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In this paper, we study a class of two sample test statistics based on inter-point distances in the
high dimensional and low/medium sample size setting. Our test statistics include the well-known
energy distance and maximum mean discrepancy with Gaussian and Laplacian kernels, and the
critical values are obtained via permutations. We show that all these tests are inconsistent when
the two high dimensional distributions correspond to the same marginal distributions but differ
in other aspects of the distributions. The tests based on energy distance and maximum mean
discrepancy mainly target the differences between marginal means and variances, whereas the
test based on L*-distance can capture the difference in marginal distributions. Our theory sheds
new light on the limitation of inter-point distance based tests, the impact of different distance
metrics, and the behavior of permutation tests in high dimension. Some simulation results and
a real data illustration are also presented to corroborate our theoretical findings.

Keywords: Two Sample Test, High Dimensionality, Permutation Test, Power Analysis.

1. Introduction

In many statistical and machine learning applications, we need inference about the two
populations or distributions based on the data samples collected. For example, we need
to compare the effectiveness of two newly developed drugs in clinical research, the higher
educational level between two countries in a social study and the global warming effects
on two regions in environmental science. Two sample hypothesis testing is a statistical
procedure to deal with such problems. Formally speaking, having i.i.d. p-dimensional
samples X1, -+, X, = X ~ Fand Yy,---.,Y,, =4 Y ~ G, we are interested in knowing
whether the underlining distributions F' and G which generate the two samples are the
same, i.e. to test the following hypothesis,

Ho:F=Gversus Hy : F # G.

The study of two-sample testing has a long history and dates back to Kolmogorov-
Smirnov’s test [19, 27], where the empirical CDFs are compared using the sup-norm.
Related work for univariate two-sample tests includes Cramer von-Mises criterion [9, 29]
and Anderson-Darling test [3]. Extensions to comparison of multivariate distributions
and also the k-sample problem can be found in [5, 6, 12, 17, 26] among others. Some
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2 C. Zhu and X. Shao

other interesting work focusing on the “trimmed” comparison of distributions can be
found in [1, 2, 11, 23].

However, all the afore-mentioned work focuses on the fixed dimensional case. If the
dimension exceeds the sample size or is allowed to grow, some of the above methods are
expected to fail. For example, the density-based methods suffer from the curse of high
dimensionality in particular. In this paper, we study the two sample tests based on certain
dissimilarity metrics that can be expressed as functions of the interpoint distances. Two
of the most popular high dimensional two-sample tests that fall into this category are
based on the Energy Distance (ED) [28] and the Maximum Mean Discrepancy (MMD)
[13]. The former is based on the Euclidean distance between sample elements; while the
latter is a kernel based method and is basically a variant of ED with a user-specified
kernel as distance metric. To be more specific, both ED and MMD take the following
form

ED*(F,G) = 2E[k(X,Y)] — E[k(X,X")] — E[k(Y,Y")], (1)

where k is a user-specified kernel, X', Y’ are i.i.d copies of X, Y respectively. For instance,
k can be chosen as

L?-norm (Euclidean distance) : k(X,Y) =X — Y|z = P (T — vu)?
2
Gaussian kernel : E(X,Y) = exp ,L|X2;32/H2 ,
P
Laplacian kernel : E(X,Y) = exp _L|X;py\|2 :
L'-norm : EX,Y) =X =Y =30 7w — tul,

where X = (z1, -+ ,2,)T, Y = (y1,--+ ,yp)T and 7, is a user-specified bandwidth pa-
rameter. Then, the population version of ED is given by Equation (1) with k being
the L2-norm and the population version of MMD multiplied by -1 is given by Equa-
tion (1) with k being Gaussian or Laplacian kernel. When & is L?-norm, Gaussian or
Laplacian kernel, ED¥(F,G) enjoys the property that ED*(F,G) = 0 < F = G. In fact,
ED¥(F,G) =0 < F = G holds as long as k is a strongly negative definite kernel [18]. ED
and MMD based tests are both nonparametric without any assumption on the underly-
ing distributions and can be implemented conveniently in practice using permutations.
In this work, we aim to address the following questions:

1, Can ED” based permutation test maintain its power against all kinds of alternatives
in the high dimensional setting?
2, What are the impact of different distance metrics?

To answer the above questions, we conduct rigorous theoretical analysis on the power of
EDk(F, @) based permutation test in the high dimensional low sample setting (HDLSS)
[16] as well as high dimensional medium sample size setting (HDMSS) [4]. Naturally, we
say a test is consistent if its power goes to 1 under either HDLSS or HDMSS regime. Here,
we study the power property of the permutation based tests because they are frequently
implemented for Energy Distance and its variants in real life applications.

Let X = (X1, X0, , X)T, Y = (Y1,Ya,---, V)T, Z = (XT, YT)T denote the
sample matrices and EDF(Z) be a U-statistic based unbiased estimator of ED*(F,G).
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Two Sample Tests in High Dimension 3

Our main results include: (i) Derivation of the limiting distribution of ED* (I'Z) under
both low and medium sample size setting, where I' ~ Uniform (P, ,) and P, is the
set of permutation matrices of dimension (n+m) x (n+m). (ii) Based on the asymptotic
results, we formulate different local alternatives, under which the power behavior of EDfL
based permutation tests are discussed in detail. (iii) Our theories are applied to existing
kernels and statistics, for example

1, Under both HDLSS and HDMSS, ED* based permutation test w.r.t. L?-norm,
Gaussian and Laplacian kernel are consistent if the sum of component-wise mean
or variance differences are not so small, i.e, lim, o > o _ (E(zy) — E(yu))?/p # 0
or limy_,o0 | >0 _, (var(x,) —var(y,))/p| # 0. In addition, if the sum of component-
wise mean and variance differences are both of order o(,/p/y/nm), i.e.,

;:(E(%) — B(yu))? = o (%) and

3 (var(e.) - var(yu>>| —o(2),

u=1
these tests suffer substantial power loss (the limits of their power are derived) under
HDLSS and have trivial power (power no larger than the significance level) under
HDMSS. Furthermore, under HDLSS, the afore-mentioned tests have trivial power
if additionally we have Y0  _, (cov(zy, Ty) — cOV(Yu, Y0))? = o(p).

When k is chosen as L'-norm, ED* based permutation test experiences a power
drop under HDLSS and trivial power under HDMSS if X,Y have the same uni-
variate marginal distribution, i.e. z, =% y, for v = 1,2,--- ,p. This phenomenon
is consistent with the fact that ED* with L'-norm can characterise the discrepan-
cies between the marginal univariate distributions. In addition, Under HDLSS, we
show that the L'-norm based test has trivial power when X and Y have the same
bivariate marginal distribution, i.e., (Zu, %) =% (Yu, Yo), u, v = 1,--- , p.

These findings are further corroborated in our simulation study. It is worth mentioning
that Chakraborty and Zhang [8] investigate the energy distance, maximum mean dis-
crepancy, distance covariance and Hilbert-Schmidt Independence Criterion in the high
dimensional setting. They propose a new class of metrics which can detect/measure the
equality of low-dimensional marginal distributions and a computational efficient ¢-test
is further proposed based on the new metric. By contrast, our focus is on kernel-based
permutation test and their asymptotic power properties in the high dimensional setting.
In the following we introduce some notation and define some frequently used operators
for later convenience.

1.1. Notation

Here, random data samples are denoted as, for each i = 1,2,---,n, X; =4 X =
(w1, ,2,)T € RP and for each j = 1,2,---,m, Y; = Y = (y1,---,y,)T € RP.
NeXta let X = (leXQa"' 7Xn)T7 Y = (Yh}/Q,"' aYm>T and Z = (XTvYT)T =
(Z1,Z9,- -+ 7Zn+m)T denote the random sample matrices. Furthermore, let P,,,, =
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4 C. Zhu and X. Shao

{Fl,FQ, e ,I‘(7,+7,L)!} be the group containing all permutation matrices of dimension
(n+m) x (n+ m) and for each i, let m; be the permutation that corresponds to I'; via

Iz = (Zﬂ',;(l)7 Zﬂ'i(2)7 MR Zﬂi(n—&-m))T

For a random permutation matrix I' ~ uniform(P,,,), we use 7 to represent its corre-
sponding permutation. Next, given any function ¢, ¢ is used to denote its i-th order
derivative. Calligraphic letters (IC, £, R, W, G) are used to denote self-defined operators
that act on random variables to produce random variables. For two random variables
W1, Wa, the notation W, =% W, means that they have the same distribution. Under

HDLSS or HDMSS setting, we use —, % to denote convergence in probability, in dis-
tribution respectively and utilize the order in probability notations such as stochastic
boundedness O, (big O in probability) and convergence in probability o, (small o in
probability).

2. Interpoint Distance Based Two Sample Tests

In this paper, we limit our attention to ED* (F,G), where k is a user specified dissimilarity
metric [24] of the following form

K(X.Y) = w{;zwm,yu)}, (2)

where ¢» > 0 and ¢ has continuous second order derivative on (0,400). The reason
we focus on EDk(F ,G) of the above form is that the metric k encompasses many well-
known distance metrics such as L?-norm, L'-norm, Gaussian and Laplacian kernel. Con-
sequently, Energy Distance (ED) and Maximum Mean Discrepancy (MMD) are just
special cases of ED*(F, G). We summarize the commonly used distance metrics in Table
1. Following the literatures [13, 14], we consider the bandwidth parameter v in Gaussian
and Laplacian kernel as a fixed constant and note that its relationship with ~, (intro-
duced in Gaussian or Laplacian kernel on page 2) is given by 7, = /py. Notice that if
k is some well-known distance metrics such as L?-norm, Gaussian kernel (multiplied by
-1) and Laplacian kernel (multiplied by -1), a nice property for ED* is that

EDF(F,G) > 0 and ED*(F,G) =0 < F = G. (3)

Here, it is just for the ease of presentation and notational simplicity that k is set to
be Gaussian or Laplacian kernel multiplied by -1. In fact, if £ is a universal kernel
(see Theorem 5 and Lemma 1 of [13]) or k is a strongly negative definite kernel (see
Theorem 1.9 [18]), Property (3) still holds. On the other hand, using ED*(F, G) to denote
ED’“(F7 G) when k is the L'-distance, we observe that ED'(F,G) = b ED(F,,G,),
from which it easily follows that

EDY(F,G) > 0and ED'(F,G) =0 F, =G, forallu=1,2,--- ,p.
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Two Sample Tests in High Dimension 5

vy | @ | k ED(F, G)

E 12 norm Energy distance (ED)

Székely and Rizzo [28]
— )2 =z ian k 1

@-v) —e 272 GausA51e.tn erne Maximum Mean Discrepancy (MMD)
(multiplied by -1)
_@ Laplacian kernel Gretton et al. [13]
—e

(multiplied by -1)

Used for some graph-based tests

|z —y| x L'-norm
Sarkar et al. [24]

Table 1. Correspondence between different choices of 1, ¢ and existing distance metrics as well as two
sample test statistics in the literature.

Notice that it is possible to have F,, = G, for all u =1,2,--- ,p but F' # G, under which
we have ED'(F,G) = 0 while ED* > 0 if k is L?-norm, Gaussian kernel (multiplied by
-1) or Laplacian kernel (multiplied by -1). Thus, L?-norm, Gaussian kernel or Laplacian
kernel based test statistics have advantage over L'-norm based test statistic in the low
dimensional setting, but we will see later that the story is in a sense reversed under the
high dimensional setting. Next, an unbiased estimator of ED* is given as

m

ED,,(2) = % ijk(Xi,m
_ﬁ Z k(XivXj)_ﬁ Z E(Y;, Y;).

1<i<j<n 1<i<j<m

3. Power Analysis for Permutation Test

As permutation tests are commonly used for Energy Distance and kernel variants in
practice due to their implementational convenience and accurate size, we study their
asymptotic behavior under the high dimensional setting in this subsection. Since we
have i.i.d samples, after we permute the data, i.e., shuffle the rows of Z as I';Z by some
permutation matrix I';, what really matters to the distribution of EDfL(FiZ) is how many
X samples stay in the first n rows. Formally, let |A| be the cardinality of the set A and
given a permutation matrix I'; with the corresponding permutation 7;, set

The integer n — N(T';) actually counts the number of samples which belong to the
first n rows of Z both before and after the permutation I';. Notice that it is possible
that N(I';) = N(T';) for different permutations I'; and I';. The set S,, collects all the
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6 C. Zhu and X. Shao

permutations I'; such that N(I';) = w. Mathematically, fix 0 < w < min{n,m}, set
Sw =T : N(T;)) =w, i =1,2,--- ,(n+m)!}, then

- (),

To differentiate from I';, we use italic symbol I, to represent an element in S,,,. Intuitively,
|Sw| is the number of permutations that would have n — w samples stay in the first n
rows of Z after we apply the corresponding permutation. The above process is further
illustrated in the following diagram.

X; : n — w samples
Y, : w samples

X; : n samples !

I'eS, ;
I SN |
. ! | X, : w samples }
Y+ m samples 1 1 Y; : m — w samples | |
i) f
Z 'z

For the inter-point distance based two sample tests, we can equivalently permute the
weights on the pair-wise distances instead of permuting data points, i.e., for a fixed
permutation matrix I'y € P,,4,,, that corresponds to 74, we can write EDfL(FSZ) as

n+m i—1
ED}(T.Z) = Y Y I ;k(Zi, Z;), (4)
i=2 j=1
where Il ;; is defined as
_ﬁ, 1§7T5(i)’7r5(j)§n7
H o _%, n+1§7rs(i),ﬂ's(j)§n+m,
= %, 1< 7)) <nyn+1<7s(5) <n+m,
iy n+1<m(i) <ntm,1<m(j) < m.

To formally define the permutation test for ED*(Z), let R denote the randomization
distribution of ED¥(Z), which is defined by

(n+m)! min{n,m}
~ 1 1
MO =Gy & Tovsoms) = Gy 2 2 Tewsoms
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Two Sample Tests in High Dimension 7

For any distribution F', let the (1 — a)-th quantile of F' be denoted by Qp1_4. In par-
ticular, the (1 — a)th quantile of Ris Qg ,_, ie.

Qﬁ“_a:ﬁz—lu_a):inf{t:ﬁ(t)21—a}. (5)
Then, the level-a permutation test w.r.t. ED®(Z) is defined as
Reject Hy if EDY(Z) > Qg ,_,.-

In real life applications, (n + m)! might be large, we thus resort to an approximation of
Qpq_, LetT'y,--- ,T's_y beii.dand uniformly sampled from P,,;,,, and we approximate
the critical value by Qz ,__, where

S-1

- 1

R(t) = g (H{ED’;(Z)<t} + E :H{EDﬁ(FiZ)<t}> :
i1

Under the null hypothesis, let the critical value ¢ be chosenasc=Qp,_, or c=Qz,_,,

then we have P(ED*(Z) > ¢) < a, where the equality may not hold (i.e., the size may
not be equal to a) since our test is non-randomized. A randomization based test can be
formulated but should make little difference in practice; see [21].

3.1. Local Alternatives

In this subsection, we define different local alternatives, under which the EDZ(Z) based
permutation test will be consistent, have a nontrivial power limit and exhibit trivial
power (power no larger than the significance level «) in the limit. To formally define the
local alternative hypothesis, let the operator K be defined as

14
]C(ZmZ Z ZZ’LMZ]’U. - E[w(zluazjuﬂzzu}

— E [¥(2iu, 2ju)|2ju] + E [ (Zius 2u)] }, - (6)

It follows from Proposition 2.2.1 of [30] that E[K(Z;, Z;)K(Z,Z;)] = 0 if {i,j} #
{#',7'}. Next, denote the average distance over components as

P

§ Zzu7 z]u

W(Zi, Z;)

%3 \P4

In addition, we need to assume the existence of some constants to properly define the
local alternatives. These constants will also appear in the limiting distribution of our test
statistics.

imsart-bj ver. 2014/10/16 file: TwoSampleBernoulli_Revise4.tex date: June 10, 2020



8 C. Zhu and X. Shao

Assumption 1. As p — oo, assume the existence of the limiting mean

ex = lim E [¢(X,X")] ey = lim E[¢(Y,Y")] and ey = lim E [{(X,Y)]

and also the limiting variances

vy = lim var [K(X, X")], vy = lim var [K(Y,Y")] and vy = lim var [K(X,Y)].

Then, we are ready to define the consistency space H4,, under which the EDfL(Z)
implemented as permutation test can be shown to be consistent under both HDLSS and
HDMSS settings.

Ha, = A{(F,G) [ 2¢(exy) # ¢lex) + pley)} -

We use A° to denote the complement of any given set A and denote F' = (Fi, Fy,--- , F})
and G = (G1,Ga, -+ ,Gp), where F,,Gy,u = 1,2,--- ,p are the marginal univariate
distributions. For commonly used kernels, we have the following table characterizing
H 4, and the proof is postponed to subsection A.1.

k H 4, Characterization

i (B ) — E))? = ofp) and |
w1 E(zy) — E(yu))” = o(p) and
Gaussian kernel | Ha, =< (F,G) !

>t (var(zu) — var(yu))| = o(p)

Laplacian kernel

L'-norm Ha, = {(F.G)|X0_, ED(F..G.) = o(p) }°

Then, we present the space H 4,, under which the normal limit of EDZ(Z) can be derived
under both HDLSS and HDMSS.

28 [0(X. V)] - B [0(X, X)] = E [0(V:Y)]| = o(\/ iy
E[|E [3(X,Y)X] — E [3(X, X)X]|] = o mlnp)and
E(|E[HXY)Y] - E[BY.Y)V]]] = oy/5)-

f{A = (Fx(;

l

Under H 4,, a limit for the power of ED¥ (Z) (implemented as permutation test) is derived
under HDLSS. On the other hand, its power is shown to be trivial (no larger than the
significance level o) under HDMSS and Hy,. Next, we provide sufficient conditions for
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Two Sample Tests in High Dimension 9

(F,G) € Hy, with respect to the following well known kernels.

k Sufficient conditions for H 4,

L?-norm

Gaussian kernel (F,G) Zzl(E(ZU) ~ Bly))” = o ) and C Hy,
121 (war(zu) —var(ya))| = o(\/752)

Laplacian kernel

Ll—norm {(F,G)‘FUZGU,U:1,27,p}gHAL

Then, the set of distributions H 4, is defined as
Hy, ={(F,G)|(F,G) € Hp,,Vgy = Uy =y }.

It can be shown that under H4,, the ED’:L(Z) based permutation test has power no larger
than the significance level a for both HDLSS and HDMSS settings. Sufficient conditions
of being in Hy4, are provided in the following table.

k Sufficient conditions for H 4,

L?-norm et (B(za) = E(ya))? = o(\/310),
Gaussian kernel (F.G)| 320 (var(zy) — var(y,))| = o(y/-E) and p € Ha,

n

Laplacian kernel y v (cov(@y, ) — cov(yu, yu))? = o(p)
Ll-norm {(F7 G) ’(xuaxv) =d (yuvyv)vua v = ]-7 o ap} c HAt

Comparing the three local alternatives, it follows from the definition of H4_, Ha,, Ha,
that Hfj,c D Hy, O Hy,. We also want to remark that it holds for arbitrary function ¢
and v that

{(F7G)|Fu:Gu7u:172a 7p} QHAU
{(FaG) |(xu7xv) =2 (yuvyv)»uvvz 17"’ ,P} C HA,;

3.2. High Dimensional Low Sample Size (HDLSS)

The analysis in this subsection is conducted under the high dimensional low sample size
setting (HDLSS), i.e, n,m are fixed constants and we let p — co. Our final goal is to
study the power of EDF(Z) based permutation test under various local alternatives. To
this end, we need the following assumption. Recall the operator K is defined in (6).

Assumption 2. For fixed n,m, as p — oo,

K(X:,Y;) 4 bij
’C(Xi17 i2) _> Ci1’i2 b
K(Y;1,Yj) i,,i1 <ig,j1<ja djy o i,,i1 <ig,j1<ja
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where {bij, Ciyiy, djy g, Vijiin<in,ji<js 0T€ uncorrelated and jointly Gaussian with mean 0
and variances var(b;;) = gy, vVa1(Ciyiy) = Vg, var(dj, j,) = vy.

Remark 3.1. The above multi-dimensional CLT result is classical and can be derived

under suitable moment and weak dependence assumptions on the components of X and
Y.

In the above assumption, it is due to the use of double centered distance K(Z;, Z;)
that the asymptotic covariance matrix is diagonal. Then, to provide some insights, the
first step of our power analysis is the Taylor expansion w.r.t ¢ up to the second order,
ie., for i #£j

where £(Z;, Z;) = 1(Z;, Zj) — e, is an operator that acts on random variables,

€, if1<4,j<n,
€ij = €y, ifn+1<i,j<n+m,
€ry, Otherwise.

and R2(Z;, Z;) is the remainder given by
11
Ra(Zi, Z;) = £2(Zi7Zj)/ / up® (ei; +wvl(Z;, Z;)) dvdu.
o Jo

In order to control the remainder term, we need assumptions about the decay rate of
E[L£%*(Z;, Z;)]. Thus, we set
= E[L*(X,X")], af = E[L*(Y,Y")] and o}, = E[L*(X,Y)].

It then follows from Markov’s inequality that £(X,Y) = Op(auy), L(X,X') = Op(ay)
and L(Y,Y’) = Op(cy). Then, our next two assumptions are used to control the remain-
der terms induced by taking the Taylor expansion.

Assumption 3. o2, = o(1),02 = o(1) and o, = o(1).
Assumption 4. /pa2, = o(1),\/paz = o(1) and \/pal = o(1).

Remark 3.2. To gain some insights into the above assumptions, a straightforward
calculation yields

P p 2 2
Z xU7yu)7w(xv7yv)) + ( u=l E[g( uvyu)] - ewy) :

1
" N

Therefore, we have \/ﬁa%y = o(1) if the component-wise dependencies of both X and Y
are not so strong. For illustration purpose, suppose X and Y are k-dependent weak sta-
tionary time series, i.e., ., L x, andy, L y, if [u—v| > k. Then, if max, E[¢?(2y,y.)] <
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Two Sample Tests in High Dimension 11

00, it is easy to see that aiy = O (k/p) and as a consequence, Assumption 4 is satis-
fied as long as k/\/p = o(1). In addition, it is indeed fairly straightforward to verify

the above result when the sequence {(xy,yu)}h_, is a-mizing with geometrically decaying
coefficients.

Remark 3.3. When ¢(z,y) = (x — y)?, some algebra shows that

S coutp(@u ya), (@, ) = var(XTX) + var(YTY)

u,v=1

+ 4var(XTY) — deov(XT X, XTE[Y]) — 4cov(YTY, YT E[X])).

Thus, suppose S b_ 1 E[(2u,yu)]/p — €y = o(p~*) and if var(XTX), var(YTY),
var(XTY), var(XT E[Y]), var(E[X]"Y) all have order o(p'®), we have \/pa2, = o(1).

In the next theorem, we state the asymptotic behavior of ED* (I, Z) for each fixed
permutation matrix I, € S,,. Here, we use the italic gamma I, € S,, to differentiate
from I'; € Py

Theorem 3.1. For fized I, € S,
(i) Under Assumptions 1 and 3,

ED¥(IWZ) % pin ),

where fiy, 4, 15 defined as

nw = pn(TwZ) = (2¢(eay) — p(ex) — pley)) %
U Gt )+ (e ) =) )

(ii) Under Assumptions 1, 2, 4 and local alternative H 4,

\/ﬁ(EDﬁ(FwZ) - un(FwZ)) 4 N(0,02,).

s Yn,w
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2

n,w

where o 18 given as

o2 =0, ([WZ)

+{m<m2—1> . <n2ﬂni - T mfg:f—ll)?) v
=2 (s~ i =1 ) e

We use W ~ Hypergeometric(n+m, m,n) to denote that W follows the hypergeomet-
ric distribution, which describes the probability of n draws from a union of two groups
(one group has m elements, the other has n elements) such that w of them are chosen
from the group of size m. To be precise, W has probability mass function

PW=w)= W for w € {0,1,--+ ,min{n,m}}.

Then, the limiting distribution of EDZ(I‘Z) is derived in the following proposition.
Proposition 3.1. For T' ~ Uniform(Py.pm), which is independent of the data, let
W := N(T') ~ Hypergeometric(n + m,m,n).
(i) Under Assumptions 1 and 3,
EDX(TZ) % ppw-

(i) Under Assumptions 1, 2, 4 and local alternative H 4,,

In the above proposition, N (0,07 ;) should be understood as a mixture of Gaussian
with probability distribution

min{n,m}
P(N(0,00w)<a)= >  PW=wP{N(0,0,,)<a).

w=1
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Next, let I'g corresponds to the identity permutation map, we present the power behavior
of EDk(Z) when the critical values are obtained via permutations.

Theorem 3.2. Under Assumption 1 and assume that 2¢(eqy) > p(ey) + @(ey).

1, [Consistency]| Suppose Assumption 3 hold.
(i) If the critical value is chosen as QR 1—qo- Let n,m be large enough such that
nim!/(n+m)! <1 —aifm #n and 2(n)?/(2n)! < 1 — a if m = n. Then,

we have
lim Py, (EDA(Z) > Qg ) =1,

p—00
which means that the asymptotic power of ED* based permutation test is 1 as
p goes to infinity.

(ii) If the critical value is chosen as Q. Then, we have

1— S—1 n!m! an 7,5 m
K _ La5] (ntm)t ’
pl;n;o Py, (EDn(Z) > QR,l—a) = { 1— Slj(i(}:;)})” ifn=m

2, [Power Limit] Suppose Assumptions 2 and 4 hold.

(i) If the critical value is chosen as Qg ,_, . Then, we have

lim Py, (EDE(Z) > Qq, ) = P(V(To) > Q7,1 ),

p—00
where
(n4m)!
T = G Z Iy <o
and
V(Fs> = ZZ s ’Lj Z I, ,ijCij — Z Hs,ijdij'
i=1 j=1 1<i<j<n 1<i<j<m

(ii) If the critical value is chosen as Qg ,_,,-

lim P, (ED’;(Z) > Qm_a) =P (V(Fo) > Qil_a) ;

p—o0

where

S—1
-1
Ti= <H{v<ro>gt} + Zﬂ{vm)éﬂ) :

=1
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14 C. Zhu and X. Shao
3, [Trivial Power| Suppose Assumptions 2 and 4 hold. Then, we have

- k
plggo Py, (EDn(Z) > c) <awherec=Qp, , orc=Qx, ,,

which means that the asymptotic power of ED* based permutation test is no more
than the level a when p goes to infinity.

Remark 3.4. The above theorem and discussions in subsection 3.1 indicate that

1, L'-norm can be more advantageous than L?-norm, Gaussian kernel and Laplacian
kernel when the dimension is high, since L'-distance leads to high power provided
that the summation of discrepancies between marginal univariate distributions is
not so small, while L?-norm, Gaussian kernel and Laplacian kernel would result
in power loss when the total of marginal univariate mean and variance differences
between X and Y s of order o(\/p). Notice that the distributions of X and Y
can differ in other aspects of the marginal distribution even if they have the same
marginal univariate mean and variance.

2, All the tests under examination are only capable of detecting the discrepancies of
marginal distributions. If the two high dimensional distributions F # G, but F,, =
Gy foru=1,2,--- p, then none of them have consistent power.

3.3. High Dimensional Medium Sample Size (HDMSS)

In this subsection, the theories are developed under the high dimensional medium sample
size setting (HDMSS), i.e., as p — 00, n := n(p) — oo at a slower rate compared to p
and n/m = p, where p € (0,00) is a fixed constant. Though the proofs are quite different,
most results and phenomena under the HDLSS setting have their similar counterparts
under the HDMSS setting. Now that we have n, m growing to infinity, we need a stronger
version of Assumptions 3 and 4.

2

Assumption 5. nmaz, = o(1),n’aZ = o(1) and m*a; = o(1).

Assumption 6. /nmpa;, = o(1),n/paz = o(1) and m/pe; = o(1).

Remark 3.5. Following Remark 3.2, for k-dependent stationary time series, aiy =
O(k/p). Thus, Assumptions 5 and 6 both require that nmk = o(p).

To derive the asymptotic distribution under the HDMSS, we note that the leading
term of ED*(Z) is a martingale, the following assumption is used to ensure the condi-
tional Lindeberg condition and the requirements on the conditional variance in classic
martingale central limit theorem.
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Two Sample Tests in High Dimension 15
Assumption 7. For any Ay, Aa, A3, Ay € {X, Y}, suppose

B K (A1, A3)] = o (n?)
E [K2(A1, A2 (A, AD)] = o(n),
E K (A1, A5)K(Ar, AY)R(Ay, AY)C(AS, A5)] = o(1),

where (A1, AL, AL AY), (AY AL AL AY) and (AY', AY AL, AY') are independent copies of
(Ala AQa A3a A4)

Remark 3.6. For any function ¢ and v, suppose X andY are k dependent sequences,
i€, Ty L xy and y, Ly, if |u — v| > k. If there exists some constant C > 0 such that

max {st;pE [w4(mu,yu)} ,stipE [w (xu,xu)] supE [¢4(yu,y;)]} < C.

Then, for notational convenience, let

d)ry,u = 1/’(%»%) —FE W’(»Tu,yguﬂ%] —FE [w(wuvyu)‘yU] +F W)(xu’yu)] )

we see that sup,, E[¢}, ] < 4*C and thus E[K*(X,Y)] can be bounded as following

s+3k 3
[K:4 X Y 2 Z Z [Qba:y,sd)a:y,t(bmy,u(bmy,y] =0 (H> .

s=1t,u,v=5s—3K p

and similar results can be shown for E[K*(X,X")] and E[K*(Y,Y")]. Thus, Assumption
7 is satisfied if k3 /p = o(1).

Let @ denote the cdf of N(0,1). We shall show that ED*(I,Z) converges uniformly
with respect to w under the HDMSS setting.

Theorem 3.3. Forw=0,1,2,--- ,min{n, m}, fix [, € Sy,
(i) Under Assumptions 1 and 5,

sup ‘EDZ(FwZ) - un,w‘ = 0,(1).

where fiy ., 15 the same as that in Theorem 3.1.
(i) Under Assumptions 1, 5, 6, 7 and local alternative Hy,,

a

sup | P (,/nmp (EDZ(FU,Z) - un,w) < a) — P | ——— || =0(1)
w \/nma? .,
where a is a fived constant and U%’w is the same as in Theorem 3.1.
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16 C. Zhu and X. Shao
Then, the following theorem states the asymptotic distribution of ED’Z(I‘Z).

Theorem 3.4. For T' ~ Uniform(Pp1.m), which is independent of the data,
(i) Under Assumptions 1 and 5,

ED*(TZ) % 0.

(ii) Under Assumptions 1, 5, 6, 7 and local alternative H 4,,
EDF(TZ) \ 4 o2 0
vmmp ( epfrz) ) N 00 o2
where IV is an independent copy of I' and o2 is the asymptotic variance defined as

2
0% 1= vy [0 (eay)I? + 20000 (e0)]? + oY ™ (ey)I*.

We need the limiting distribution of (ED” (T'Z), ED* (I'Z)) to show that the variance
of randomization distribution go to 0, from which it follows that the randomization
distribution converges in probability to the limit of its mean. Furthermore, we can show
that the critical values are concentrating on some constants.

Corollary 3.1. LetTI'y,---,I's be i.i.d and uniformly sampled from P4, .
(i) Under Assumptions 1 and 5, asn AmApAS — oo,
E(t) £> ]I{tZO} and E(t) £> H{tZO}'
Consequently, we have Qp ,_, 50 and QF1_o 5 0.
(i) Under Assumptions 1, 5, 6, 7 and local alternative Hya,, asn Am ApAS — oo,
(n+m)!

L P,
n+m)! Ly rmpEDt (rizy <} = ®(t/0),
i=1

S
1 D
5 2L ymmensr <) > 2(1/)
=1

Consequently, we have \/nmpQg | _ RN 0Qe1-a and \/nmpQg ,_ RN 0Qa,1—a,
where o2 is defined in Theorem 3.4.

The power behavior of EDF(Z) w.r.t permutation test under the HDMSS is stated in
the following theorem.

Theorem 3.5. Suppose Assumption 1 is true and assume that 2¢p(egy) > w(ez)+o(ey).
For any c € {Qp,_.,Qz,_,} the following holds.
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Two Sample Tests in High Dimension 17
1, [Consistency] Under Assumption 5, we have

lim Py, (EDS(Z)>c) =1,

p—o0

which means that the asymptotic power of ED* based permutation test is 1 as
pAnAm — oo.
2, [Trivial Power| Under Assumptions 5, 6 and 7, we have

lim Py, (ED,’j(Z) > c) <a,

pP— o0

Thus, we have the asymptotic power of EDF* based permutation test is no more than
the level a when p Am A m — oco.

Comparing with Theorem 3.2, the EDF (Z) based permutation test have trivial power
under H 4, and the HDMSS setting. This is due to the interesting facts that nmafhw
converges in probability to o2, which is also the limit of nmo}, ; as n — oo and

cov (EDEL(PZ),EDfL(r’Z)) 0 as 1 — oo,

which ensures that the randomization distribution converges in probability to its mean
limit.

4. Numerical Studies

In this section, we consider several examples to demonstrate the finite sample perfor-
mance of ED* based permutation test for different distance metrics. In our numerical
comparison, we include the tests of Li [22] (denoted as JL) and Biswas and Ghosh [7]
(denoted as BG) as these two were shown to have higher power over others in Li [22].
The critical values of JL test are determined by its asymptotic distribution, whereas BG
test is also implemented as a permutation test.

4.1. Performance on simulated data

In all our simulations, we set & = 0.05 and perform 1000 Monte Carlo replications with
300 permutations for each test. The first example is adopted from the simulation setting
of [22] to study the size accuracy.

Example 4.1. Generate samples as

X = (‘/1/2R‘/1/2)1/2Z17
Y = (V1/2RV1/2)1/2Z2,
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18 C. Zhu and X. Shao
where R = (ri;)} j=1, Tij = Pl and p = 0.5 or 0.8; V is a diagonal matriz with
V;/Z =1 or uniformly drawn from (1,5). Z1, Za are i.i.d copies of Z with
Z = (21,22, ,2p) or Z = (21,22, ,2p ) — 1.
N (0,1) % Bxponential(1)

In Example 4.1, X and Y follow the same distribution and we consider cases that
n =m = 50 or n = 70, m = 30. From Table 2, we can see that all the tests have quite
accurate size. To compare the power, we first use an example from [22], which include

Table 2. Size comparison from Example 4.1 for p = 500

o Vii/Z n m EDL?-norm EDGaussian EDLaplacian EDL!-norm BG JL
0.5 1 50 50 0.06 0.06 0.058 0.059 0.053 0.053
0.5 1 70 30 0.07 0.07 0.068 0.073 0.047 0.057
= 0.5 Un(1,5) 50 50 0.052 0.052 0.05 0.051 0.056 0.057
g 0.5 Un(1,5) 70 30 0.059 0.059 0.061 0.05 0.049 0.045
2 0.8 1 50 50 0.053 0.053 0.052 0.059 0.054 0.055
0.8 1 70 30 0.045 0.046 0.046 0.05 0.052 0.055
0.8 Un(1,5) 50 50 0.045 0.045 0.049 0.048 0.054 0.054
0.8 Un(1,5) 70 30 0.05 0.05 0.049 0.046 0.051 0.051
0.5 1 50 50 0.06 0.06 0.058 0.059 0.053 0.053
= 0.5 1 70 30 0.063 0.063 0.063 0.058 0.048 0.053
= 0.5 Un(1,5) 50 50 0.057 0.057 0.058 0.055 0.049 0.06
g 0.5 Un(1,5) 70 30 0.056 0.056 0.06 0.058 0.059 0.058
g 08 1 50 50 0.054 0.054 0.051 0.047 0.065 0.062
4 0.8 1 70 30 0.061 0.061 0.062 0.065 0.057 0.06
0.8 Un(1,5) 50 50 0.051 0.05 0.052 0.046 0.045 0.057
0.8 Un(1,5) 70 30 0.062 0.062 0.062 0.062 0.06 0.064

the situation when X and Y only differ in their means or only differ in their covariance
matrices or differ in both, where § € [0,1] is the percentage of the p components that

differ in their distributions.

Example 4.2. Let R,V, 71,75 be defined the same as in Example 4.1 and we choose

p = 0.5 here. Generate samples as

(i)

X = (Vl/zRV1/2)1/221,

Y = (0.125 x 15,,0(1—p)p) + (VV2RyY/2)1/2 g,

(i) Let V* be a diagonal matriz with V;l/Q =1.05 fori=1,2,---,0p and ‘/;1/2 =1

fOTZ:6p+1,,ﬂp
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Example 4.2 (i) Example 4.2 (ii) Example 4.2 (iii)
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Figure 1: Power comparison for example 4.2 and n = 70, m = 30, p = 500, where in the
top 3 figures Z1, Z, are generated from normal distribution and in the bottom 3 figures,
Z1,Zy are generated from exponential distribution.

(iii) LetVi?lm:1.04f0ri:1,2,~~ , Bp and‘/;:l/zzlforizﬁp+l,~-- , Bp.

X = (V1/2RV1/2)1/221,
Y = (0.1 x 1y, 0(1*5)p) + (V*l/QRV*1/2)1/222_

From Figure 1, we can see that (1) when there is a small difference in the means,
ED"-based tests and JL perform similarly, while BG barely show any power. (2) when
there is a small difference in the scales, JL. and BG are consistent and ED*-based tests
have very little power. Similar phenomenon by Li [22] were also observed, i.e., ED* based
permutation test is not sensitive to small scale differences and the method proposed by
Li [22] and Biswas and Ghosh [7] have dominant power in this case. Note that there is
a tuning parameter involved in JL test and its choice could have a big impact on the
size and power; results not shown. (3) when there are differences for both the means and
scales, all the tests performs comparably.

Next, Example 4.3 examines the situation when X and Y have the same marginal
univariate mean and variance, but different marginal univariate distributions.

Example 4.3. Generate samples as
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20 C. Zhu and X. Shao
(i) Let Rademacher(0.5) be the Rademacher distribution with success probability 0.5,
e.g. P(yin = —1) = P(yin = 1) = 0.5.

X =(21,....zp) i N(0,1),

Y= ( Yi,Y2,  »Ysp »Ypp+1:YBp+2 73/p)~

ifidRademacher(O.B) iinN(O,l)

(ii)
X = (I17"'7IP) Zfz\(/j N(O71)a
Y:( Y1,Y2,  »YBp YBp+1,YBp+2 - 7yp)‘

2 Uniform(—/3,7/3) 2N (0,1)

From Figure 2, we see that only ED* f-norm haced permutation test has power growing
as [ elevates (p fixed) or p increases (f fixed). This phenomenon matches with our
theories, which indicate that L2-norm, Gaussian and Laplacian kernel can detect only
marginal mean and variance differences. For ED* f-norm aqed permutation test, the power
is growing more rapidly for Example 4.3 (i) than Example 4.3 (ii), which might suggest
that L'-distance is more sensitive for the difference between continuous and discrete
distributions. It is also apparent that the JL and BG tests show little power in this
example. The next example examines the case where X and Y have the same marginal
univariate distributions.

Example 4.4. Generate samples as

(i) Let (Y15, s Yp,2) Y Bernoulli(0.5)

X = (21,0, Tp) “d Bernoulli(0.5),
Y = (45, Lyr =13, ¥, Lgyg=ny - - ,ylgp/g,]l{ygpﬂﬂ},yhy% L Ya—pyp )-

iilee'rnoulli(O.S)
(it) Let (y1,93," " 1 Ypp/3) % Bernoulli(0.5) and (y1,y3, - ¥j,/3) w Bernoulli(0.5)

X = (21,0, Tp) i Bernoulli(0.5),
Y = (41,91 Ly =gy ,yép/gﬂygp/37ﬂ{y%p/3:y;;p/3}7y1>y2,"' Y(1—B)p )

iiﬁiBe'rnoulli(O.S)

Notice that in Example 4.4 (i) X, Y have the same marginal univariate distribution,
but different marginal bivariate distributions and in Example 4.4 (ii) X, Y have the same
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Example 4.3 (i) Example 4.3 (ii)
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Figure 2: Power comparison for Example 4.3 and n = 70, m = 30. For the top two figures,
the dimension p is equal to 500 and we plot the power as 3 ranges from 0 to 1. For the
bottom two figures, S is fixed to be 0.5 and the power is plotted with respect to p.

marginal bivariate distribution, but different joint distribution. Theorem 3.2 (ii) and
Theorem 3.5 (ii) both provide insights that L?-norm, L'-norm, Gaussian or Laplacian
kernel based tests all suffer substantial power loss under Example 4.4 (i). On the other
hand, Theorem 3.2 (iii) suggests us that since Example 4.4 (ii) belong to class Hy,, all
these tests have trivial power. The simulation results of Example 4.4 are in Figure 3 and
they again corroborate our theoretical findings.

4.2. Performance on real data

We also compare the power of the above tests on the following real data sets.

e Strawberry data: this data set contains the spectrographs of fruit purees. There
are totally two classes: one is strawberry purees (authentic samples) and the other
one is non-strawberry purees (adulterated strawberries and other fruits). Each data
point is of length 235.

e SmallKitchenAppliances data: this data sets contains records of the electricity usage
of some kitchen appliances. We only use classes Kettle and Microwave. Each data
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Example 4.4 (i) Example 4.4 (ii)
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Figure 3: Power comparison for Example 4.4 and n = 70, m = 30. For the top two figures,
the dimension p is equal to 500 and we plot the power as 3 ranges from 0 to 1. For the
bottom two figures, (5 is fixed to be 1 and the power is plotted with respect to p.

point has readings taken every 2 minutes over 24 hours.

e Earthquakes data: this data set is from Northern California Earthquake Data Cen-
ter and has classes of positive and negative major earthquake events. There are 368
negative and 93 positive cases and each data point is of length 512.

All the above data sets are downloaded from UCR Time Series Classification Archive
[10] (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/) and a glance of
these data sets is provided in Figure 4. For each of the three data sets, the data points
have two classes and we want to compare the underlining distributions of the two classes.
Following the procedures of [7] and [24], for each m = n € {10, 20, 30,40, 50, 60}, we ran-
domly sample n points from each class and test whether the two distributions are the
same using the afore-mentioned tests. The same procedure is repeated 1000 times to
calculate the power.

The experimental results for these data sets are shown in Figure 5, from which we
see that all the tests have very high power for the Strawberry data with relatively low
sample size. As for the SmallKitchenAppliances and Earthquakes data sets, the L'-norm
based test demonstrates superior power compared to other tests. It is also worth noting
that BG and JL barely exhibit any power for the Earthquakes data.

imsart-bj ver. 2014/10/16 file: TwoSampleBernoulli_Revise4.tex date: June 10, 2020


https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Two Sample Tests in High Dimension 23

Class 1
? === Class 2
o
£
]
g
e
@n
8
I3 '
<3
.8 1
2, ! \
oy '
< : '
5 ol H
3 ) ; '
2 f
R=1 L}
R~
@
13
~
<
El
g
<
i
]
a]

Figure 4: A glance of the data in Section 4.2, where we plot one point from each of the
two classes for each data set.

5. Discussions& Conclusion

In this paper, we study the two-sample hypothesis testing problem in a high dimen-
sion and low/medium sample size setting. Our focus is on the interpoint distance based
permutation tests, such as those based on Energy Distance (ED) and Maximum Mean
Discrepancy (MMD). Our theory demonstrates that all these tests under examination
are unable to detect the difference between two high dimensional distributions beyond
univariate marginal distributions. In particular, the ED test with L?-norm and MMD
with Gaussian or Laplacian kernels suffer substantial power loss under the HDLSS and
have trivial power under the HDMSS when the average of component-wise mean and vari-
ance discrepancies between two distributions are both asymptotically zero at the rate of
o(1/,/mmp). Thus these tests mainly target mean and variance differences in marginal
distributions. By contrast, if we use L!'-norm in ED test, then the non-negligible differ-
ence in marginal univariate distributions, as quantified by cumulative energy distance of
marginal distributions, can be detected with high power. Thus the theory suggests that

1), The ED with L?-norm, and MMD with Gaussian and Laplacian kernels are of the
same category, as they all depend on the interpoint distance as measured by Euclidean
distance, which leads to undesirable power limitation.

2), Although in a low dimensional setting the use of L'-norm in ED is not preferred
due to the fact that it does not completely characterize the difference between two dis-
tributions since EDl(F ,G) = 0 does not necessarily imply F' = G, it seems to have some

imsart-bj ver. 2014/10/16 file: TwoSampleBernoulli_Revise4.tex date: June 10, 2020



24 C. Zhu and X. Shao

Strawberry SmallKitchenAppliances Earthquakes

— " " " = 1 : - - + 1 : : -
R,
| 9
5

08 /’ 4 08l 4 08| 8
ps

0.6 - - 06 - 06 -

a -}
04} o4l I M 0.4 .
L
-8 o x
0.2 - 02 -8 4 - 02
—7 e x S -—m
e x e —m
b i D e i
ol—L L L I L L ol—x X L | L I 0 x X o 1
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
n=m n=m n=m
‘ 0 EpL*norm - g ppGaussian _ o pplaplacian s« ppL o BG x JL ‘

Figure 5: Power comparison for real data examples in Section 4.2.

advantage over the ED with L?-norm and MMD with Gaussian and Laplacian kernels
in the high dimensional setting, as shown in both theory and numerical studies. Inter-
estingly, for each fixed p, it is shown in [25] that a class of methods based on kernel
embedding have better power if using L;i-norm to differentiate the expectations of an-
alytic kernels evaluated at some well-chosen distribution locations instead of L?-norm,
since these features are dense due to the use of analytic functions.

3), As shown in our simulations and data illustration, the existing interpoint distance
test by [22] and [7] also suffer from low power when the two distributions have the same
marginal mean and variances but different marginal distributions. So in this sense, they
are also inferior to the ED test with L'-norm.

4), The difference in marginal distributions of two high dimensional distributions can
be interpreted as the main effect of the distribution differences. It is a standard statistical
practice to test for the nullity of main effects first, before proceeding to the higher-order
interactions. Thus we advocate the use of L-norm based test to test for the presence of
main differences in two high dimensional distributions.

To conclude the paper, we shall mention a few future directions. First, we are hold-
ing the bandwidth parameter in Gaussian and Laplacian kernels fixed for theoretical
convenience, and it would be interesting to relax this restriction by allowing it to be
data-dependent. Second, there might be some intrinsic difficulty of capturing all kinds of
differences in two high dimensional distributions with limited sample sizes, so it seems
natural to ask whether it is possible to detect any difference beyond marginal univariate
distributions. If possible, what would be the form of the new tests? We leave these topics
for future investigation.

Appendix A: Technical Details

A.1l. Proof of Sufficient Conditions for Local Alternatives

When v(z,y) = (z — y)?, ¢ is strictly concave, strictly increasing on (0, +o0) (e.g. L?-
norm, Gaussian kernel myltiplied by -1 and Laplacian kernel multiplied by -1), we first
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note that 2e,, — e, — ey = 2lim, 00 > 1 (E(zy) — E(y4))?/p > 0 and

W(exy) - w > W(exy) —p <€r;€y> >0,

where the equality holds iff e,, = e, = e,. Also, some algebra shows that

p p

1 1
Coy = €z + plggo » ;(E(xu) — E(y))? +pli>rgc » ;(var(yu) —var(zy))
1 & 1<
=ey+ pli_glo ” ;(E(a:u) — BE(yu))* + pli_{l(f)lo » uz::l(var(xu) —var(yy))-

Thus, in summary we have

2p(exy) = plex) + pley) & exy =€z = ¢y
&> (E(zy) — E(ya))* = o(p) and

u=1

Z(var(wu) — var(yu))‘ = o(p).

This proves the result for H,4_ characterization. Next, for sufficient conditions of Hy,, if
we have

3 (var(en) — var()| = o (%),

u=1

S (B(ra) ~ B()? = o (/) and

u=1

then it holds that e, = e, = e, and

E[|E [§(X,Y)|X] - E [¢(X, X")|x]|]

p |

For H,,, a straight forward calculation shows that

Y(x,y) — E[Y(z,y)|z] — E(z,y)ly] + E[Y(z,y)] = —2(z — E(2))(y — E(y))

and vgy = Zfbm:l 4cov(@y, Ty )cov(Yuy, Yu)/p- Thus, from Cauchy—Schwarz inequality, we
have

p
Z (COV(l‘u, xv) - COV(ym :%;))2 = 0(]7) = Ugy = Uz = Uy

w,v=1
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26 C. Zhu and X. Shao
When ¢(z,y) = |z — y|, ¢(x) = z, the results follow from the following equality.
2¢(exy) — plez) — p(ey)
1 NSRS MRS
:2p1i>nolo 5 ; E [‘Ilu - ylu” - phﬂnolo ]; ; E Hl'lu - 172u|] - pli>nolo 1; ; E “ylu - y2u”
P

= 1im =3 @E (10 — 1ul] — E[[510 — 2ul] — E [[g10 — 2ul)

u=1

1 p
=lim =S ED(F,,G,).
Jig, 5 2 BD(F, Gu)

A.2. Proof of Theorem 3.1

Proof. (i) Taking a first order Taylor expansion w.r.t ¢ gives
where R1(Z;, Z;) is an operator that acts on random variables
1
Ri(Zi, Z;) = L(Zs, Zj)/ oW (es +vL(Zs, Z;)) dv
0

For each fixed permutation matrix I, € S,

n4+m i—1 n+m i—1
ED!(I,Z) = Z Zﬂw,ijSO(eij)-f' Z Zﬂw,inl(Zinj)a (7)
i=2 j=1 i=2 j=1
= (L Z) =R (I'w2Z)

where p, (I'wZ) is the asymptotic mean for the permuted data and equals

2 (w2 4 (0= w)(m — w)) ezy) + (1~ whwples) + (m — w)wple,))

_ m 2w(n —w)e(exy) + (n —w)(n —w — 1)p(es) + w(w — 1)¢p(ey))
_ m Quw(m —w)p(ewy) + w(w —1)p(ex) + (m —w)(m —w —1)gp(ey)) -

Then, after re-arranging the terms according to the powers of w, we have

pn(lwZ) = (20(eay) = plex) = pley)) fw),

where f(w) is a second order polynomial with respect to w
2m —1 2n—1 2 1 1
=1- il 2
fw) <m(m—1)+n(n—1))w+(mn+n(n—1)+m(m—1))w
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For the remainder term R (I,Z), notice that £(Z;, Z;) % 0 for any 1 <i < j <n +m.
By the continuous mapping theorem, we know

1 1
/ oW (eij +0L(Zi, Z5))dv 5 / o (esg)do.
0 0

Thus, it holds that Ry (Z;, Z;) =<, L(Z;, Z;) and Ry (I'wZ) = Op(0zy + g + ) = 0p(1).
(ii) Taking a second order Taylor expansion w.r.t ¢ gives

K(Z;, Z;) + W(Z;, Z;
k(Zi, Z;) = ¢ (ei;) + ¢ (e55) ( j)\/ﬁ ( J)+R2(Zij)>

where Ry and W are defined as
1 .1
Ro(Z;, Z;) = L*(Z;, Zj)/ / up® (eij +wl(Z;, Z;)) dvdu,
o Jo
1 p
W(Zi, Z;) = 7 Y (Bl (zius 20) 2] + E(Zius z7u)|25] = E[(zius 20)] = €ig) -
u=1

Accordingly, we can decompose the sample energy distance as

n+m i—1

k . _ D) (o 7.
VP (EDn(FwZ) ﬂn(FwZ)) = ; ;Hw,m@ (eij) K(Zi, Z5)
=L(IWZ)
n+m i—1 n+m i—1
0D Mo M ei)W(Zi, Z)+ D Y D> T ijRa(Ziy Z;) . (8)
=2 j=1 i=2 j=1
=Ry(I'vZ) :=Ro(I'wZ)

For the leading term L(I,Z), notice that under Assumption 2, (K(Z;, Z;))i<; converges
jointly to a multivariate normal with mean 0 and a diagonal covariance matrix. Thus,
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28 C. Zhu and X. Shao

given a permutation matrix I',,, we are able to obtain L(I',Z) A N(0,0%(I',Z)), where

o%(I,2) an(n4— 1)2 { = w)(z_ 2l [0 e
n wvy[@(l)(ey)]2 +(n— w)wvmy[w(l)(ezym}

4 w(w — 1)

n (m — w)(n; —w- 1)vy [80(1)(621)]2 + w(m — w)vg, [So(l)(@my)]Q}

n2m?

{tn = wpon, e
+w(m — w)vy[pM (e,)]* + ((n — w)(m — w) + wQ)ny[ap(l)(emy)]Q}.
By collecting terms with respect to vy, vy, vy, We obtain
o2 — 4 4 n+m n _ m w
| nm n?m2  n?(n—1)2 m2(m—1)2
2 1 1
4 _ _ 2Ly oM e, )2
+ (n2m2 n2(n—1)2  m2(m — 1)2> v }U ylt (€ay)]
n 2 49 2n B 2n—1 _ 1 w
nin—1) n?m? n?(n—1)2 m?(m—1)>2
2 1 1
_9 _ _ 2Ly 1o (e, V]2
<m2n2 n2(n —1)2 mz(m—1)2>w }v L (ea)]
+ 2 49 2m 1 2m —1
— - w
m(m — 1) n2m2  n2(n—12 m2(m—1)2
2 1 1
_9 _ _ 2 Mo V2.
(nzmz m2(m—1)2  n2(n— 1)2> w }%[@ (ey)]

We then conclude the result by showing that the remainder terms are negligible. R;(I",Z) =
o0p(1) is proved in lemma A.3. For the Ry(I,Z) term, it can be shown similarly that
Ra(Zi, Zj) =p L*(Zi, Z;) = Op(ad,+az+ay), which implies that Ry(I'yZ) = Op(y/p(a,+
o2 + a2)) = 0p(1) under Assumption 4. O
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A.3. Proof of Proposition 3.1

Proof. (i) From Equation 7, we obtain

n+m 1—1

ED]~C FZ Z ZHU‘;O ezg +OP( )
=2 j=1

=, W

where IT;; corresponds to I' and W = N(T') ~ Hypergeometric(m + n,m,n).
(ii) Tt follows from Equation 8, Lemma A.3 and the proof of Theorem 3.1 that

n+m i1—1

\/ﬁ(EDﬁ(I‘Z) lin rz) SN 10 (e) K(Zi, Z3) +op (1)

=2 j=1

:=L(T'Z)

Then, under Assumption 2, it is not hard to see that L(I'Z) 4 N(O,O’%W), where
W = N(T') ~ Hypergeometric(m + n, m,n). This concludes the proposition. O

A.4. Proof of Theorem 3.2

1, For any a € R("+™)" e define the a-th quantile of the set {aj, - - - s Q(ntm)!} @S
| !

Qi-a {ah--- 7a(n+m)!} =min { a; : m Z H{a <t} >1-«

Then, we can view Qi_, as a continuous function on R(™+m)!,
(i) By Theorem 3.1, for any fixed T'; € Py, we have EDZ(DZ) EaN pn(T;Z). The
continuous mapping theorem implies

Qlfa {EDﬁ(Flz)v T 7EDZ(F(n+m)'Z)} ﬁ> Qlfoz {ﬂn(rlz)v T aﬂn(r(n+m)'z)} .
Then, it follows from the definition of p,(-) in Theorem 3.1 that

fin(Z) = pn(ToZ) = max {ﬂn(rlz), e aun(r(n+m)!z)} :

Notice that

ity <1-a ifm#n, T <1-a if m #n,
3(n1)? : implies s, |+[s \ :
Gl < 1— if m =n, 7@?%? i < l—a ifm=n,
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30 C. Zhu and X. Shao

and so p,(FeZ) > Q1-q {un(l"1Z), e ,/Ln(].—‘(n_’_m)!Z)}. Thus, as p — oo, we conclude

P (EDEL(Z) > Qi {EDﬁ(rlz), o ,EDZ(F(Hm),Z)})
- P (,un(FOZ) > Q1-q {,U,n(F1Z), T a,un(r(ner)IZ)}) =
(ii) For any random permutation matrix T'y, by Proposition 3.1, we have ED* (T',Z) &

tn,w., where Wy = N(T'y) ~ Hypergeometric(n + m,m,n). Then, the continuous map-
ping theorem implies that

P (ED(Z) > Qo {ED}(Z), EDL(T\Z), - ,EDE(Ts 1Z) } )
— P (Mn,o > Q1—a {,U/n,Oaﬂn,Wla sy Hn Wy }) :

Since fin,0 = MaXy fn,w, i order to have p, 0 = Q14 {Mn,o,,un,wl,”' ,,unyws_l}, at
least |aS]| + 1 elements of {,un,o» M Wy " ’/‘L'N«’WS—l} should be equal to p,, o. Thus, we
get

P (:U/n,O > Qlfa {Mn,OnU/n,Wla' o nuln,Ws,l})
=1-P (:U/n,O = Ql—a {/’Ln,OaMn,Wu' oy Mn,We g })
- { 1-— Lsaiqu (éi’%,, if n # m,

S—1 2(n!)

~ [a8] (nrm)l” if n =m.

2, (i) Since pn(TyZ) = 0 for all u = 1,2,--- ,(n + m)! under H,,, Assumption 2
implies that

VPEDK(T,Z) % SN Magibiy — Y Muggei— Y Magdy,
i=1 j=1 1<i<j<n 1<i<j<m

where 1I,, ;; corresponds to I'y. Then, the continuous mapping theorem entails

P (EDfL(Z) > Q1a {EDZ(Flz), S ,EDQ(F(n+m)!Z)})

=P (\/ﬁEDk( ) > Q1a {\fEDk(Fl ), /pEDE (F(n+m).Z)})
= P(V(Ty) > Qpy ).

(ii) Conditioned on I'1,T's,--- ,T'g_1, the result can be shown similarly with part(i).
Then, since the number of permutations is fixed and finite, the unconditioned version
follows straightforwardly.

3, (i) By construction, we have
1 (n+m)!

(n+m)! 231 veos@ia{ven,« vwe ) S@
=

imsart-bj ver. 2014/10/16 file: TwoSampleBernoulli_Revise4.tex date: June 10, 2020



Two Sample Tests in High Dimension 31

If ¢'(ezy) = ¢'(ex) = ¢'(ey) and vyy = vy = vy, then V(T'y,) =1 V(I'g) for any u =

1,2,--+,(n+m)! and so
(V(Fu)v Ql—a {V(F1)7 o 7V(F(n+m)!)}) =1 (V(FO)> Ql—a {V(F1>’ Ty V(F(n-l-m)!)}) :

Thus, we have

P(V(To) > Qia{V(T), -, VT pmy)}) =
(n+m)!

[ Z:l Lvwosaia{ven - vpmn}} | <

(ii) The proof follows similarly from part (i) by observing that for any s =1,2,---, S

(V(Fs)> Ql*a {V(F0>a V(I‘l)a T V(I‘Sfl)})
=4 (V(I0),Q1-a{V(T0),V(T1), -, V(Ts-1)}).

A.5. Proof of Theorem 3.3

(i) Recall that for a fixed permutation matrix I, € S,, that corresponds to IT,, ;;,

n+m i—1 n+m i—1
ED;(TWZ) = Y > Muijplen)+ > > MuwiyRi(Zi, Z;) .
i—2 j—1 i—2 =1
=pn (LwZ) =Ry (I'wZ)

Under the HDMSS setting, part (i) follows from Lemma A.1.
Lemma A.1. Under Assumption 5, supr |R1(I'Z)| = 0,(1).

Proof. Consider the events Bxy, Bx, By and their complements Bg~,, B, BS, where

1<s<n,1<t<m 1<s<n,1<t<m

1 1
Bxvy = { min L(Xs, V) < fgemy or max L(Xs,Y) > 2e$y},

1 1
Bx = { min  L(X,, X;) < —=ey or  max L(X,, X;) > 2%},

1<s#t<n 2 1<s#t<n

1 1
= 1 <_7 >7 .
By {H;W“ S —gevor nax L0, Y) 2 2}
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Then, under assumption 5, asn Am A p — oo

PBxe) =P | U {0000 < ey o £06YD 2 e |

1<5<n,1<t<m

< ¥ p(m(Xs,K)Iz;emy)

1<s<n,1<t<m

1
< nmP <|£(X, Y)| > Qewy)

dnmE [L(X,Y)?
< nmE | 2( ,Y)?]
ez,

=o(1).
Similarly, we can show that P(Bx) = o(1) and P(By) = o(1). Conditioned on event
By BB, we have e;; < e;; +vL(Z;,Z;) < 3e;5/2 for any 0 < v < 1. Suppose
oW () is a continuous function on (0, +00), we know there exist a constant C' such that
loM (es; +vL(Zi, Z;))| < C and consequently, we have

R1(Zi, Z5)| < C'|L(Z3, Z5)l,

where C” is a constant depends only on ¢, e, e, and e,. Let II;; corresponds to T,

n+m i—1
sup Z ZHinl(Zi7Zj)
I iz =1
n+m i—1
SSII{p Z ZHUR1 Zi, Z;) {HBC Ipg Iy +1Ipxy + 1Bk +HBy}
=2 j=1
n+m i—1
<sup Z Z|H13R1 ZZ,Z )|HB§“{_]IB;(HB‘C( +Op(1)
=2 j=1

n+m i—1 ,

< Z Z |R1 ZlaZ )|]IBC HBC ]IBC +Op(1)a
=2 j=1

where C” is a constant depends only on p. Then, for any € > 0, by Markov’s inequality

n+m 1—1

mn Z Z |R1 ZZ7Z |]IB§<YHB§(]IB§, > €
=2 j=1
1 n+m 1—1 . i
< — B||R1(Z;, Z;)|Ips., Ig Ing | < C’M
emn £~ 4 :
=2 j=1
where C" is a constant depends only on p, ¢, ey, €, and e,,. -
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(ii) Similar to the HDLSS setting, we consider the following decomposition

n+m i—1

VampEDE (1, Z) = \/imppn (TwZ) + /nm Z Zﬂw,ij«p(l) (eij) K(Zi, Z;)
i=2 j=1
i=vnmL([',2Z)
n+m i—1 n+m i—1
+vnm Z Z Hw,ijgp(l) (eij)W(Zi, Z]) + v/ nmp Z Z Hw7in2(Zi, Z]) .
=2 j=1 i=2 j=1
:=v/nmR(I',Z) =v/nmRa2(I'yZ)

Next, for any —oco < a < oo and € > 0, using the inequality P(X < a) < P(Y <
a+¢€)+ P(|X —Y| > ¢), we can show that

P(vVnmL(I'wZ) < a — €) — P(|v/nmR(T'wZ) + vnmRy(IwZ)| > €)
< P(/nmplEDS (I Z) — pin(I'2)) < a)
< P(VnmL(IWZ) < a + €) + P(|v/nmR(IwZ) + /nmRy(IWZ)| > €).

Then, some algebra shows that

sup | P(yAmp[ED} (I,2) — (L, 2)] < a) = @ (o) /umoZ(1,2) )|
<sup |P(VimL(L,2) € a = 0) = @ ((a — o)/v/imoZ (1.2)) |

+sup|@ (a/ VimaZ (1,2)) = @ ((a — o)/v/umaZ (1,2))|
+sup | P(VAmL(TLZ) < at¢) = @ ((a +6)/V/nma3(1.2) )|

+sup|@ (a/ VimaZ (1,2)) = @ ((a+ o)/ v/umaZ (1,2))|

+2sup P(|vnmR(I'wZ) + vnmRa(LWwZ)| > ¢).

Next, by Lemma A.2; A.3 and A.4. the right hand side can be made arbitrarily small by
first choose € small enough, then n, m,p large enough.

Lemma A.2. Under Assumption 5 and 6, supp |[v/nmR2(I'Z)| = op(1).

Proof. The proof is similar with Lemma A.l by observing that conditioned on event
By B B%, it holds for some constant C that |R2(Z;, Z;)| < C |L*(Z;, Z;)| - O

Lemma A.3. Under Hy,, suppep, ,, |[vnmRi(I'Z)| = o0,(1).
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Proof. For any fixed permutaiton marix I' € P,,1,,,, we have

n+m i—1
VAmRI(TZ) = amp > Ty (eyy) (E [0(Zi, Z)|Z:] + E [0(Zi, Z,)1Z;])
i—2 j—1
n+m i—1
T vnmp Z ZHWP“) (eis) (B [©(Zi, Z;)] + eij) -

Let w = N(I'), similar to the computation of i, ., we obtain

n+m 1—1

vimp Y Y oW (ey) E [9(Zi, Z5)] = \/nmp{Zso(l) (exy) B [¥(X,Y)]

o (e) E[3(X, X)] — oV (e)) E [B(Y. Y")] }f(w%

where the right hand side is of order o,(1) under Hy,. Let 7 corresponds to I', then for
each 1 < ¢ <n such that 1 < (i) < n, it follows from the definition of II,;; that

j#i
i Yo Ty (ey) E [(X5, Z5)1Xi]
1<j<n+m
== L0 () B G 001X = e (o) B[ V1)
+ %wm (ex) E [0(X,, X)|Xi] + mn;lww (exy) E [B(X;,V)|X,]

= (1 -2 w_1)> {90(1) (eay) B [0(X3,Y)|Xi] — oW (ea) E [¥(X;, X)| X, }

which entails

1 J#
sup |+ > et (ei) B [9(X4, Z))1X0]| <
1<j<n+m
C _
N [ (eay) B [9(X0, Y)IX] = 0D () B [9(Xs, X)1X4)

where C'is a constant that only depends on p. Using the same approach, the above bound
can be shown to hold for each 1 < i < n such that n+ 1 < (i) < n + m. Similarly, we
can show that for each n +1 < i <n+m,

1 Jj#i B
sup| 7 > Ty (e)E [U(Y:, Z,)IY]]
1<j<n+m
C —
< m‘¢<1)(exy)15 [0(Y:, X)[Yi] — ¢V (e,) E [6(¥i, V)|Vi]| .
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Consequently, the following bound holds
n+m 1—1

Sup v mp Y > Wi Wley) (B [0(Zi, 2)| 2] + E [9(Zi, 2;)|Z;])

=2 j=1

< CVBY. [ en) B 30X, V)X — o (e B [, X))
i=1

n+m

VB Y |e e B [B(% )Y - 9D (e, B [2(v:, Y)IVi]

1=n—+1

where C’ is a constant. Finally, an application of Markov’s inequality shows that the
right hand side is of order o0,(1) under Hy,. O

Lemma A.4. Under Assumptions 1. Let T'1,Ty € Ppism. Then, for any constants
ai, as, b, we have

sup
Iy,

P(a1v/nmL(TZ) + agy/nmL(I2Z) < b) — @ <77aa(brlr2)) ‘

< E[K*A, A 2
_C{ Al,AI;lEaJ[)§(7y} [IC ( 1, 2)] /’I'L

A1,A2,III\13€X{X,Y}E [,CQ(AhAg)ICQ(AIQ’Ag)] /n

E[K(A1, A5)K (A1, AL (AS, AY)K(AS, Ag)]

max
A1, A2, Mg, Aye{X)Y}
1/5
+ (v —var[K(X, X))? + (v, — var[K(Y,Y")])? + (vay — var[K(X, Y)])2} ;

where C is a constant depend on @, p, ey, ey and ezy only; N, a,(I'1,T'2) is defined as

n+m i—1

[May.as(T1,T2))> = nm Z Z arTly ij + aalls 1) (™ (ei))%vij,
=2 j=1

where 114 ;5,115 ;5 correspond to I'v,T'y respectively and

Vg if 1 <14,5 <n,
Vi = Uy, ifn+1<14,5<n+m,
Ugy, Otherwise.

Proof. Notice that

n+m i—1
vnm (alL(F1Z) + (IQL(FQ =ynm Z Z alnl,ij —+ a2H27ij)S0(1) (e”)IC(Zl, ZJ)
=2 j=1
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Then, for notational convenience, set
H(Zi, Z;) = Vam(aaly g5 + aoXla i5) 0" (e5)K(Zs, Z5),
and Sy ym, = 2222 Entm.is where & pm i Zz ! 1 H(Z;, Z;). Next, let
Fosmi=0(Z1,Zy---,7Z;)
be the o-algebra generated by Zi,---,Z;, we have {Sp4m1, Fnimi, 1 <1 <n+m}is
a martingale array and thus we can apply the Berry-Esseen type bound for martingale

sequences [Theorem 1 of [15]]. By setting m = 0 and § = 1 in Theorem 1 of [15], we
compute

n+m n+m n+m

ZE[,HW” var ZE n+mz|]:n+m,i 1|| and ZE n+m2
Firstly, due to the property of double centering, E[H(Z;, Z;,)H(Z;, Z;/)] # 0 only when
{#,7} ={¢,7'}. Then, let 14, q4,(I'1,2) be in Theorem 1 of [15]

2 n+m 2 n+m i—1
M@ Te) Y E [ 2
“21171% I=p1in;o Z lz; ; CL1H1 ,4J + (IZHQ z]) [ @ )(ez’j)]ZUij.

Then, to calculate the variance, notice that

n+m n+m 11—1 io—1

var ZE 2 vmi| Fatmio1]| = Z Z Z O (i1, 72 J1, J2, J3, Ja)s

i1,i2=2 j1,j2=1 j3,ja=1
where ©(i1,i2; j1, j2, J3, ja) is defined as
O (i1, 72; J1, J2, J3, Ja) =
cov [E [H(Zi,, Zi) Y H(Ziy, Zi)| 2y, Zg, ) s B [H(Ziy, Zi ) H(Ziy, Zi)| Zis, Zi,]] -
Next, for any 1 < j1,j2 <n+m, A € {X,Y}, denote
g/\( J1s )_E[K(A,Z] ) ( )| J1s ]
To bound each © (i1, i2; j1, j2, j3, ja), we need to study the covariance between Ga, (Z;, , Z},)

and Ga, (Z]{ ) Zjé)

Lemma A.5. Then, for any 1 < j1,72,51,55 <n+m, Ay, Ay € {X,Y}, we have

cov [Ga,(Z5,,Z5,),Gn,(Zj1, Zjy)]
E [K2(A1, Z;) ) K2 (A, Z5,)| — E [K2(A1, Z),)] E [K2(A2, Z3,)] 51 = J2 = j1 = jb;
_ ) BIK(AL Z5,)K(A, 25, )K(Ay, 25, )K(Ag, Z5,)] Jv =1 # J2 = J
EK(Ay, Z5, )K (A, Z5,)K(AS, Z3,)K(Ay, Z5,)] J1=J3 # j2 = Ji
0, otherwise.
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Proof. 1f ji1 = j5 # j2 = ji

[g/h( Jio )g (Z" Z")]

_E[ [ (Alv JI)K(Al’ J2)| Jis 2] [’C(A/% '/)/C(A/Q, )

:E[ [K(As, Zj,)K (A, Z5, )K (NS, Z5,)K(As, Z5,)| 5y, Z5, ]
E[K(Ar, Z,)K (A, Z5, ) K(As, Z;,)K(A, Z5,)]

2]

Jis

It can be shown similarly for cases j1 = jo = j3 = j4 and j; = ji # ja = jb. Next, we
show that for other cases, the covariance is 0. We take ji = ji, j1 # Ja2, j1 # b, j2 # j%
as an example

E [Gn,(Z3,, Z;,)90. (2 »'>]

[
=E [E[K(Ay, Z;,)K(Ay, 32>| ivs Zia) B [K(Ay, Zi)K(Ay, Ziy)| 23y, Z3) ]
=E [E [K(Ay, Z;,)K(Ay, Z;,)K (A, Z3,)K(Ay, Zy)| Z,, Zso, Z3)]
=E [K(A1, Z;,)K(Ay, Z;,)K (N, Z;,)K(Ab, Zjy)]
=E [K(A1, Z;,)K(Ay, Z;,)E [K(Ay, Z3,)| Ay, Ay, Z5,) B [K(Ay, Zy)| A, Ay, Z5, ]

Next, we can bound var [ 17" E[€2,,, ;| Fatm.i-1] | as

n—+m i1—1 19—1

SN S Y Oliisigi, o s )

i1,42=1 j1,j2=1j3,ja=1

n+m i—1
:Z{Zem,jjjj +2 ) @(i,i;jl,jg,jl,ja)}
=1

1<j1#j2<i—1

11—1
+2 ) {Z@(z‘l,iz;j,j,j,j)w > @(il,m;jl,ja,jl,jz)}
1<i;<is<n+m \ j=1 1<j1#£j2<i1—1

= E 2A A// QA/ A,,
O(Al,AQ’I}’\ISEX{X’Y} [K ( 1 3)’C ( 2 3)] /n

B KA AT (AL, AR (A, AT KA, A9)] )
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Finally, to find the upper bound of "1™ E (&2 1 mi)s

n+m,i
n+m
4
E : E( n+m7i)
=2
n+m i—1

= Z Z E[H(ZuZJl)H(Z“Z]Q)H(ZHZJ‘S)H(ZUZM)]
=2 j1,j2,J3,J4=1

n+m 1—1 n+m

=N N EHNZz)] +6Y. Y. EHAZ.Z;,)HAZi. Z3,)]

i=2 j=1 i=2 1<j1<ja<i—1

:o( max B [KC(Ar, Ab)] /n2>

A, Ae{X,Y}

2 " 2 / "
+0 (Al,AQ,I/r\lfeX{X,Y}E (K% (A1, A§)KC? (NG, AY)] /n) .

Combining the above bounds, the lemma is a consequence of Theorem 1 in [15]. O

A.6. Proof of Theorem 3.4

i) For a random permutation matrix I' ~ Uniform (P, ,,), it follows from Lemma A.1
+
that

ED;,(TZ) = pin(TZ) + R1(TZ) = (2¢ (exy) — ¢ (€2) — ¢ (ey)) f(W) + 0, (1)

where W = N(I') ~ Hypergeometric(m + n,m,n). From the normal limit of hypergeo-
metric distribution [20], we know that

w », NG
vam o 1+p

Next, some algebra shows that f(W) % 0 and so the result is proved.
(ii) Recall that we can decompose the sample energy distance as

n+m i—1

nmpED}(T'Z) = \/nmpp,(TZ) + v/nm Z Zﬂijw(l) (eij) K(Zi, Z;)

i=2 j=1

:=\/nmL(T'Z)

n+m 1—1 n+m i—1

+vmm Y Y Ty () W(Zi, Zy) +amp Y Y TLiRa(Zi 7).

i=2 j=1 i=2 j=1

:=v/mmR(T'Z) :=v/mmRy(T'Z)

The result is a consequence of Lemma A.3, A.2 and A.6.
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Lemma A.6. Under Assumptions 1 and 7,

L(TZ) d a2 0
v (e )48 (0 (5 )
where I is independent copy of T' and o2 is the asymptotic variance defined as

2
o? = 4”:81/[‘»0(1)(63621)]2 + 2pv, [@(1)(696)]2 + ;U!l[@(l)(ey)]z-

Proof. We apply the Cramér-Wold device. For any constants a1, as, we have

+
3
)

n

e ap(T,T') =nm (a1TL; + aoIT;)? (™) (e45) sy

™

E TN
Il

1

3

T 1

3 N
|

=

nm (717, + a3(I0};)? + 2a1 a1 TT;) [0 (e55)]%vi;.

1=

N

<.
Il
—

Notice that for {i1,j1} N {iz,jo} = 0, it can be shown that E[II; ;II;,;,] = O(1/n®).
Then, denote ¢;; = 2a1as[p™M) (e;7)]?vij, we have

2
n+m i—1 n+m t—1 i—1
E || nm Z Zcijnijﬂij =n-m E : E : § :cmcsz [IL;;, IL;j, ]
i=2 j=1 i=2 j1=1ja=1

i1—1
2 2 2
+2n°m > > ciyjCing B2 [TL 5T, )
2<ii<ig<n+m j=1
2. 2 2
+n m E E Ci1j1ci2j2E [Hiljlnizjz]
2<iy Fia<n+m j1#£j2

=0(1/n).
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In addition, let W = N(I'), we obtain

n+m i—1

=y > T (e oy

i=2 j=1
4 n+m n m
=¢— -4 — - w
{nm ( n?m?  n?(n-—12 m2(m-— 1)2)

i (nQ?nQ B n2(n1— 1)2 - mg(ml— 1)2) WQ}UW[SD(I)(GW)]Q

n 2 I 2m 1 2m —1 W
m(m —1) n?m?  n?(n—1)2 m2(m—1)2
2 1 1
-9 _ _ W2
<n2m2 m2(m—1)2  n2(n-— 1)2) }
Since W/y/nm % \/p/(1 + p), some algebra shows that

n+m

=2 j=

i—

1
H elj vlj LN 02,

1

which entails that 2 ,, (T, T") 2 0262 4 a2o?. Since |®(-)| < 1, we have

E

b b
) | T — 0.
<77a1»a2 (T, F/)) ( ajo? + a302> H

Next, by a simple triangle inequality

P (a1v/nmL(TZ) 4+ azy/nmL(I'Z) < b) — ® __b <
Va3o? +a3o?

P (a1/nmL(TZ) + agy/nmL(T'Z) < b) — ® b

’rlgl,ag (F7 ]'-‘l)

b b
Tl </2222> ‘
Ny ar (L T) ajo” +a30
Taking expectation with respect to I', TV on both sides, then it follows from Lemma A.4
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and Assumption 7 that

P (a1v/nmL(TZ) 4+ azy/nmL(I'Z) < b) — ® __b <
Va3o? +a3o?
b

E | |P (a1v/nmL(TZ) + agy/nmL(T'Z) < b) — ®

b b
+ B0 —m— | - ——— =o(1).
2, s (T, 1) Vaio® + azo®

A.7. Proof of Corollary 3.1

By using Theorem 15.2.3 of [21], the result is a consequence of Theorem 3.4.

A.8. Proof of Theorem 3.5
(i) By Corollary 3.1 and Theorem 3.3

Power = Py, _ (EDIZ(Z) > c) — P (2¢(eqy) — @(ex) — p(ey) >0) = 1.
(ii) By Corollary 3.1 and Theorem 3.3

Power = Py, (EDZ(Z) > c) = P, (\/nmpEDﬁ(Z) > \/nmpc)
— P (N(0,0°) > 0Qa,1-a) = o
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