczuk [44] considered the special cases of short- and long-memory linear processes.

Corollary 3. Let f (x0) > 0. Then under the conditions of Theorem 3, we have
nbn


gn(x0)−

ETn(x0)

E fn(x0)


⇒ N [0, σ 2(x0)κ/ f (x0)]. (30)

Proof. Let νn = νn(x0) = ETn(x0) and µn = µn(x0) = E fn(x0). Since f (x0) > 0, K has
bounded support and g is continuous, νn/µn → g(x0). Observe that

Tn(x0)− fn(x0)
νn

µn
= {Tn(x0)− fn(x0)g(x0)− νn + µng(x0)}

+ [ fn(x0)− µn][g(x0)− νn/µn] =: An + Bn . (31)

Applying this time Theorem 3 with G ≡ 1 instead of G, we have Bn
√

nbn = oP(1) and
fn(x0) → f (x0) in probability. Hence again by Theorem 3,

√
nbn An ⇒ N [0, σ 2(x0)κ f (x0)],

which by Slutsky’s theorem yields (30). �

Theorem 4. Let p > 1 and p′
= min(2, p). Assume that Yi ∈ L p, g ∈ C(R), Vp′(·) is

bounded in an open interval containing [−m,m], m > 0, and the kernel K ∈ Cι, ι > 0,
satisfies Condition 2. (i) Let zn = n1/p log n + (nbn log n)1/2. Then

sup
x∈[−m,m]

|Tn(x)− E[Tn(x)]| =
Oa.s.(zn)

nbn
+

OP[
√

Θ2(n)+ Ψ2(n)]

n
. (32)

(ii) If additionally Θ2(n)+Ψ2(n) = O[nαℓ(n)], where α ≥ 1 and ℓ is a slowly varying function,
then (32) has the bound Oa.s.[zn/(nbn)]+oa.s.[nα/2−1ℓ̃(n)], where ℓ̃ is a slowly varying function
depending on ℓ.

In the kernel estimation theory it is routine to compute the bias νn(x)/µn(x) − g(x). If
f, g ∈ C 2 and K satisfies Condition 2, then it is easily seen that the bias is of the order O(b2

n).
Clearly supx∈[−m,m] | fn(x) − µn(x)| has the same bound as the one in (32). By (31) and Theo-
rem 4, we have:

Corollary 4. Assume that f, g ∈ C 2, inf|x |≤m f (x) > 0, sup|x |≤m |g′′(x)| < ∞, and that
K ∈ Cι, ι > 0 satisfies Condition 2. Then for any m > 0,

sup
|x |≤m

|gn(x)− g(x)| =
Oa.s.(zn)

nbn
+

OP[
√

Θ2(n)+ Ψ2(n)]

n
+ O(b2

n). (33)
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Corollary 4 allows long-memory as well as heavy-tailed processes. As in (ii) of Lemma 1,
if θ2(k) + ψ2(k) = k−βℓ(n), where 1/2 < β < 1 and ℓ is a slowly varying function,
then Θ2(n) + Ψ2(n) = O{n[n1−βℓ(n)]2

}. The term that dominates the sum will vary with
different choices of bn , suggesting dichotomy. Now consider the short-memory case in which∑

∞

k=0[θ2(k) + ψ2(k)] < ∞. Then Θ2(n) + Ψ2(n) = O(n) and the bound in (33) becomes
OP[zn/(nbn)] + OP(b2

n). If p ≤ 5/2, then the latter bound achieves a minimum if bn ≍

(n1/p−1 log n)1/3. On the other hand, if p > 5/2, then the minimal bound is achieved if
bn ≍ (n−1 log n)1/5.

4. Applications

To apply the results of Sections 2 and 3, we need to calculate θp(k), θ̄p(k) and ψp(k) defined
in (8)–(10). It is usually not difficult to calculate them since they are directly related to the under-
lying data-generating mechanism. Sections 4.1–4.3 consider linear processes, iterated random
functions and chains with infinite memory, respectively.

4.1. Linear processes

Let εi be iid random variables with density fε; let (ai ) be real coefficients such that

X t =

∞−
i=0

aiεt−i (34)

is a well-defined random variable. Important special cases of (34) include ARMA and fractional
ARIMA models. Assume that εi ∈ Lq , q > 0, and that fε satisfies

c2 := sup
x

[| fε(x)| + | f ′
ε(x)| + | f ′′

ε (x)|] < ∞. (35)

Then both θp(k) and ψp(k) are of order O[|ak+1|
min(1,q/p)

]; see Lemma 3 in [47]. For com-
pleteness we include that simple argument here. Let a0 = 1, Yk = Xk+1 − εk+1 and Dk =

ak+1(ε0 − ε′0), k ≥ 0. Then f1(x |Fk) = fε(x − Yk) and

θk,p(x) = ‖E[ f1(x |Fk)|F0] − E[ f1(x |F ∗

k )|F ∗

0 ]‖p

≤ 2‖ fε(x − Yk)− fε(x − Y ∗

k )‖p ≤ 2c2‖ min(1, |Dk |)‖p

≤ 2c2{E[|Dk |
min(q,p)

]}
1/p

= O[|ak+1|
min(1,q/p)

] (36)

since supx [| fε(x)| + | f ′
ε(x)|] < ∞. If, additionally, supx | f ′′

ε (x)| < ∞, then the same bound
holds for ψp(k). It is worthwhile to mention that in our setting heavy-tailed distributions are
allowed. To deal with θ̄p(k), we shall impose the following analogue of (35):

I0 :=

∫
R
[| fε(x)|

p
+ | f ′

ε(x)|
p

+ | f ′′
ε (x)|

p
]dx < ∞. (37)

Let t ∈ R and p > 1. By Hölder’s inequality, since fε(x + t)− fε(x) =
 t

0 f ′
ε(x + u)du,∫

R
| fε(x + t)− fε(x)|

pdx ≤

∫
R

|t |p−1
∫ t

0
| f ′
ε(x + u)|pdu

 dx ≤ I0|t |
p.
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It is easily seen that the above integral is also bounded by 2p I0. Then, by (36),∫
R
θ

p
k,p(x)dx = E

∫
R

| fε(x − Yk)− fε(x − Y ∗

k )|
pdx

≤ E[min(2p I0, I0|ak+1ε0 − ak+1ε
′

0|
p)] = O[|ak+1|

min(p,q)
]. (38)

With (36) and (38), we are able to give bounds for Θp(n) = Sp(n; θp) and Θ̄p(n) =

Sp(n; θ̄p). Consider the special case p = q = 2. If the short-range dependence condition

∞−
i=0

|ai | < ∞ (39)

holds, then Θ̄2(n) + Ψ̄2(n) = O(n), and, under the mild bandwidth condition bn + 1/(nbn) =

O(n−δ), δ > 0, the bound in (20) becomes O[(log n)1/2/(nbn)
1/2

]. Note that the optimal bound
(21) continues to hold for long-range dependent processes with an = O(n−β), 9/10 < β < 1,
in which case by Corollary 1 we have Θ̄2(n) + Ψ̄2(n) = O(n3−2β) and (21) follows from ele-
mentary calculations.

For short-memory linear processes, Wu and Mielniczuk [44] proved a central limit theorem
for fn(x) by assuming that fε is Lipschitz continuous and εi has finite second moment. The
former condition is weaker than (35) while in our setting we allow E(ε2

0) = ∞. For long-memory
linear processes, using Ho and Hsing’s [19] empirical process theory, Wu and Mielniczuk [44]
discovered the dichotomous and trichotomous phenomena for fn(x) for various choices of
bandwidths. Since there is no empirical process theory for long-memory nonlinear processes,
our general approach here is unable to produce Wu and Mielniczuk’s dichotomy and trichotomy
results.

4.2. Iterated random functions

Consider the nonlinear time series defined by the recursion

Xn = Rεn (Xn−1), (40)

where R is a bivariate measurable function. For different forms of R, one can get threshold
autoregressive models [38], AR with conditionally heteroscedasticity [13], random coefficient
models [24] and exponential autoregressive models [18] among others.

Diaconis and Freedman [9] showed that (40) has a unique and stationary distribution if there
exist α > 0 and x0 such that

Lε0 + |Rε0(x0)| ∈ Lα and E[log(Lε0)] < 0, where

Lε0 = sup
x≠x ′

|Rε0(x)− Rε0(x
′)|

|x − x ′|
. (41)

In this case, by iterating (40), we have that Xn is of form (2). Due to the Markovian structure, we
can write fk(x |F0) = fk(x |X0), where fk(x |X0) is the conditional density of Xk at x given X0.
Let f ′

k(y|x) = ∂ fk(y|x)/∂y. For p > 1, k ∈ N define

Ik,p(x) =

[∫
R

 ∂∂x
fk(y|x)

p

dy

]1/p

and Jk,p(x) =

[∫
R

 ∂∂x
f ′

k(y|x)

p

dy

]1/p

. (42)
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In the nonlinear prediction theory, a key problem is the sensitivity of initial values. In
particular, one needs to study the distance between the k-step-ahead predictive distributions
[Xk |X0 = x] and [Xk |X0 = x + δ], which results from a drift δ in the initial value. A natural
way to quantify the sensitivity is to use the L p distance

∆k(x, δ) :=

[∫
R

| fk(y|x + δ)− fk(y|x)|pdy

]1/p

. (43)

Fan and Yao [16, p. 466] considered the case p = 2. Under certain regularity conditions,
limδ→0 ∆k(x, δ)/|δ| = Ik,p(x). Jk,p(x) can be similarly interpreted as a prediction sensitivity
measure. Wu [48] applied the sensitivity measure to empirical processes. Proposition 1 shows
the relation between θ̄p(k) and Ik,p.

Proposition 1. Let τk,p(a, b) =
 b

a Ik,p(x)dx, k ≥ 1. Then (i) θ̄p(k − 1) ≤ ‖τk,p(X0, X∗

0)‖p

and (ii) θ̄p(k − 1) ≤ 2‖τ1,p(Xk−1, X∗

k−1)‖p.

Proof. Let q = p/(p − 1) and λ(x) = I 1/q
k,p (x). By Hölder’s inequality,

∫ X∗

0

X0

∂

∂x
fk(y|x)dx


p

≤


∫ X∗

0

X0

|∂ fk(y|x)/∂x |
p

λp(x)
dx

× |τk,p(X0, X∗

0)|
p/q .

Hence

R | fk(y|X0) − fk(y|X∗

0)|
pdy ≤ |τk,p(X0, X∗

0)|
p and (i) follows. By (7), (ii) similarly

follows. �

If r = ‖Lε0‖p < 1, then ‖Xn − X∗
n‖p = O(rn) [45]. If additionally supx I1,p(x) < ∞, then

by Proposition 1(ii), θ̄p(n) = O(rn).
When p = 1, the quantity τk,1(X0, X∗

0) in Proposition 1 is closely related to the τ -dependent
coefficient in [11]. Let Λ1(R) be the set of 1-Lipschitz functions from R to R. Then their τ
coefficient τ(σ (X0), Xk) is

E sup
g∈Λ1(R)

|E[g(Xk)|X0] − Eg(Xk)| = E sup
g∈Λ1(R)

∫ g(y)[ fk(y|X0)− f (y)]dy

 .
If supx,y[ fk(y|x) + f (y)] < ∞, then τ(σ (X0), Xk) ≤ CE


| fk(y|X0) − f (y)|dy. Note that

E fk(y|X∗

0) = f (y). Then τ(σ (X0), Xk) ≤ CE[τk,1(X0, X∗

0)].

4.3. Chains with infinite memory

Doukhan and Wintenberger [12] introduced a model for chains with infinite memory:

Xk+1 = F(Xk, Xk−1, . . . ; εk+1), (44)

where εk are iid innovations. Here we consider a special form of (44):

Xk+1 = G(Xk, Xk−1, . . .)+ εk+1, (45)

where, as in [12], we assume that G satisfies

|G(x−1, x−2, . . .)− G(x ′

−1, x ′

−2, . . .)| ≤

∞−
j=1

ω j |x− j − x ′

− j |, where w j ≥ 0. (46)
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Under suitable conditions on (ω j ) j≥1, iterations of (45) lead to a stationary solution Xk of
form (2). For such processes we are also able to provide a bound for Θp(n) and other similar
quantities, so our theorems are applicable. For simplicity let p = 2 and assume εk ∈ L2. Let
δ2(k) = ‖Xk − J (F ∗

k )‖. For k ≥ 0, by (45) and (46), we have

δ2(k + 1) ≤

k+1−
i=1

ωiδ2(k + 1 − i). (47)

Define the sequence (ak)k≥0 recursively by a0 = δ2(0) and

ak+1 =

k+1−
i=1

ωi ak+1−i . (48)

Then S2(n; δ2(·)) ≤ S2(n; a). Let A(s) =
∑

∞

k=0 aksk and Ω(s) =
∑

∞

i=1 ωi si , |s| ≤ 1. By
(48), we have A(s) = a0 + A(s)Ω(s). Hence A(s) = a0(1 − Ω(s))−1. Assume that, as s ↑ 1,
1 − Ω(s) ∼ (1 − s)d with d ∈ (0, 1/2). Note that in our setting Ω(1) =

∑
∞

j=1 ω j = 1,
while Ω(1) < 1 is required in [12]. Hence we can allow stronger dependence. As in (15), with
elementary manipulations, we have

2π S2(n; a) =

∫ 2π

0
|A(e

√
−1u)|2

sin2(nu/2)

sin2(u/2)
du = O(n1+2d).

Assume that the density function of εi satisfies (35). As in Section 4.1, let Yk = Xk+1 − εk+1.
Following the calculation in (36), we have θk,2 = O(‖Yk − Y ∗

k ‖) = O(δ2(k + 1)). Hence
Θ2(n) = O(n1+2d). If, as in [12], Ω(1) < 1, then A(1) < ∞ and Θ2(n) = O(n). Other
quantities Θ̄2(n),Ψ2(n) and Ψ̄2(n) can be similarly dealt with.

5. A comparison with earlier results

For strong mixing processes, uniform error bounds of kernel density estimates supx | fn(x)−

f (x)| have been discussed by Bosq [3] and Fan and Yao [16] among others. Bosq obtained
a bound of the form (n−1 log n)2/5 log. . .log n under the assumption that the process is
exponentially strong mixing. Fan and Yao [16, p. 208] improved Bosq’s results by showing that,
if the strong mixing coefficient α(n) = O(n−χ ) with χ > 5/2,

n2χ−5b2χ+5
n (log n)−(2χ+1)/4

→ ∞ and bn → 0, (49)

then over a compact interval [c1, c2], the following weak upper bound holds:

sup
x∈[c1,c2]

| fn(x)− E[ fn(x)]| = OP


log n

nbn


. (50)

We now compare our results with that of Fan and Yao for linear processes. It is not easy to obtain
a sharp bound for the strong mixing coefficient αk . Consider the special case in which ak ∼ k−δ ,
k ∈ N. By the result of Withers [42], one can get αk = O(k4/3−2δ/3). Restrictive conditions on δ
are needed to ensure strong mixing. To apply Fan and Yao’s result, one needs to have δ > 23/4
to ensure the strong mixing condition α(n) = O(n−χ ) with χ > 5/2. In comparison, however,
our Theorem 2 only requires δ > 1 (cf Condition (39)).
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Doukhan and Louhichi [10] introduced an interesting weak dependence measure for stationary
processes. In their sense a sequence {Z t } is weakly dependent if there exists a sequence
τ(n) ↓ 0 such that, for any u-tuple (i1, . . . , iu) ∈ Zu and v-tuple ( j1, . . . , jv) ∈ Zv with
i1 ≤ · · · ≤ iu < iu + n ≤ j1 ≤ · · · ≤ jv , u, v ∈ N, and any h, k with finite Lipschitz
modulus and ‖h‖∞, ‖k‖∞ ≤ 1,

|cov(h(Zi1 , . . . , Ziu ), k(Z j1 , . . . , Z jv ))| ≤ [uLip(h)+ vLip(k)]τ(n). (51)

Here a function h : Ru
→ R is said to have finite Lipschitz modulus if

Lip(h) := sup
x≠y

|h(x)− h(y)|

‖x − y‖1
< ∞.

Ango Nze et al. [1] discussed asymptotic properties of nonparametric estimates under (51) and
showed that if the weak dependence coefficient τ(n) = O(n−r ) with r > 4, then (29) holds, and
if τ(n) ≤ an for some 0 < a < 1, then

sup
x∈[−m,m]

|Tn(x)− E[Tn(x)]| = O

(log n)2
√

nbn


almost surely.

Note that the bound in Theorem 4 is sharper. For the linear process, Z t =
∑

∞

i=0 aiεt−i , where εt
are iid with compact support [−1, 1] (say) and A0 :=

∑
∞

i=0 |ai | < ∞. Assume A0 ≤ 1 and let
h(x) = k(x) = min(max(x,−1), 1). Then h(Z t ) = k(Z t ) = Z t and 2τ(n) ≥ |cov(Z0, Zn)| =

|
∑

∞

i=0 ai an+i |. As a special case, let an ∼ n−β ; then τ(n) ≥ cn1−2β for some c > 0. The
condition of Ango Nze et al. requires β > 2.5, where β > 1 is sufficient for Theorem 3. For the
almost sure convergence, the result of Ango Nze et al. requires exponential decay of τ(n), which
forces an to decay exponentially as well, while Theorem 4 only requires that the an are summable.

6. Proofs

This section provides proofs of the results in previous sections. Lemma 2 easily follows from
Burkholder’s inequality, so we omit the details. Lemma 3 below gives a bound for Hn(x) =∑n

i=1[ f1(x |Fi )− f (x)]. It allows long-memory processes.

Lemma 2. Let Di , i ∈ Z, be martingale differences with Di ∈ L p, p > 1, p′
= min(2, p). Then

there exists a constant cp > 0 such that ‖
∑

i Di‖
p′

p ≤ cp
∑

i ‖Di‖
p′

p .

Lemma 3. Let Hn(x) =
∑n

i=1[ f1(x |Fi ) − f (x)], H ′
n(x) =

d
dx Hn(x), p > 1 and p′

=

min(2, p). Then we have:

(i) supx ‖Hn(x)‖
p′

p ≤ cpΘp(n),

(ii)

R ‖Hn(x)‖

p
pdx = O[Θ̄ p/p′

p (n)],

(iii) supx ‖H ′
n(x)‖

p′

p ≤ cpΨp(n),

(iv)

R ‖H ′

n(x)‖
p
pdx = O[Ψ̄ p/p′

p (n)],

(v) E

supx H2

k (x)


≤

R ‖Hk(u)‖2

+ ‖H ′

k(u)‖
2du = O[Θ̄2(k)+ Ψ̄2(k)], and

(vi) if Θ̄2(n) + Ψ̄2(n) = O(nαℓ(n)), where ℓ is slowly varying, then supx |Hn(x)| = Oa.s.

(nα/2ℓ̃(n)), where ℓ̃ is another slowly varying function.
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Proof. Define projection operators Pk , k ∈ Z, by Pk V = E(V |Fk) − E(V |Fk−1), V ∈ L1.
Note that Pk Hn(x), k = . . . , n − 1, n, are martingale differences. By Theorem 1 in [46],
‖P0 f1(x |Fi )‖p ≤ θi,p(x). So (i) follows from Lemma 2 in view of

‖Hn(x)‖
p′

p

cp
≤

n−
k=−∞

‖Pk Hn(x)‖
p′

p ≤

n−
k=−∞


n−

i=1

‖Pk f1(x |Fi )‖p

p′

≤

n−
k=−∞


n−k−

i=1−k

θi,p(x)

p′

≤ Θp(n). (52)

To prove (ii), let δk =
∑n

i=1 θ̄p(i − k). By Hölder’s inequality,∫
R


n−k−

i=1−k

θi,p(x)

p

dx ≤

∫
R

 n−
i=1

θ
p

i−k,p(x)

θ̄
p−1

i−k,p

 n−
i=1

θ̄i−k,p

p−1

dx = δ
p
k .

If 1 < p ≤ 2, (ii) follows from (52). If p > 2, then p′
= 2. Let q = 1/(1 − 2/p). Again by

Hölder’s inequality and (52),

∫
R

‖Hn(x)‖
p
p

cp/2
p

dx ≤

∫
R


n−

k=−∞


n−k∑

i=1−k
θi,p(x)

p

δ
p−2
k




n−
k=−∞

δ2
k

p/2−1

dx = O[Θ̄ p/2
p (n)].

Cases (iii) and (iv) can be similarly proved. Case (v) easily follows from the inequality
supx H2

k (x) ≤

R |Hk(u)|2 + |H ′

k(u)|
2du. For (vi), define H̃n = max1≤k≤n supx |Hk(x)|. Let

ℓ0(n) = ℓ(n) if α > 1, and ℓ0(n) =
∑

j :2 j ≤n ℓ
1/2(2 j ) if α = 1; let ℓ̃(n) = (log n)1/2+ϵℓ0(n),

where ϵ > 0. Then ℓ̃ is also slowly varying. By Lemma 4 in [47], we get

‖H̃2d ‖ ≤

d−
j=0

2
d− j

2

sup
x∈R

|H2 j (x)|


=

d−
j=0

O(1)2
d+ j (α−1)

2 ℓ1/2(2 j ) = O(2dα/2ℓ0(2d)), (53)

which by the Borel–Cantelli lemma implies H̃2d = oa.s.[2dα/2ℓ̃(2d)] as d → ∞ since

∞−
d=1

P(H̃2d > 2dα/2ℓ̃(2d)) ≤

∞−
d=1

‖H̃2d ‖
2

2dα ℓ̃2(2d)
≤

∞−
d=1

1

log1+2ϵ 2d
< ∞. (54)

Hence H̃n = oa.s.[nα/2ℓ̃(n)] since H̃n is non-decreasing and ℓ̃ is slowly varying. �

6.1. Proof of Theorem 1

Let Hn(x) =
∑n

t=1[ f1(x |Ft−1)− f (x)]. Write n{ fn(x)−E[ fn(x)]} = Pn(x)+Qn(x), where

Pn(x) =

n−
t=1

{Kbn (x − X t )− E[Kbn (x − X t )|Ft−1]}, (55)
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Qn(x) =

n−
t=1

{E[Kbn (x − X t )|Ft−1] − E[Kbn (x − X t )]}

=

∫
R

Kbn (x − u)Hn(u)du =

∫
R

K (u)Hn(x − bnu)du. (56)

By Hölder’s inequality,

|Qn(x)|
p

≤

∫
R

|K (u)Hn(x − bnu)|pdu

[∫
R

|K (u)|du

]p−1

. (57)

By (57) and Lemma 3(i),

sup
x

‖Qn(x)‖
p
p = sup

x
‖Hn(x)‖

p
p O(1) = O[Θ p/p′

p (n)]. (58)

Similarly, by Lemma 3(ii),∫
R

‖Qn(x)‖
p
pdx ≤ O(1)

∫
R

‖Hn(x)‖
p
pdx = O[Θ̄ p/p′

p (n)]. (59)

It remains to deal with the martingale part Pn(x). Let Di,1(x) = K ((x − X i )/bn) − E[K ((x −

X i )/bn)|Fi−1] and define recursively Di,k+1(x) = D2
i,k(x) − E[D2

i,k(x)|Fi−1], k ∈ N. Then
Di,k(x), i = 1, 2, . . ., are martingale differences. Let l ∈ N be fixed. We now show that, for any
k,

An,k(2l) :=

∫
R

E

 n−
i=1

Di,k(x)


2l

dx = O

(nbn)

2l−1


(60)

as n → ∞. To this end, we shall apply the induction method. If l = 1, (60) easily follows since
the Di,k(x) are orthogonal and E[D2

i,k(x)] ≤ CE[K 2k
((x − X i )/bn)] = Cbn


R K 2k

(u) f (x −

bnu)du. Let l ≥ 2. By the Burkholder–Davis–Gundy inequality [6],

An,k(2l) ≤ C
∫
R

E

 n−
i=1

D2
i,k(x)


2l−1

dx

≤ C
∫
R

E

 n−
i=1

Di,1+k(x)


2l−1

dx + C
∫
R

E

 n−
i=1

E[D2
i,k(x)|Fi−1]


2l−1

dx . (61)

By the induction hypothesis, the first integral in (61) is of order O((nbn)
2l−2

). For the second
one, note that E[D2

i,k(x)|Fi−1] ≤ CE[K 2k
((x − X i )/bn)|Fi−1] ≤ Cbn


R K 2k

(u) f1(x −

bnu|Fi−1)du. Under Condition 1, since

R |K (v)|dv < ∞ and supv |K (v)| < ∞, the second

term in (61) is of order O((nbn)
2l−1

) in view of the inequality |
∑n

i=1 ai |
p

≤ n p−1∑n
i=1 |ai |

p,
p ≥ 1. Hence (60) follows and it further implies that, for all p ∈ (2l , 2l+1), we have

An,k(p) ≤ [An,k(2l)]2−p/2l
[An,k(2l+1)]p/2l

−1
= O((nbn)

p/2) (62)

by Hölder’s inequality. So, by (59), (14) follows if p ≥ 2. If 1 < p < 2, by Lemma 2,

An,1(p) ≤ nC
∫
R

‖D1,1(x)‖
p
pdx ≤ nC

∫
R

E|K ((x − X i )/bn)|
pdx = O(nbn).

So (14) holds if 1 < p < 2 in view of (59).
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Using an induction argument similar to that of (60) and (61), we have supx ‖
∑n

i=1 Di,k(x)‖p =

O((nbn)
1/2) for all p = 2l , l ∈ N. Hence by (58), (13) follows. �

6.2. Proof of Theorem 2

Let Rn = sup|x |≥n5/a | fn(x) − E fn(x)|. Since K is bounded with bounded support and
X1 ∈ La , we have by Markov’s inequality that

bnE(Rn) ≤ 2E


sup

|x |≥n5/a
|K [(x − X1)/bn]|


= O(1)P(|X1| ≥ n5/a/2) =

O(1)

n5 . (63)

By the Borel–Cantelli lemma, since E(Rn)
√

nbn is summable, Rn
√

nbn = oa.s.(1). Write
n{ fn(x) − E[ fn(x)]} = Pn(x) + Qn(x) as in Theorem 1. From (56), supx |Qn(x)| ≤

O(1) supx |Hn(x)|. By Lemma 3(vi), supx |Hn(x)| = Oa.s.(nα/2ℓ̃(n)).
It remains to consider the behavior of Pn(x) over x ∈ [−n5/a, n5/a

]. Let

Z t (x) = Kbn (x − X t )− E(Kbn (x − X t )|Ft−1) (64)

be the summands of Pn(x). Let ℓ = ⌊n1+5/a+1/ι
⌋ and ⌊x⌋ℓ = ⌊xℓ⌋/ℓ. Observe that |Z t | ≤

2K0/bn and E(Z2
t |Ft−1) ≤ b−1

n


R K 2(u) f (x − bnu)du ≤ b−1

n c1, where c1 = c0

R K 2(u)du.

Let τn =


nb−1

n log n and λ = 30c1(1/a + 1/ι+ 1). Since log n = o(nbn), by the inequality of
Freedman [15],

P(|Pn(x)| ≥
√
λτn) ≤ 2 exp


−λτ 2

n

4K0b−1
n

√
λτn + 2nb−1

n c1


= O


n−λ/(3c1)


.

Hence P(max|x |≤n5/a |Pn(⌊x⌋ℓ)| >
√
λτn) = O(n5/aℓn−λ/(3c1)) = o(n−2), which by the

Borel–Cantelli lemma implies that max|x |≤n5/a |Pn(x)| = Oa.s.(τn) since n[n5/a/(ℓbn)]
ι

=

O(
√

n), K ∈ Cι and supx |Pn(x)− Pn(⌊x⌋ℓ)| = O(n[n5/a/(ℓbn)]
ι) = O(τn). �

6.3. Proof of Theorem 3

Recall that Gi = (. . . , ηi−1, ηi ; Fi ). Let ζn,t =
√

bn/nKbn (x0 − X t ) and ξn,t = ζn,t Yt . Then
ξn,t is Gt -measurable. Let dn,t = ξn,t − E(ξn,t |Gt−1). Then (29) follows from

n−
t=1

dn,t ⇒ N [0, V2(x0) f (x0)κ] (65)

and

Ln :=

n−
t=1

[E(ξn,t |Gt−1)− Eξn,t ] = oP(1). (66)

For (66), since K satisfies Condition 2 and

E(ξn,t |Gt−1) =


bn/n
∫
R

g(x0 − bnu)K (u) f1(x0 − bnu|Ft−1)du, (67)

by Lemma 3(i), (28), and E|Hn(x)| ≤ ‖Hn(x)‖,
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E|Ln| ≤


bn

n

∫
R

|K (u)g(x0 − bnu)|E|Hn(x0 − bnu)|du

= O[


bnΘ2(n)/n] = o(1).

Next we shall apply the martingale central limit theorem to show (65). Let δ = p/2−1. By (67),
n‖E(ξn,1|G0)‖

2
= O(bn). Again by Lemma 3(i) and (28),

n−
t=1

[E(ξ2
n,t |Gt−1)− E(ξ2

n,t )] =

∫
R

V2(x0 − bnu)K 2(u)
Hn(x0 − bnu)

n
du

= OP[Θ
1/2
2 (n)/n] = oP(1).

Since E(d2
n,t |Gt−1) = E(ξ2

n,t |Gt−1)− E2(ξn,1|G0) and

nE(ξ2
n,t ) = E[Y 2

t K 2
bn
(x0 − X t )] = E[V2(X t )K

2
bn
(x0 − X t )]

=

∫
R

V2(x0 − bnu)K 2(u) f (x0 − bnu)du → V2(x0) f (x0)κ,

we have
∑n

t=1 E(d2
n,t |Gt−1) → V2(x0) f (x0)κ in probability. Note that

n‖dn,1‖
p
p ≤ 2pn‖ξn,1‖

p
p = 2pb1+δ

n n−δE{Vp(X t )|Kbn (x0 − X t )|
p
}

= O[(nbn)
−δ

] → 0.

Then Lindeberg’s condition is fulfilled. �

6.4. Proof of Theorem 4

Write n{Tn(x)− E[Tn(x)]} = Dn(x)+ Mn(x)+ Nn(x), where

Dn(x) =

n−
t=1

[Yt − g(X t )]Kbn (x − X t ), (68)

Mn(x) =

n−
t=1

{Kbn (x − X t )g(X t )− E[Kbn (x − X t )g(X t )|Ft−1]}, and (69)

Nn(x) =

n−
t=1

{E[Kbn (x − X t )g(X t )|Ft−1] − E[Kbn (x − X t )g(X t )]}. (70)

Then Theorem 4 follows from Proposition 2 and Lemma 4 below.

Proposition 2. Let the conditions in Theorem 4 be fulfilled. Recall zn = n1/p log n + (nbn
log n)1/2. Then (i) supx∈[−m,m] |Dn(x)| = Oa.s.(zn/bn) and (ii) supx∈[−m,m] |Mn(x)| = Oa.s.
(zn/bn).

Proof of Proposition 2. Let n̄ = 2⌊log n/ log 2⌋, Y ′

i = Yi 1|Yi |≤n̄1/p , Y ′′

i = Yi − Y ′

i . Recall
Gi = (. . . , ηi−1, ηi ,Fi ). Let Z t (x) = Z t,n(x) = Kbn (x − X t )[Y ′

t − E(Y ′
t |Gt−1)],

In(x) =

n−
t=1

Z t (x) and I In(x) = Dn(x)− In(x). (71)
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Elementary calculations show that there exists a constant C p such that

∞−
d=1

E
2d∑

t=1
[|Y ′′

t | + E(|Y ′′
t ||Gt−1)]

2d/p = 2
∞−

d=1

2d−d/pE[|Y1|1|Y1|≥2d/p ] ≤ C pE[|Y1|
p
].

By the Borel–Cantelli lemma,
∑2d

t=1[|Y
′′
t |+E(|Y ′′

t ||Gt−1)] = oa.s.(2d/p) as d → ∞. Since K
is bounded, we have supx |I In(x)| = oa.s.(n1/p/bn).

We shall now deal with In(x). Observe that E[Z t (x)|Gt−1] = 0 and Z t is bounded by
2K0n̄1/p/bn ≤ c1n1/p/bn , where c1 = 2K0. Also,

E[Z2
t (x)|Ft , ηt−1, ηt−2, . . .] ≤ K 2

bn
(x − X t )E[(Y ′

t )
2
|Ft , ηt−1, ηt−2, . . .]

≤ K 2
bn
(x − X t )Vp′(X t )(n

1/p)2−p′

.

Since Vp′(·) is bounded in an open interval containing [−m,m], E[K 2
bn
(x −

X t )Vp′(X t )|Gt−1] ≤ c2b−1
n , where c2 is chosen such that c0


R K 2(u)Vp′(x − bnu)du ≤ c2.

For all x ∈ [−m,m], by the inequality of Freedman [15],

P[|In(x)| ≥ λzn/bn] ≤ 2 exp
[

−λ2z2
n/b

2
n

2(c1n1/p/bn)(λzn/bn)+ 2c2n1+2/p−p′/p/bn

]
.

For x ∈ R let ⌊x⌋ℓ = ⌊xℓ⌋/ℓ, where ℓ = ⌊n8/ι
⌋. Then E[supx |In(x) − In(⌊x⌋ℓ)|] =

O(ℓ−ι/b2
n)E|Y0| = O(n−5). Using the argument in the proof of Theorem 2, we have (i) by

letting λ = 16(c1/2
2 + c1)(1 + ι−1). (ii) can be similarly proved and the truncation argument is

not needed since Kbn (x − X t )g(X t ) is bounded on [−m,m]. �

Lemma 4. With Condition 2, for any m > 0, E[sup|x |≤m N 2
n (x)] = O[Θ2(n) + Ψ2(n)].

Furthermore, if Θ2(n) + Ψ2(n) = O(nαℓ(n)), where ℓ is a slowly varying function, then
sup|x |≤m |Nn(x)| = Oa.s.(nα/2ℓ̃(n)), where ℓ̃(n) can be chosen as the one in Lemma 3(vi).

Proof. Let Hn(x) =
∑n

i=1[ f1(x |Fi−1)− f (x)]. Since K has bounded support, and g is bounded
on compact sets, we have supx |Nn(x)| = O(1) supx |Hn(x)| in view of

Nn(x) =

∫
R

K (u)g(x − bnu)Hn(x − bnu)du, (72)

Observe that sup|u|≤m |Hn(u)| ≤ |Hn(0)| +
 m
−m |H ′

n(x)|dx . Then the result follows from
Lemma 3(i), (iii) and (vi). �
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