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Recursive Nonparametric Estimation For Time
Series

Yinxiao Huang, Xiaohong Chen, and Wei Biao Wu

Abstract—The paper considers online kernel estimation for
both short- and long-range dependent time series data. Utilizing
the predictive dependence measure of Wu (2005), we carefully
study the asymptotic properties of recursive kernel density and
regression estimators for a general class of stationary processes.
In particular, we prove that the proposed estimators have
the asymptotic normality and the corresponding central limit
theorems are provided. In addition, we establish the sharp laws of
the iterated logarithms that precisely characterize the asymptotic
almost sure behavior of the proposed estimators.

Index Terms—Almost sure convergence; kernel estimation;
law of the iterated logarithm; long-range dependence; recursive
estimation; wavelet estimation.

I. INTRODUCTION

W ITH the advance of modern computing and data ac-
quisition techniques, voluminous data are collected in

various applied areas including astronomy, computer networks,
remote sensing, weather monitoring, high frequency trading
among others. New challenges arise as to how to interpret
and model the data. Nonparametric methods are widely used
as a powerful tool for data analysis, modeling and inference.
They are especially useful to explore relationships between
explanatory variables and dependent variables in situations in
which the associated functional forms are not known. Popular
nonparametric estimators such as the kernel density estimator
of Rosenblatt [40] and the kernel regression estimator of
Nadaraya [32] and Watson [55], however, suffer a serious
computational drawback in that they are non-recursive. When a
new data item arrives, one has to re-calculate any non-recursive
estimator based on all of the observations. In situations where
data items arrive sequentially and a large amount of data can
be generated at a rapid rate, recursive updating algorithms
are much preferred. Namely the value of the estimator at
current time can be updated from its immediate past and the
current data item, so that the update can be computed instantly
regardless of the sample size. This approach is also termed
as the online or real-time updating method. The traditional
non-recursive procedure (such as the Rosenblatt estimate and

Manuscript received Nov 26, 2012; revised Nov 03, 2013; accepted Nov
14, 2013. Date of current version Nov 16, 2013. W. B. Wu is supported by the
NSF under Grant DMS-0906073 and DMS-1106970. X. Chen is supported
by Cowles Foundation for Research in Economics, USA.

Y. Huang is with the Department of Statistics, University of Illinois at
Urbana-Champaign, Champaign, IL 61820 USA. Email:yinxiao@illinois.edu.

X. Chen is with Department of Economics, Yale University, New Haven,
CT 06520 USA. Email:xiaohong.chen@yale.edu.

W. B. Wu is with Department of Statistics, The University of Chicago,
Chicago, IL 60637 USA. Email:wbwu@galton.uchicago.edu.

This paper was presented in part at the Joint Statistical Meetings 2012.

the Nadaraya-Watson estimate) is called the off-line or batch
method.

There are already huge amount of published papers on
asymptotic properties of on-line kernel density and regression
estimators for independent and identically distributed (i.i.d.)
data. In particular, recursive kernel density estimators were
introduced by Wolverton and Wagner [58], Yamato [63]
and Deheuvels [6], and have been studied by Wegman and
Davies [56], Wertz [57], Roussas [41], Hall and Patil [18],
Mokkadem et al. [30] and many others. Different versions
of recursive kernel regression estimators were introduced by
Révész [35], [36], Ahmad and Lin [2] and Devroye and Wag-
ner [7], and have been studied by Krzyżak and Pawlak [24],
Greblicki and Pawlak [11], Krzyżak [23], Walk [52], Györfi
et al. [13], Mokkadem et al. [31], among many others.

There are some published papers on asymptotic properties
of recursive kernel density and regression estimators for short-
range (i.e., weakly) dependent data. See, e.g., Takahata [47],
Masry [27], [28], Masry and Györfi [29], Györfi and Mas-
ry [15], Tran [49], [50] and others for on-line kernel density
estimator, and Roussas and Tran [42], Györfi et al. [14], Walk
and Yakowitz [53], Wang and Liang [54], Amiri [3] and others
for on-line kernel regression estimator for stationary short-
range dependent data.

In this paper we shall study the on-line kernel estima-
tors for density and regression functions allowing for both
short- and long-range dependent data. We model the temporal
dependence using the functional and predictive dependence
measure of Wu [59]. The predictive dependence concept
has a natural interpretation for on-line procedures since it
measures how a dynamic system reacts to a change in the
underlying exogenous shock. This notion of dependence is
very general and easy-to-verify. It covers a large class of
linear and nonlinear time series models, which could be short-
range (i.e., weakly) or long-range (i.e., strongly) dependent.
To the best of our knowledge, there is no published work on
asymptotic properties of recursive nonparametric estimators
for time series models using the predictive dependence mea-
sure. In this paper, for a large class of stationary time series
that are both short- and long-range dependent, we establish the
asymptotic properties for both the recursive density and the
recursive regression estimators. Due to the online nature, the
study of the almost sure convergence properties becomes more
relevant than the weaker form of in probability convergence.
Here we shall give a precise characterization of the almost
sure convergence by proving the sharp laws of the iterated
logarithm. We also establish the asymptotic normality, and the
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almost sure version of the optimal uniform convergence rates.
Our results substantially extend the applicability of the online
methods to time series estimation and forecasting.

In the literature, there are also plenty of work on other
on-line nonparametric procedures. For example, Vilar and
Vilar [51] and Gu and Lafferty [12] considered recursive local
polynomial regression. Smale and Yao [44] and Yao [64]
studied an on-line estimate based on stochastic gradient
descent algorithms (Robbins and Monro [39]; Kiefer and
Wolfowitz [22]; Duflo [8]; Kushner and Yin [25]. Smale and
Zhou [45] studied on-line learning with reproducing kernel
Hilbert space under Markov sampling. Chen and White [4]
studied a class of projection based Robbins-Monro procedures
in a Hilbert space for weakly dependent data. The mathemat-
ical tools used in our paper could also be extended to the
settings of these papers. For example, in Section III-C we
provide a law of the iterated logarithm and an asymptotic
normality for recursive wavelet density estimators allowing
for both short- and long-range dependent data.

The rest of paper is structured as follows. Section II
presents the recursive kernel estimates and the functional and
the predictive dependence measures. The latter allows us to
consider both linear and non-linear processes under short- and
long-range dependence. Under this framework, we investigate
the limit properties of the recursive density estimator and
the recursive regression estimator in Sections III and IV
respectively. Besides the usual central limit theorem and strong
(weak) convergence, a sharp law of the iterated logarithm is
derived in each section. Section V provides some simulation
results that corroborate the theoretical findings of the article.
The appendix contains all of the proofs.

The following notation is used throughout the paper. For two
real numbers a and b, we write a ∧ b = min(a, b). For two
sequences of real numbers {sn} and {tn}, we write sn ∼ tn
if limn→∞ sn/tn = 1; we write sn � tn if there exists a
constant c > 0 such that c ≤ sn/tn ≤ 1/c hold for all
large n. We say that a function g is Lipschitz continuous
on a set A if there exists a constant C < ∞ such that
|g(x) − g(x′)| ≤ C|x − x′| for all x, x′ ∈ A. The symbol
C denotes a positive constant which may differ in different
occurrences. For a random variable X write X ∈ Lp, p ≥ 1,
if ‖X‖p := [E(|X|p)]1/p <∞ and write ‖X‖ := ‖X‖2. The
symbol ⇒ means convergence in distribution. Denote by Ck
the class consists of all continuous functions that are k-times
differentiable with continuous k-th derivatives.

II. RECURSIVE ESTIMATES AND DEPENDENCE
CONDITIONS

A. Recursive Kernel Estimators

Given the data (Xi, Yi)
n
i=1, following the classic Nadaraya-

Watson [32], [55] procedure, we can estimate the regression
function g(x) = E(Y |X = x) by

ĝn(x) =

∑n
i=1 YiKbn(x,Xi)∑n
i=1Kbn(x,Xi)

, (1)

where Kbn(x, u) = K((x − u)/bn), K is a kernel function
and bn is the bandwidth sequence. There is a huge literature

on properties of the estimator (1); see for example Györfi et
al. [13] and Fan and Yao [9]. A drawback of ĝn is that it is non-
recursive. There is no simple algebraic relationship between
ĝn and ĝn+1. If a new data item (Xn+1, Yn+1) arrives and
bn 6= bn+1, then one needs to re-calculate all Kbn+1

(x,Xi)
for i = 1, . . . , n, thus having computational complexity O(n).
The latter problem becomes more severe if one wants to
evaluate g at multiple points x1, . . . , xl since in this case
the computational complexity becomes O(nl). The memory
requirement is also O(n) since one has to store all the past
data. These drawbacks seriously restrict the applicability of the
Nadaraya-Watson method in applications that involve a large
amount of data and require frequent updates.

As a simple modification of (1), we can have the following
online version:

g̃n(x) =

∑n
i=1 YiKbi(x,Xi)/

∑n
i=1 bi∑n

i=1Kbi(x,Xi)/
∑n
i=1 bi

:=
Jn(x)

f̃n(x)
, (2)

where f̃n(x) is the online estimator for the marginal density
of Xi. The estimators admit the following recursive update
scheme: letting Bn =

∑n
i=1 bi,

f̃n(x)=f̃n−1(x) +B−1
n bn[Kbn(x,Xn)/bn − f̃n−1(x)],

g̃n(x)=g̃n−1(x) + γn[Yn − g̃n−1(x)], (3)

where γn = γn(x) = (f̃n(x)Bn)−1Kbn(x,Xn) is the step
size that is a stochastic function of x. Note that the update can
be computed within O(1) step and the memory complexity for
the algorithm is also O(1). When the quantity f̃n(x)Bn in (3)
is replaced by nbn then the estimator g̃n is very similar to
the recursive estimator obtained by the method of stochastic
approximation (Révész [35]). In (3), ẽn := Yn − g̃n−1(x) can
be regarded as the one-step-ahead prediction error. The new
information at time n comes in the form of ẽn which is used
to update g together with the previous estimator g̃n−1. The
residuals ẽn so generated are called nonparametric recursive
residuals.

B. Causal Time Series, Dependence Measures
Throughout the paper we assume that Xi is a (strictly)

stationary process of the form

Xi = R(. . . , εi−1, εi), (4)

where εi, i ∈ Z, are i.i.d. random variables and R is a
measurable function such that Xi is well-defined with a
marginal density function f . In our regression model we
assume

Yi = G(Xi, ei), (5)

where ei, i ∈ Z, are i.i.d. and ei is independent of
Fi = (. . . , εi−1, εi). Then the regression function g(x) =
E(Yi|Xi = x) = E[G(x, ei)].

The class of processes that (4) represents is huge and it
includes many commonly used linear and nonlinear processes;
see Wu [60] for a review. Section III concerns properties of
the on-line estimate f̃n(x) for the marginal density function f
of Xi. An important special case of our regression model (5)
is the nonlinear time series model

Xi+1 = G(Xi, εi+1), (6)
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where εi are i.i.d., by letting Yi = Xi+1 and ei = εi+1.
Under suitable condition on G, (6) has a (strictly) stationary
and ergodic solution (Wu and Shao [62]).

Based on the representation (4), we can introduce our
dependence conditions. For l ≥ 1 let Fl(x|Fk) = P (Xk+l ≤
x|Fk) be the l-step ahead conditional or predictive distribution
function of Xk+l given Fk. Assume that the conditional
density fl(x|Fk) = dFl(x|Fk)/dx exists, hence the marginal
density f(x) = Efl(x|Fk). Assume throughout the paper that
there exists a constant C > 0 such that

ess sup
Fk

sup
x∈R

f1(x|Fk) ≤ C. (7)

Let Pl(·) = E(·|Fl)−E(·|Fl−1) be a projection operator. Fol-
lowing Wu [59], for k ≥ 1, define the predictive dependence
measure

θk = sup
x∈R
‖P0f1(x|Fk−1)‖. (8)

Let ε′i, εk, i, k ∈ Z, be i.i.d. If l ≤ k, let Fk,{l} =
(. . . , εl−1, ε

′
l, εl+1, . . . , εk) be a coupled version of Fk with

εl in the latter replaced by ε′l. If l > k let Fk,{l} = Fk.
Note that for k ≥ 1, E(f1(x|Fk−1)|F0) = fk(x|F0) and
E(f1(x|Fk−1)|F−1) = f1+k(x|F−1) = E(fk(x|F0,{0})|F0).
We can then interpret θk as the contribution of ε0 in predicting
Xk. If f1(x|Fk−1) does not functionally depend on ε0, then
θk = 0. A simple upper bound for θk is the following
functional dependence measure

δk = sup
x∈R
‖f1(x|Fk−1)− f1(x|Fk−1,{0})‖. (9)

Note that E(f1(x|Fk−1,{0})|F0) = E(f1(x|Fk−1)|F−1), we
have θk ≤ δk. For k < 0, we have Fk,{0} = Fk and thus
θk = δk = 0.

In many cases it is easier to deal with δk. Proposition 1
provides bounds for δk for linear processes, which can have
infinite variances, for example, α-stable processes with 0 <
α < 2. Proposition 2 concerns nonlinear time series that can
be expressed as iterated random functions.

Proposition 1. Let εj be i.i.d. with density fε ∈ C1 and
finite α-th moment, α > 0. Assume that (aj)

∞
j=0 are real coef-

ficients satisfying
∑∞
j=0 |aj |2∧α <∞ where a∧b = min(a, b).

Then the linear process

Xt =

∞∑
j=0

ajεt−j (10)

is well-defined, and, if supx(fε(x) + |f ′ε(x)|) <∞, then δ2
k =

O(|ak|α∧2).

Proposition 2. Consider the nonlinear time process
Xi+1 = G(Xi, εi+1) in (6), where εi are i.i.d. and G(·, ·)
satisfies G(x, ε0) ∈ Lτ , τ ≥ 1 and

L := sup
x 6=x′

‖G(x, ε0)−G(x′, ε0)‖τ
|x− x′|

< 1. (11)

Assume that the conditional density f(x|u) of Xt given
Xt−1 = u is uniformly bounded with supx,u f(x|u) ≤ C0

and satisfies the uniform Hölder continuous condition

sup
u 6=u′

supx |f(x|u)− f(x|u′)|
|u− u′|α

≤ H, α > 0. (12)

Then δk = O(ρk) for some ρ ∈ (0, 1).

Example 1. (Thresholded Time Series). Following
Tong [48], we consider the thresholded autoregressive
process

Xt = a1X
+
t−1 + a2X

−
t−1 + εt, (13)

where u+ = max(u, 0), u− = min(u, 0), |a1| < 1, |a2| < 1
and εt are i.i.d. with density function fε and have a finite τ th
moment, τ > 0. Let g(u) = a1u

+ + a2u
−. Then f(x|u) =

fε(x − g(u)). Assume H = supw |f ′ε(w)| < ∞. Clearly (11)
and (12) hold with L = max(|a1|, |a2|) < 1, α = 1 and this
H . Note that the moment condition on εt is very mild. It holds,
for example, if εt is Cauchy, since in this case E(|εt|τ ) <∞
if 0 < τ < 1.

Example 2. (ARCH Processes). Assume that εt are i.i.d.
with density fε and have a finite τ th moment, τ > 0. Define

Xt = (a2
1 + a2

2X
2
t−1)1/2εt, (14)

where a1 and a2 are real parameters such that ‖a2ε0‖τ <
1. Then (11) holds and (14) has a stationary solution. Let
g(u) = (a2

1 + a2
2u

2)1/2. Then the conditional density has the
form f(x|u) = fε(x/g(u))/g(u). Assume that supw |f ′ε(w)| <
∞. Elementary calculations show that supx,u |∂f(x|u)/∂u| <
∞, implying (12) with α = 1. As in Example 1 the moment
condition here on εt can also be very mild.

Our dependence measure is very different from the widely-
used strong mixing conditions and their variants such as
absolute regularity and near epoch dependence. In the context
of asymptotic theory for recursive kernel estimates, it turns
out that our predictive and functional dependence measures
are very useful and convenient. Optimal and nearly optimal
results can be established with elegant and concise proofs.

In our asymptotic theory we can allow both short- and long-
range dependent processes:

(D1). (Short-range dependence) ∆m :=
∑∞
k=m δk <∞. Hence

Θm :=
∑∞
k=m θk ≤ ∆m <∞;

(D2). (Long-range dependence) δk = O(k−γ`(k)), where
1/2 < γ < 1 and `(·) is a slowly-varying function,
namely limz→∞ `(cz)/`(z) = 1 for any c > 0.

Condition (D1) implies that the cumulative contribution of
the input ε0 in predicting future values {Xk}k≥1 is finite,
thus suggesting short-range dependence. It is satisfied for
many nonlinear time series models (see Proposition 2 and
Examples 1 and 2) and short-range dependent linear processes
(see Proposition 1). The other condition (D2) indicates that
ε0 can have a long-range predictive capability, due to the
slow decay of δk. An important example is the fractionally
integrated autoregressive moving average process.

III. RECURSIVE DENSITY ESTIMATION

Let f be the marginal density function of the stationary
process (Xi) given in (4). As in (2), we consider the recursive
kernel density estimator

f̃n(x) =
1

Bn

n∑
i=1

Kbi(x,Xi), (15)
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where (bi) is the bandwidth sequence, Bn =
∑n
i=1 bi,

Kb(x, u) = K((x − u)/b) and K(·) is a kernel function.
Throughout the paper, we assume that the kernel function
satisfies the following condition:

(K). The kernel K has a bounded support [−M,M ]; there ex-
ists CK <∞ such that supu |K(u)|+

∫
R
u2|K(u)|du ≤

CK . Let κ :=
∫
R
K2(s)ds <∞.

Condition (K) is satisfied by many popular choices of ker-
nels including the rectangle kernel K(v) = 1|v|<1/2, the
Epanechnikov kernel K(v) = 3(1 − v2)1|v|<1/4, the trian-
gular kernel K(v) = (1 − |v|)1|v|<1, the biweight kernel
K(v) = 15(1 − v2)21|v|<1/16 and the triweight kernel
K(v) = 35(1− v2)31|v|<1/32 among others, where 1· is the
indicator function.

A. Asymptotic Properties

Let Bn,l =
∑n
i=1 b

l
i, l ∈ Z, and write Bn = Bn,1. The

following theorem provides the central limit theorem of the
recursive kernel density estimator (15).

Theorem 1. Assume condition (K), supu |f ′(u)| <∞, and
either one of the following:
(i) Condition (D1), Bn → ∞,

∑∞
k=1B21+k,2/B2k < ∞,

and Bn,2 = o(Bn);
(ii) Condition (D2), bi � i−β`0(i) where 2(1 − γ) < β < 1

and `0(·) is a slowly varying function.
Then we have the central limit theorem√

Bn[f̃n(x0)− Ef̃n(x0)]⇒ N(0, κf(x0)). (16)

If in addition B2
n,3 = o(Bn), then (16) holds with Ef̃n(x0)

replaced by f(x0).

We shall briefly discuss the bandwidth condition for the
short-range dependence case (i) and the long-range depen-
dence case (ii) in Theorem 1. Motivated by the traditional
kernel estimates, a popular choice of the bandwidth sequence
is bi � i−β , where 0 < β < 1. Then under (D1), Bn =∑n
i=1 bi � n1−β , and Bn,2 =

∑n
i=1 b

2
i � n1−2β (resp. log(n)

or O(1)) for β ∈ (0, 1/2) (resp. β = 1/2 or β ∈ (1/2, 1)).
Thus the bandwidth condition in Theorem 1(i) is satisfied. On
the other hand, if the underlying process exhibits long-range
dependence as in case (ii), then a more restrictive condition
2(1− γ) < β < 1 is needed.

The following theorem provides the law of iterated loga-
rithm (LIL) for the recursive kernel density estimator (15).
For a sequence of random variables Wn and a real number
c, we write limn→∞Wn = ±c if lim supn→∞Wn = c and
lim infn→∞Wn = −c.

Theorem 2. Assume condition (K), supu |f ′(u)| <∞, and
either one of the following:
(i) Condition (D1), Bn → ∞, (log n)4 + Bn,2 log n =
O(Bn) and

∑∞
k=1B21+k,2/B2k <∞;

(ii) Condition (D2), bi � i−β`0(i) where 2(1 − γ) < β < 1
and `0(·) is a slowly varying function.

Then we have the law of the iterated logarithm

limn→∞

√
Bn[f̃n(x0)− Ef̃n(x0)]√

log logBn
= ±

√
2κf(x0). (17)

We remark that generally there is no LIL result for non-
recursive estimators unless the bandwidths {bn} vary very
slowly. For i.i.d. random variables, Hall [16] proved a LIL
for the non-recursive kernel density estimator f̂n(x) =
(nbn)−1

∑n
i=1Kbn(x,Xi) under

lim
ε→0

lim sup
n→∞

sup
m:|m−n|≤nε

|bm/bn − 1| = 0. (18)

See also Härdle [19]. If (18) is violated, for example, bn =
(2 + (−1)n)n−β , then one can only obtain an almost sure
upper bound of the form

√
B−1
n log n for f̂n(x0)− Ef̂n(x0).

B. An Alternative Form

As an alternative of the recursive kernel density estimate
(15), one can use the form

f̃∗n(x) =
1

n

n∑
i=1

1

bi
Kbi(x,Xi). (19)

Under the assumption that Xi are i.i.d., the above estimator
were studied independently by Wolverton and Wagner [58]
and Yamato [63]. Takahata [47] and Masry and Györfi [29]
obtained almost sure rates of f̃∗n to f for the class of asymptoti-
cally uncorrelated processes. Nguyen [33], [34] proved asymp-
totic normality of f̃∗n(x) for Markovian processes that satisfy
the G2 geometric beta-mixing condition. Robinson [37], [38]
derived weak consistency and asymptotic normality of f̃∗n(x)
under strong mixing conditions. Masry [27] obtained quadratic
mean convergence and asymptotic normality under various
mixing conditions. Masry [28] and Györfi and Masry [15]
derived strong consistency and almost sure convergence rates
of f̃∗n(x) under various mixing conditions; see Tran [49], [50]
for improved results. Recall that Bn,l =

∑n
i=1 b

l
i, l ∈ R. We

shall here provide the central limit theorem of the recursive
estimator (19) under our framework (4).

Theorem 3. Assume condition (K), supu |f ′(u)| <∞, and
either one of the following:
(i) Condition (D1), Bn,−3 = o(B2

n,−1);
(ii) Condition (D2), bi � i−β`0(i) where 2(1 − γ) < β < 1

and `0(·) is a slowly varying function.
Then we have the central limit theorem

n[f̃∗n(x0)− Ef̃∗n(x0)]√
Bn,−1

⇒ N(0, κf(x0)).

Besides the central limit theorem, one can also have the LIL
result as in Theorem 2 that concerns the almost sure limiting
behavior of the estimator. The proofs are similar to those of
Theorems 1 and 2, and we shall here omit the details.

C. Recursive Wavelet Density Estimation

Another popular approach is the wavelet density estimate.
To introduce it, we shall use the language of multi-resolution
analysis (Daubechies [5]). Let {Vj}j∈Z ⊂ L2(R) be a collec-
tion of nested subspaces such that

⋂
j∈Z Vj = {∅},

⋃
j∈Z Vj

is dense in L2(R), Vj+1 ⊂ Vj , f(2x) ∈ Vj+1 ⇔ f(x) ∈ Vj ,
Vj has orthonormal basis {φj,k(x) = 2j/2φ(2jx−k), k ∈ Z}
for some function φ ∈ L2(R) with

∫
R
φ2(x)dx = 1. Let the
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detail space Wj be given by Vj+1 = Vj
⊕
Wj , which has the

orthonormal basis {ψj,k(x) = 2j/2ψ(2jx − k), k ∈ Z} for
some function ψ. Then Vm

⊕
Wm

⊕
Wm+1

⊕
Wm+2 . . . is

dense in L2(R). Let

f(x) =
∑
k∈Z

cm,kφm,k(x) +
∑
j≥m

∑
k∈Z

dj,kψj,k(x), (20)

be the orthogonal representation of f , where m is the reso-
lution level, the coefficients cm,k =

∫
R
f(u)φm,k(u)du and

dj,k =
∫
R
f(u)ψj,k(u)du. Since cm,k = Eφm,k(X1), we can

empirically estimate it by ĉm,k = n−1
∑n
t=1 φm,k(Xt), and

the wavelet-based estimator

f̂wv
n (x)=

∑
k∈Z

ĉm,kφm,k(x) =
1

n

∑
k∈Z

φm,k(x)

n∑
t=1

φm,k(Xt)

=
1

n

n∑
t=1

∑
k∈Z

2
m
2 φ(2mx− k)2

m
2 φ(2mXt − k)

=(nbn)−1
n∑
t=1

K

(
x

bn
,
Xt

bn

)
,

where K(u, v) =
∑
k∈Z φ(u − k)φ(v − k) has a bivariate

representation with bandwidth bn = 2−m. Here the kernel
K(·, ·) is bivariate. As in (2), we can naturally define the
recursive wavelet density estimator

f̃wv
n (x) =

∑n
i=1K(x/bi, Xi/bi)∑n

i=1 bi
(21)

Theorem 4. Assume that K(·, ·) is a symmetric
bivariate kernel satisfying supu,v |K(u, v)| < ∞,
supu

∫
R
|K(u, v)|dv < ∞, K(u, v) → 0 as |u − v| → ∞,

and for σ2(u) :=
∫
R
K2(u, v)dv, infu σ

2(u) > 0. Let
Bn(x) =

∑n
i=1 biσ

2(x/bi). Then under (i) or (ii) of Theorem
1, we have the central limit theorem

Bn[f̃wv
n (x0)− Ef̃wv

n (x0)]√
Bn(x0)

⇒ N(0, f(x0)). (22)

Under (i) or (ii) of Theorem 2, we have the law of the iterated
logarithm

limn→∞
Bn[f̃wv

n (x0)− Ef̃wv
n (x0)]√

Bn(x0) log logBn(x0)
= ±

√
2f(x0). (23)

If the bias b−1EK(x0/b,X/b) − f(x0) = O(bp) as b → 0,
p ≥ 1, then (22) [resp. (23)] hold with Ef̃wv

n (x0) therein
replaced by f(x0) if Bn,p+1 = o(B

1/2
n ) [resp. Bn,p+1 =

O(B
1/2
n )].

D. Bandwidth Selection

For the traditional kernel density estimate

f̂n(x) =
1

nbn

n∑
i=1

Kbn(x,Xi), (24)

we have the bias Ef̂n(x)− f(x) ∼ b2nν2f
′′(x)/2, where ν2 =∫

u2K(u)du, and the variance var(f̂n(x)) ∼ (nbn)−1f(x)κ
(Silverman [43]). The optimal bandwidth bn minimizing the
asymptotic mean squared error (AMSE) has the form bn =
ĉn−1/5 with ĉ = (f(x)κ)1/5(ν2f

′′(x))−2/5. For our recursive

estimate f̃n(x), letting bi = ci−β where 0 < β < 1 and c is a
constant, we have by elementary calculations that Ef̃n(x) −
f(x) ∼ ν2f

′′(x)Bn,3/Bn ∼ (1 − β)/(2 − 6β)b2nν2f
′′(x) if

β < 1/3, or 2 log(n)b2nν2f
′′(x)/3 if β = 1/3, or O((nbn)−1)

if β > 1/3. And var(f̃n(x)) ∼ (1 − β)(nbn)−1f(x)κ. Let
β = 1/5. Then the AMSE-optimal c satisfies

c = ĉ

{
(1− 3/5)2

(1− 1/5)

}1/5

= 5−1/5ĉ. (25)

Hence we can first conduct a pilot study and, based on part
of the sample X1, . . . , XN with a relatively large N , we
can apply the classical bandwidth selection procedure (for
example, Jones et al [21]) and obtain an estimate of ĉ for
the non-recursive estimate. Then we use bi = ci−β with
c = 5−1/5ĉ for our recursive estimates. With this choice, we
have AMSE(f̃n(x))/AMSE(f̂n(x)) = (2 × 5−2/5)2 ≈ 1.1,
suggesting that the recursive estimator has a quite satisfactory
performance. A simulation study is carried out in Section V.

IV. RECURSIVE KERNEL REGRESSION ESTIMATION

If we observe a bivariate stationary process (Xi, Yi) accord-
ing to model (5), we can consider the problem of estimating
the conditional regression function g(x) = E(Yi|Xi = x). Let
Vp(x) = E(|Y1|p|X1 = x), and σ2(x) = V2(x) − g2(x) be
the conditional variance function. Recall that the conditional
regression function can be recursively estimated by g̃n(x)
defined in (2). We shall here provide the asymptotic properties
of the recursive kernel regression estimator g̃n(·). Section IV-A
presents a central limit theorem for g̃n. A LIL is given in
Section IV-B and Section IV-C provides an optimal uniform
almost sure convergence rate.

A. Asymptotic Normality

Recall (2) for Jn(x). We shall first state a central limit
theorem for Jn(x)− EJn(x). Then the asymptotic normality
of g̃n(x) follows by Slutsky’s theorem. Theorem 1 is a special
case of Theorem 5 with Yi ≡ 1.

Theorem 5. Let p > 2. Assume that g and V2 are Lipschitz
continuous, Vp is bounded on a neighborhood of x0. Under
conditions of Theorem 1, we have√

Bn(Jn(x0)− EJn(x0))⇒ N(0, V2(x0)f(x0)κ). (26)

Hence it implies that for f(x0) > 0, we have√
Bn

(
g̃n(x0)− EJn(x0)

Ef̃n(x0)

)
⇒ N(0, σ2(x0)κ/f(x0)).

(27)

B. A Law of the Iterated Logarithm

Theorem 6. Let 2 < p ≤ 4. Assume condition (K),
supu |f ′(u)| < ∞, g and V2 are Lipschitz continu-
ous, Vp is bounded on a neighborhood of x, gn(x) :=

EJn(x)/Ef̃n(x) = g(x) +O(B
−1/2
n ), and either

(i) Condition (D1), (log n)2p/(p−2) + Bn,2 log n = O(Bn)
and

∑∞
k=1B21+k,2/B2k <∞; or

(ii) Condition (ii) of Theorem 2.
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Then for any x with f(x) > 0, we have the LIL

limn→∞
B

1/2
n (g̃n(x)− gn(x))√

log logBn
= ±

√
2κ√
f(x)

σ(x). (28)

C. Uniform Almost Sure Convergence

In this section we shall study the uniform almost sure
convergence for g̃(·) over compact intervals. To this end we
need to introduce the uniform functional dependence measure

δ�k =

∥∥∥∥sup
x∈R
|f1(x|Fk−1)− f1(x|Fk−1,{0})|

∥∥∥∥ . (29)

We shall modify conditions (D1) and (D2) accordingly with δk
therein replaced by δ�k, and call the new dependence conditions
as (D1�) and (D2�), respectively.

Theorem 7. Assume (K), Yi ∈ Lp, p > 2, Vp(·) is bounded
on [−a − ψ, a + ψ] for some ψ > 0. (i) Assume (D1�) and∑∞
k=1B21+k,2/(kB2k) <∞. Then

sup
x∈[−a,a]

Bn|Jn(x)− EJn(x)| = Oa.s.(χn), (30)

where χn = n1/p log n+
√
Bn log n.

(ii) Assume (D2�), bi � i−β`0(i) where β < 1 and `0(·) is
a slowly varying function. Then there exists a slowly varying
function `2(n) such that

sup
x∈[−a,a]

Bn|Jn(x)− EJn(x)| = Oa.s.(ηn), (31)

where ηn = χn + n3/2−β−γ`2(n).

Remark 1. In (ii) of Theorem 7, we do not impose the
condition 2(1−γ) < β, which is needed in previous theorems.
Consequently, in (31) there is the term n3/2−β−γ`2(n) which
accounts for dependence. Note that if 3/2 − β − γ < 1/p or
2(1−γ) < β, then the second term in ηn is absorbed into the
first term χn. ♦

Corollary 1. Assume minx∈[−a,a] |f(x)| > 0 and f, g ∈
C2[−a− ψ, a+ ψ]. Let ρn be the right hand side of (30) and
(31). Then under conditions of Theorem 7, we have

max
x∈[−a,a]

|g̃n(x)− g(x)| = Oa.s.(ρn/Bn +Bn,3/Bn).(32)

Proposition 3. Let Xi, ei, i ∈ Z, be i.i.d. N(0, 1) and
consider the regression model

Yi = g(Xi) + ei, (33)

where g ∈ C1[−ψ, 1 + ψ] for some ψ > 0. Let bi � i−β ,
0 < β < 1. Assume (K). Let gn(x) = EJn(x)/Ef̃n(x). Then
for any α ∈ (0, 1), there exists a constant c > 0 such that

lim sup
n→∞

P

(
sup
x∈[0,1]

|g̃n(x)− gn(x)| > c

√
B−1
n log n

)
≥ α.

(34)

Proposition 3 suggests that the almost sure bounds in
Theorem 7 and Corollary 1 are generally un-improvable,
since under model (33), χn in Theorem 7 can be reduced to√
Bn log n, and the stochastic part of (32) maxx∈[0,1] |g̃n(x)−

gn(x)| = Oa.s.(
√
B−1
n log n).

V. A SIMULATION STUDY

We shall here carry out a simulation study and examine the
finite sample performance of the recursive kernel estimators.
We consider two models:

(i) Nonlinear AR(1) process Xi = θ|Xi−1|+εi, where εi are
i.i.d. N(0, 1) and |θ| < 1. Then the stationary distribution
is skew-normal with density 2φ(x(1 − θ2)1/2)Φ(θx),
where φ(·) and Φ(·) are the standard normal density and
distribution functions (cf. Anděl et al. [1] and Tong [48]);

(ii) Fractionally integrated process (1 − B)dXi = εi where
εi are i.i.d. N(0, σ2) with σ2 = Γ2(1 − d)/Γ(1 − 2d),
0 < d < 1/2. Then the marginal distribution of (Xi)
is standard normal, and Xi =

∑∞
j=0 ψjεi−j with ψj =

Γ(j+d)/(Γ(j+1)Γ(d)) ∼ jd−1/Γ(d) (cf. Hosking [20]).

Let θ = 0.3 in model (i) and d = 0.09 in model (ii), and
n = 103. Using the bandwidth selector in Jones et al [21], we
obtain ĉ ≈ 0.92 for model (i), and ĉ ≈ 0.90 for model (ii),
respectively. By (25), for the recursive estimator we choose
c = 0.67 and 0.65 for model (i) and (ii), respectively. Figure
1 presents the comparison of the empirical bias/variance with
the asymptotic values averaged over 10000 replications for
both recursive and traditional kernel density estimators given
by (15) and (24), respectively. It shows that, for both models,
the empirical bias and variance of the recursive kernel density
estimator are quite close to those of the classical non-recursive
version.
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Fig. 1. Plots of the bias (left) and variance (right) of both recursive (black)
and traditional (green) kernel density estimates with sample sizes n = 1000
from Model (i) (top) or Model (ii) (bottom). The form of density estimators are
given by given by (15) and (24) for recursive and traditional ones. Each result
is averaged over 104 replications. The solid lines are empirical estimates,
while the dashed lines are average asymptotic values for either bias or variance
discussed in Section III-D.
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APPENDIX

Proof of Proposition 1. It follows from equation (36) in
Wu et al. [61] by letting p = 2 and q = α therein. ♦

Proof of Proposition 2. By Theorem 2 in Wu and
Shao [62], (11) implies that the Markov chain (6) has a sta-
tionary solution of form (4) such that the following geometric
moment contraction property holds:

‖Xk −Xk,{0}‖τ = O(Lk), where Xk,{0} = R(Fk,{0}).
(35)

Let δk,p = supx∈R ‖f1(x|Fk−1)−f1(x|Fk−1,{0})‖p. Then by
(12),

|f1(x|Fk−1)−f1(x|Fk−1,{0})| ≤ min(2C0, H|Xk−Xk,{0}|α).
(36)

Hence, if αp ≤ τ , by (35), we have δk,p = O(ρk) with ρ =
Lα. If αp > τ , we have

min(2C0, H|Xk−Xk,{0}|α)p ≤ (2C0)p−
τ
αH

τ
α |Xk−Xk,{0}|τ ,

(37)
which by (35) and (36) also implies δk,p = O(ρk) with ρ =
Lτ/p. ♦

Lemma 1. Assume that (Xi) is short-range dependent satis-
fying condition (D1) and

∞∑
k=1

B21+k,2

B2k
<∞. (38)

Let

Rn(x) :=

n∑
i=1

(E(Kbi(x,Xi)|Fi−1)− E(Kbi(x,Xi))) .

(39)
Then B

−1/2
n Rn(x) → 0 almost surely, namely Rn(x) =

oa.s.(B
1/2
n ).

Proof of Lemma 1. Recall Fi = (. . . , εi−1, εi). Define

Λn(x, v) :=

n∑
i=1

bi[f1(x− biv|Fi−1)− f(x− biv)]. (40)

Notice that E(Kbi(x,Xi))|Fi−1) = bi
∫
R
K(u)f1(x −

biu|Fi−1)du, we have Rn(x) =
∫
R
K(u)Λn(x, u)du. S-

ince f1(x|Fi−1) − f(x) =
∑∞
l=1 Pi−lf1(x|Fi−1) and

Pi−lf1(x|Fi−1), i = 1, 2, . . ., are martingale differences, by
the triangle and Doob’s inequalities, and the orthogonality of
the projection operators Pl·,∥∥∥∥max

n≤2k
|Λn(x, u)|

∥∥∥∥ (41)

≤
∞∑
l=1

∥∥∥∥∥max
n≤2k

∣∣∣∣∣
n∑
i=1

biPi−lf1(x− biv|Fi−1)

∣∣∣∣∣
∥∥∥∥∥

≤
∞∑
l=1

2

∥∥∥∥∥∥
2k∑
i=1

biPi−lf1(x− biv|Fi−1)

∥∥∥∥∥∥
=

∞∑
l=1

2

 2k∑
i=1

b2i ‖Pi−lf1(x− biv|Fi−1)‖2
1/2

≤
∞∑
l=1

2

 2k∑
i=1

b2i θ
2
l

1/2

= 2Θ1B
1/2

2k,2
(42)

holds uniformly over x and u. Let Wk =
maxn≤2k |Rn(x)|2/B2k−1 . By (38),

∞∑
k=2

EWk≤
∞∑
k=2

∫
R
|K(u)|

∥∥maxn≤2k |Λn(x, u)|
∥∥2
du

B2k−1

<∞. (43)

Hence
∑∞
k=2Wk <∞ almost surely, implying Wk = oa.s.(1)

and Rn(x) = oa.s.(B
1/2
n ). ♦

Lemma 1 concerns the short-range dependent case with
Θ1 <∞. Under long-range dependence, Θ1 in (41) is infinite
and the bound therein is no longer useful. In this case we need
the following Lemma 2, where an upper bound of a different
type is given.

Lemma 2. We have∥∥∥∥max
k≤n
|Λk(x, u)|

∥∥∥∥2

≤
∑
l∈Z

(
n∑
i=1

biδi−l

)2

=: Ξn. (44)

Assume condition (D2) and bi � i−β`0(i) where 0 < β < 1
and `0(·) is another slowly varying function. If γ + β/2 > 1,
then Rn(x) = oa.s.(B

1/2
n ) and Ξn = O(Ψn). Here Ψn =

O(n3−2β−2γ`2(n)`20(n)) if 3/2 > β+γ; Ψn = O(1) if 3/2 <
β + γ; and Ψn = O(`1(n)) if 3/2 = β + γ, where `1(n) =∑n
m=1m

−1`20(m)`2(m).

Proof of Lemma 2. Write Λn = Λn(x, u). Let Λn,{l} be
a coupled version of Λn with εl in the latter replaced by the
i.i.d. copy ε′l. By Jensen’s and the triangle inequalities,∥∥∥∥Pl max

k≤n
|Λk|

∥∥∥∥
≤
∥∥∥∥max
k≤n
|Λk| −max

k≤n
|Λk,{l}|

∥∥∥∥
≤

n∑
i=1

|bi|‖f1(x− biv|Fi−1)− f1(x− biv|Fi−1,{l})‖

≤
n∑
i=1

|bi|δi−l, (45)

which implies (44) since the projection operators Pl· yield
martingale differences.

We now prove the second assertion. Let b∗i = i−β`0(i),
δ∗i = i−γ`(i), i ≥ 1, b∗0 = δ∗0 = 1 and b∗i = δ∗i = 0 if i < 0,
and Ξ∗n =

∑n
l=−∞(

∑n
i=1 b

∗
i δ
∗
i−l)

2. By Karamata’s Theorem,∑n
i=1 b

∗
i � nb∗n and

−n∑
l=−∞

(
n∑
i=1

b∗i δ
∗
i−l

)2

=

−n∑
l=−∞

O(δ∗−l)
2

(
n∑
i=1

b∗i

)2

=O(n(δ∗n)2(nb∗n)2). (46)

Elementary calculations show that, since β + γ > 1, we have∑∞
i=0 b

∗
i δ
∗
i+m � mb∗mδ

∗
m as m → ∞. Again by Karamata’s

Theorem, if 2(1 − β − γ) > −1, or 3/2 > β + γ, we
obtain

∑n
m=1(mb∗mδ

∗
m)2 � n3(b∗nδ

∗
n)2. If 3/2 < β + γ,

then
∑n
m=1(mb∗mδ

∗
m)2 <

∑∞
m=1(mb∗mδ

∗
m)2 < ∞. At the
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borderline case with 3/2 = β + γ, then
∑n
m=1(mb∗mδ

∗
m)2 =

`1(n), which is also a slowly varying function. Combining
all these three cases, we have

∑1
l=−n+1(

∑n
i=0 b

∗
i δ
∗
i−l)

2 �∑n
m=1(

∑∞
i=0 b

∗
i δ
∗
i+m)2 �

∑n
m=1(mb∗mδ

∗
m)2 = O(Ψn).

And
∑n
l=0(

∑n
i=1 b

∗
i δ
∗
i−l)

2 ≤
∑n
l=0(

∑n
m=1 b

∗
m+lδ

∗
m)2 can

be bounded in the same way. Notice that Ξn =(∑−n
l=−∞+

∑1
l=−n+1 +

∑n
l=0

) (∑n
i=1 b

∗
i δ
∗
i−l
)2

, the result
follows and we have

∑∞
k=1 Ξ2k/B2k < ∞ if γ + β/2 > 1,

which, as in (43), implies Rn(x) = oa.s.(B
1/2
n ). ♦

Proof of Theorem 1. By Lemmas 1 and 2, it follows
that Rn = op(B

1/2
n ) since almost sure convergence implies

convergence in probability, hence it suffices to show that∑n
i=1Di

B
1/2
n

⇒ N(0, 2κf(x0)), (47)

where Di = Kbi(x0, Xi)− E[Kbi(x0, Xi)|Fi−1].
To this end, we shall apply the martingale central limit the-

orem; see Hall and Heyde [17]. Since |Di| is bounded by 2CK
and Bn →∞, for any ε > 0, we have D2

i 1|Di|≥B1/2
n ε

= 0 for
all large n. It remains to show that

B−1
n

n∑
i=1

E(D2
i |Fi−1)→ κf(x0) in probability. (48)

Since

E(D2
i |Fi−1) = E(K2

bi(x0, Xi)|Fi−1)−E2[Kbi(x0, Xi)|Fi−1],

and elementary calculation readily shows that
E(K2

bi
(x0, Xi)|Fi−1) → κf(x0)bi as i → ∞; and

E(Kbi(x0, Xi)|Fi−1) = O(bi). Notice that Bn → ∞,
it follows by Toeplitz lemma that,

B−1
n

n∑
i=1

E(D2
i |Fi−1)

=B−1
n

n∑
i=1

[E(K2
bi(x0, Xi)|Fi−1)− E2(Kbi(x0, Xi)|Fi−1)]

→B−1
n

n∑
i=1

(
κf(x0)bi +O(b2i )

)
→κf(x0). (49)

Hence (47), and then (16) follows.
♦

Proof of Theorem 2. Recall Rn(x) in equation (39). We
can write

Bn(f̃n(x)− Ef̃n(x)) = Mn(x) +Rn(x), (50)

where

Mn(x) =

n∑
i=1

(Kbi(x,Xi)− E(Kbi(x,Xi)|Fi−1)) (51)

is a martingale relative to the filtration Fn. Then the Theorem
follows from Lemmas 1, 2 above and 3 below. ♦

Lemma 3. Under conditions of Theorem 2, we have

limn→∞
Mn(x0)√

Bn log logBn
= ±

√
2κf(x0) (52)

Proof of Lemma 3. Write M0 = 0, Mn = Mn(x0) and
Dn = Mn − Mn−1. Then Dn are martingale differences.
By Strassen’s [46] martingale representation theorem (see also
the Appendix in Hall and Heyde [17]), on a possibly richer
probability space (here, for presentational simplicity, we take
it to be the same as the original space), there exists a standard
Brownian motion B and a sequence of nonnegative random
variables τ1, τ2, · · · such that

{Mk, k ≥ 1}=D{B(Tk), k ≥ 1}, where Tk =

k∑
i=1

τi,

E(τk|Fk−1) = E(D2
k|Fk−1) a.s., (53)

and for Cq = 2(8/π2)q−1Γ(q + 1),

E(τ
q/2
k |Fk−1) ≤ CqE(Dq

k|Fk−1) a.s. for q > 2. (54)

Let tn = E(Tn) =
∑n
i=1 E(D2

i ). By (7) and condition (K),
|E(Kbi(x0−Xi))|Fi−1)| ≤ Cbi, which by supu |f ′(u)| <∞
implies E(D2

i ) = κf(x0)bi(1 +O(bi)). Hence

tn = κf(x0)Bn +O(Bn,2). (55)

We shall now apply (53) and (54) to prove (52). Write

Tn − tn=

n∑
i=1

(τi − E(τi|Fi−1)) +

n∑
i=1

(E(τi|Fi−1)− E(τi))

:=Pn +Qn. (56)

Note that Pn is also a martingale. By Doob’s inequality and
(54), ∥∥∥∥max

i≤n
|Pi|
∥∥∥∥2

≤4‖Pn‖2 ≤ 4

n∑
i=1

E(τ2
i )

≤4C4

n∑
i=1

E(D4
i ) = O(Bn). (57)

As in (43), by the Borel-Cantelli Lemma, maxi≤2k |Pi|2 =
oa.s.(B2kk

2), implying the almost sure bound maxi≤n |Pi| =
oa.s.(B

1/2
n log n). For Qn, recall (40) for Λn(x, v), we have

Qn=

n∑
i=1

(
E(D2

i |Fi−1)− E(D2
i )
)

=

n∑
i=1

(
E(K2

bi(x0, Xi)|Fi−1)− E(K2
bi(x0, Xi)) +O(b2i )

)
=

∫
R

K2(v)Λn(x0, v)dv +O(Bn,2).

Hence, under (i) (resp. (ii)), we have by Lemma 1 (resp.
Lemma 2) that

Tn − tn = Oa.s.(∆n), where ∆n = B1/2
n log n+Bn,2.

By Lévy’s modulus of continuity for Brownian motions, we
have almost surely that

max
k≤n
|B(Tk)− B(tk)|≤ sup

|x−y|≤C∆n, 0≤y≤tn
|B(x)− B(y)|

≤C(∆n log(Bn/∆n))1/2. (58)

Under conditions on (bi) in (i) or (ii), we have

lim
n→∞

∆n log(Bn/∆n)

Bn log logBn
= 0. (59)
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Since tn → ∞, by the law of the iterated logarithm for
Brownian motions, we have

limn→∞
B(tn)√

2tn log log tn
= ±1. (60)

Hence by (53), (58) and (59), we have (52). ♦
Proof of Theorem 4. To simplify notation we let x = x0.

Let Di = K(x/bi, Xi/bi) − E(K(x/bi, Xi/bi)|Fi−1) and
Mn =

∑n
i=1Di. Similarly as (50), we write

Bn(f̃wv
n (x)− Ef̃wv

n (x)) = Mn +Rn, (61)

where, noting that

E(K(x/bi, Xi/bi)|Fi−1) = bi

∫
R

K(x/bi, u)f1(biu|Fi−1)du,

the term

Rn =

∞∑
k=1

Rn,k, (62)

where Rn,k =
∑n
i=1 bi

∫
R
K(x/bi, u)Pi−kf1(biu|Fi−1)du.

By the Cauchy-Schwarz inequality and conditions on K(·, ·),
we have

‖Rn,k‖2=

n∑
i=1

b2iE
(∫

R

K(x/bi, u)Pi−kf1(biu|Fi−1)du

)2

≤
n∑
i=1

b2i

∫
R

|K(x/bi, u)|du

× E
∫
R

|K(x/bi, u)||Pi−kf1(biu|Fi−1)|2du

=

n∑
i=1

b2iO(θ2
k). (63)

Hence under the short-range dependent case (D1), ‖Rn‖ =

O(Θ1)B
1/2
n,2 . Using a similar argument as the one in Lemma

2, we can deal with the long-range dependent case (D2). By
the continuity of f , we have

EK2(x/b,Xi/b)

=

∫
R

K2(x/b, u)f(bu)du

=

(∫
|ub−x|≥b1/2

+

∫
|ub−x|<b1/2

)
K2(x/b, u)f(bu)du

=σ2(x/b)f(x) + o(1) (64)

as b → 0, due to the conditions on the kernel K(·, ·). Then
the martingale part Mn can be similarly dealt with by using
the argument in Lemma 3. ♦

Proof of Theorem 5. To simplify notation we let x = x0.
Let Gi = (· · · , ei−1, ei,Fi), ξi = YiKbi(x,Xi) and

Λ◦n(x, v) :=

n∑
i=1

g(x−biv)bi (f1(x− biv|Fi−1)− f(x− biv)) .

(65)
Note that ξi is Gi-measurable and E(Yi|Xi = x) = g(x). As
in (39), we can write

Ln :=

n∑
i=1

(E(ξi|Gi−1)− Eξi) =

∫
K(v)Λ◦n(x, v)dv. (66)

By (K), since g is bounded at a neighbor of x = x0, by the
argument in Lemmas 1 and 2, we have ‖Ln‖ = o(

√
Bn). Let

di = ξi − E(ξi|Gi−1). Then (26) follows from

1√
Bn

n∑
i=1

di ⇒ N [0, V2(x)f(x)κ]. (67)

To this end, we shall apply the martingale central limit theo-
rem. Note that |E(ξi|Gi−1)| = O(bi). Hence ‖E(d2

i |Gi−1) −
E(ξ2

i |Gi−1)‖ = O(b2i ). By Lemmas 1 and 2, we have

1

Bn

n∑
i=1

(
E(ξ2

i |Gi−1)− E(ξ2
i )
)

=
1

Bn

n∑
i=1

∫
V2(v)K2

(
x− v
bi

)
(f1(v|Gi−1)− f(v)) dv

=O(Bn
−1)

∫
K2(u)Λn(x, u)du = oP (1)

since V2(·) is Lipschitz continuous. Note that K has bounded
support,

1

Bn

n∑
i=1

E(d2
i |Gi−1) =

1

Bn

n∑
i=1

E(ξ2
i ) + oP (1)

=
1

Bn

n∑
i=1

∫
V2(x− biv)K2(v)f(x− biv)bidv + oP (1)

=V2(x)f(x)

∫
K2(v)dv + oP (1).

The proof is now complete since
∑n
i=1 ‖B

−1/2
n di‖pp ≤

2pB
−p/2
n

∑n
i=1 ‖ξi‖pp = O(B

1−p/2
n ) → 0, Lindeberg’s con-

dition is satisfied. By Slutsky’s Lemma, we have (27). ♦
Proof of Theorem 6. As in the proof of Theorem 5, let

Gi = (· · · , ei−1, ei,Fi), ζi = (Yi − g(x))Kbi(x,Xi), D◦i =
ζi − E(ζi|Gi−1) and M◦n =

∑n
i=1D

◦
i . We shall show that

limn→∞

∑n
i=1D

◦
i√

Bn log logBn
= ±

√
2κf(x)σ(x) (68)

almost surely. To this end, we shall use the arguments in
the proof of Lemma 3. There exists a standard Brownian
motion B◦ and a sequence of nonnegative random variables
τ◦1 , τ

◦
2 , · · · , with T ◦k =

∑k
i=1 τ

◦
i such that {M◦k}k≥1 =D

{B(T ◦k )}k≥1, and

E(τ◦k |Gk−1) = E((D◦k)2|Gk−1) a.s.
E((τ◦k )p/2|Gk−1) ≤ CpE((D◦k)p|Gk−1) a.s. (69)

where Cp = 2(8/π2)p−1Γ(p + 1). Since g is Lipschitz
continuous and E(Yi − g(x)|Fi) = g(Xi)− g(x), by (7), we
have

|E(ζi|Gi−1)|=|E((g(Xi)− g(x))Kbi(x,Xi)|Fi−1)|

≤
∫
|g(u)− g(x)|K

(
x− u
bi

)
f1(u|Fi−1)du

≤biC
∫
|g(x− biv)− g(x)|K(v)dv

≤biC
∫
C|biv|K(v)dv = O(b2i ) (70)

since K has bounded support. Similarly, E{[g(Xi) −
g(x)]2K2

bi
(x,Xi)} = O(b3i ), and since σ2(·) is also Lipschitz
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continuous, E{[σ2(Xi) − σ2(x)]K2
bi

(x,Xi)} = O(b2i ). By
the condition supu |f ′(u)| < ∞, we have EK2

bi
(x,Xi) =

biκf(x) + O(b2i ). Note that E((Yi − g(x))2|Fi) = σ2(Xi) +
(g(Xi)− g(x))2. Then

ET ◦k = E
k∑
i=1

τ◦i = E
k∑
i=1

(ζi − E(ζi|Gi−1))2

=

k∑
i=1

(Eζ2
i +O(b4i ))

=

k∑
i=1

E
(
{σ2(Xi) + [g(Xi)− g(x)]2}K2

bi(x,Xi)
)

+O(Bk,4)

=

k∑
i=1

(σ2(x)biκf(x) +O(b2i )) +O(Bk,4)

=σ2(x)Bkκf(x) +O(Bk,2). (71)

By (69) and the Burkholder inequality, note that ‖ζi‖pp =
O(bi),

‖max
k≤n
|
k∑
i=1

[τ◦i − E(τ◦i |Gi−1)]|‖p/2p/2

≤cp‖
n∑
i=1

[τ◦i − E(τ◦i |Gi−1)]‖p/2p/2

≤cp
n∑
i=1

‖τ◦i − E(τ◦i |Gi−1)‖p/2p/2 ≤ cp
n∑
i=1

‖τ◦i ‖
p/2
p/2

≤cp
n∑
i=1

‖D◦i ‖pp ≤ cp
n∑
i=1

‖ζi‖pp = O(Bn). (72)

Here the constant cp may change from place to place and it
only depends on p. As in the proof of Lemma 3, under either
(i) or (ii), we have (68) in view of

T ◦n − σ2(x)Bnκf(x)
=Oa.s.(B

2/p
n log n) +Oa.s.(B

1/2
n ) +O(Bn,2). (73)

By the representation (70) and the arguments in Lemmas 1
and 2, we have

∑n
i=1(E(ζi|Gi−1) − Eζi) = oa.s.(B

1/2
n ). So

we have a LIL for
∑n
i=1(ζi − Eζi) in the form of (68) with

D◦i therein replaced by ζi−Eζi. With the latter, we have (28)
by Slutsky’s theorem. ♦

Proof of Theorem 7. Let n̄ = 2b(logn)/(log 2)c, Y ′i =
Yi1|Yi|≤ī1/p , ξ′i(x) = Y ′iKbi(x,Xi), Y ′′i = Yi − Y ′i , ξ′′i (x) =

Yi
′′Kbi(x,Xi) and Rd =

∑2d

i=1[|Y ′′i | + E(|Y ′′i ||Gi−1)]. Ele-
mentary calculations show that there exists a constant C such
that
∞∑
d=1

ERd
2d/p

≤ C
∞∑
d=1

2d−d/pE[|Y1|1|Y1|≥2d/p ] ≤ CE[|Y1|p].

By the Borel-Cantelli lemma, Rd = oa.s.(2
d/p) as d → ∞.

Since K is bounded, we have

sup
x

∣∣∣∣∣
n∑
i=1

[ξ′′i (x)− E(ξ′′i (x)|Gi−1)]

∣∣∣∣∣ ≤ CKRdn = oa.s.(n
1/p),

(74)
where dn = d(log n)/(log 2)e. We shall now deal with

Wn(x) =

n∑
i=1

[ξ′i(x)− E(ξ′i(x)|Gi−1)]. (75)

Let N = n5 and bucN = buNc/N . Since K is Lipschitz
continuous,

sup
x

∣∣∣∣∣
n∑
i=1

(ξ′i(x)− ξ′i(bxcN ))

∣∣∣∣∣
≤

n∑
i=1

sup
x

∣∣Yi1|Yi|≤ī1/p(Kbi(x,Xi)−Kbi(bxcN , Xi))
∣∣

≤
n∑
i=1

ī1/pC
1

bi

1

N
≤ Cn1/pBn,−1/N.

Notice that the same bound holds for
supx |

∑n
i=1(E(ξ′i(x)|Gi−1)− E(ξ′i(bxcN )|Gi−1))|. Therefore

sup
x∈R
|Wn(x)−Wn(bxcN )| ≤ 2Cn1/pBn,−1/N. (76)

By (7), since Vp(·) is bounded on [−a− ψ, a+ ψ], there is a
constant C0 such that

E[ξ′i(x)2|Gi−1] ≤ E[ξi(x)2|Gi−1]≤E[V2(Xi)K
2
bi(x,Xi)|Fi−1]

≤biC0. (77)

By Freedman’s [10] inequality and (77), we have

P

[
max
|x|≤a

|Wn(bxcN )| ≥ λχn
]

≤4aN exp

[
− λ2χ2

n

2λχnCKn1/p + 2BnC0

]
, (78)

which is of order O(n−2) by choosing a sufficiently large λ.
Therefore, by (76) and since Bn,−1n

1/p/N = o(χn), we have
by the Borel-Cantelli lemma that

max
|x|≤a

|Wn(x)| = Oa.s.(χn). (79)

Recall (65) for Λ◦n(x, v) and (66) for Ln(x). Similarly as Lem-
mas 1 or 2, under (i) or (ii), we have ‖ supx |Λ◦n(x, v)|‖2 =
O(Bn,2) or O(Ξn), respectively. Hence, by (79) and (74), we
have (30) and (31), respectively. ♦

Proof of Corollary 1. Under the differentiability condi-
tions on f, g, elementary calculations show that gn(x) :=
EJn(x)/Ef̃n(x) = g(x) +O(Bn,3/Bn). Write

f̃n(x)[g̃n(x)− gn(x)] = Hn(x) +Qn(x), (80)

where Hn(x) = Jn(x)−EJn(x)−(f̃n(x)−Ef̃n(x))g(x) and
Qn(x) = (f̃n(x)−Ef̃n(x))[g(x)−gn(x)], and apply Theorem
7 to Hn(x) and Qn(x), we have (32). ♦

Proof of Proposition 3. We shall show that (34) holds with
supx∈[0,1] therein replaced by maxx1,...,xN , where xi = in−χ,
i = 1, . . . , N = bnχc, 0 < χ < β. Let Z be a N(0, 1) random
variable. For % ∈ (0, 1), let aN,% be such that P (|Z| ≥ aN,%) =
%/N . Let

Ln(x) =
1√
f(x)κ

n∑
i=1

ei1|ei|≤lognKbi(x,Xi). (81)

Define event Ai = {|Ln(xi)| ≥ aN,%B
1/2
n }. Let Sn =

(Ln(x), Ln(x′))>, where |x − x′| ≥ n−χ. Note that τn :=
E(e2

i1|ei|≤logn) = 1 + O(n−A) for any A > 2. Under (K),
we obtain E(L2

n(x)) = τnf(x)κ(Bn+O(Bn,3)) and, for some
constant C > 0,

|E[Ln(x)Ln(x′)]|
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=
τn√

f(x)f(x′)κ

∣∣∣∣∣
n∑
i=1

E(Kbi(x,Xi)Kbi(x
′, Xi))

∣∣∣∣∣
≤ τn√

f(x)f(x′)κ

n∑
i=1

O(bi1|x−x′|≤Mbi) = O(nχ/β−χ).(82)

Then we can apply Lemma 4 with cn = n(β−1)/2 log n and
Rn = Bn. Elementary calculations show that γn � n(β−1)/2

and aN,% =
√

2 logN + o(1) = o(min(γ
−1/3
n , c−1

n )). Hence
by (87) of Lemma 4, we obtain P (Ai) = (1 + o(1))%/N and
P (Ai ∩Aj) = (1 + o(1))%2/N2 uniformly in i and j. By the
inclusion-exclusion formula, we have

P (∪1≤i≤NAi) ≥
N∑
i=1

P (Ai)−
∑

1≤i<j≤N

P (Ai ∩Aj)

→%− %2

2
. (83)

Note that, for any A > 2, P (|ei| ≥ log n) = O(n−A). Then
we have

lim sup
n→∞

P

(
sup
x∈[0,1]

|
∑n
i=1 eiKbi(x,Xi)|√

f(x)κ
≥ aN,%B1/2

n

)
≥%− %2

2
. (84)

As in the proof of Corollary 1, we shall now deal with
Qn(x) =

∑n
i=1(g(Xi) − g(x))Kbi(x,Xi). By Freed-

man’s [10] inequality, for some constants C1, C2 > 0,

P (|Qn(x)− EQn(x)| ≥ θ) ≤ 2 exp

(
−θ2

C1θ + C2Bn,3

)
.

(85)
Let Υn := log n+(Bn,3 log n)1/2. Using the argument in (78),
for any A > 2, there exists ϕ > 0 such that

P

(
sup
x∈[0,1]

|Qn(x)− EQn(x)| ≥ ϕΥn

)
= O(n−A). (86)

Then we have (34) in view of (86), (84) and the argument in
(80). ♦

For completeness, we include the modified version of Lem-
ma 4.2 in Lin and Liu [26] here. For a vector z ∈ Rd, define
|z|? = min{|zi| : 1 ≤ i ≤ d}.

Lemma 4. Let ξn,1, · · · , ξn,kn be independent mean zero
Rd random vectors, and Sn =

∑kn
i=1 ξn,i. Assume that

|ξn,i| ≤ cnR
1/2
n , 1 ≤ i ≤ kn for some cn → 0, Rn → ∞

and |R−1
n cov(Sn) − Id| ≤ C0c

2
n, where Id is a d × d

identity matrix and C0 is a positive constant. Suppose that
γn := R

−3/2
n

∑kn
i=1E|ξn,i|3 → 0. Then we have

|P (|Sn|? ≥ λ)− P (|N |?≥λR−1/2
n )|

=o(P (|N |? ≥ λR−1/2
n )) (87)

uniformly over λ ∈ [
√
Rn, δn min(c−1

n , γ
−1/3
n )

√
Rn] with any

δn → 0 with δn min(c−1
n , γ

−1/3
n )→∞. Here N is a centered

normal random vector with covariance matrix Id.
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