
Statistica Sinica (2014): Preprint 1

COVERAGE BOUND FOR FIXED-b SUBSAMPLING AND

GENERALIZED SUBSAMPLING FOR TIME SERIES

Yinxiao Huang and Xiaofeng Shao

Boston University and University of Illinois at Urbana-Champaign

Abstract: In this article, we investigate the upper bounds on coverage probabilities

of the subsampling-based confidence sets in the time series setting. Under the fixed-

b asymptotic framework, where b is the ratio of block size relative to sample size,

we derive the limiting coverage bound and obtain the finite sample coverage bound

by simulations. Our findings suggest that the coverage bound is strictly below 1

for positive b, and it can be far away from 1 and the fixed-b subsampling method in

Shao and Politis (2013) can exhibit serious undercoverage when (1) the dimension

of the parameter is large; (2) the time series dependence is (positively) strong;

or (3) b is large. To alleviate the problem, we propose a generalized subsampling

method that combines useful features of fixed-b subsampling and self-normalization,

and demonstrate its effectiveness in terms of delivering more accurate coverage via

numerical studies.
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1 Introduction

Since the seminal work of Politis and Romano (1994), subsampling has become an

important and widely applicable tool in various inference problems for time series

and dependent data of other types; see Politis, Romano and Wolf (1999a). The

theoretical treatment in most subsampling-related work adopts the traditional

small-b asymptotics, where b is the fraction of the subsampling block size (or

window width, bandwidth) relative to total sample size, and subsampling can

be shown to be consistent under mild conditions. Recently, Shao and Politis

(2013) introduced the fixed-b asymptotics [Kiefer and Vogelsang (2005)] into the

subsampling-based inference and proposed a p-value based calibration approach

to alleviate the inconsistency of subsampling under the fixed-b framework. This

new approach allows the effect of block size on the subsampling approximation
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to be captured to the first order, and is shown to deliver more accurate coverage

as compared to its small-b counterpart in simulation studies.

Although the fixed-b subsampling based confidence set improves its small-b

counterpart in terms of coverage accuracy, it can be seen from the numerical

results of Shao and Politis (2013) that when the dependence of the time series is

positively strong and sample size is small, the empirical coverage level can still

be far below the nominal level, resulting in inaccurate inference. This severe

undercoverage may be explained by the fact that the theoretical justification in

fixed-b subsampling hinges on the continuous mapping theorem and the func-

tional central limit theorem, and the latter approximation (based on functional

CLT) tends to get worse when the time series dependence gets positively stronger

and sample size gets smaller. One can quantify the approximation error by de-

veloping an edgeworth expansion for the distribution of the p-value under the

fixed-b asymptotics, but that seems very involved; see Zhang and Shao (2013)

for a recent attempt in a related context.

In this paper, we offer a new perspective on the serious undercoverage for

fixed-b subsampling based confidence sets, and we discover an intrinsic coverage

bound problem associated with the subsampling approach that seems largely

unnoticed in the literature. Specifically, there is a nontrivial finite sample (least)

upper bound on the coverage probability of the subsampling based confidence set

regardless of its confidence level and this bound is determined by the factors such

as block size, sample size, dimension of the parameter, the strength and the sign

of the time series dependence etc. To gain more insights, we conduct numerical

simulations and tabulate the finite sample bounds for a few combinations of

sample size, block size, and time series models with varying dependence. In

addition, we derive the limiting bound (the limit of finite sample bound as n→
∞) as a function of b, for both finite and infinitely dimensional parameters.

To alleviate the severe undercoverage associated with the fixed-b subsam-

pling, we propose the generalized subsampling (GS) method as an alternative.

The GS still uses values of the statistic computed over blocks of the data (subsam-

ples), but the blocks can be of different size and a scaling parameter is introduced

to allow the finite sample bound and the limiting bound be close to 1. The GS

inherits two main ingredients from Shao (2010) and Shao and Politis (2013). It
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uses the idea of prepivoting by looking at the p-value in Shao and Politis (2013)

instead of using a direct studentization, which seems not applicable to the in-

ference of infinite dimensional parameter. It also uses the recursive subsample

estimates, as used in the self-normalized (SN) approach of Shao (2010), which

leads to inconsistent subsampling approximation but can be calibrated to yield

asymptotically valid inference. We further investigate the coverage bound for

GS for both finite and infinitely dimensional parameters. Our numerical results

indicate that the bound can be very close to 1 as long as the scaling parameter

is in a certain range. Furthermore we show in simulation studies that the finite

sample coverage of the GS approach can be comparable or favorable in some

settings in comparison with the SN method and fixed-b subsampling method.

The rest of the paper is organized as follows. In Section 2, we point out

the problem of coverage bound for scalar, vector, and infinite dimensional pa-

rameters respectively, and investigate both finite sample and asymptotic bounds

by simulation. In Section 3, we propose a generalized subsampling method and

study its coverage bound. In Section 4, we compare GS method to the SN and

fixed-b subsampling methods via numerical simulations. Section 5 provides some

concluding remarks.

2 Coverage Bounds for subsampling based confidence

sets

To help the readers understand the coverage bound issue with the fixed-b sub-

sampling approach, we shall describe the idea in the context of a simple in-

ference problem: inference for the mean µ = E(X1) of a univariate station-

ary time series based on the observations {Xt}nt=1. In this case, the subsam-

pling method approximates the sampling distribution of
√
n(X̄n − µ), where

X̄n = n−1
∑n

t=1Xt is the sample mean, with the empirical distribution generated

by its subsample counterpart
√
l(X̄j,j+l−1−X̄n), where X̄j,j+l−1 = l−1

∑j+l−1
i=j Xi,

j = 1, · · · , N = n− l + 1. To construct a symmetric two sided confidence inter-

val for µ, consider L̃n,l(x) = N−1
∑N

j=1 1(
√
l|X̄j,j+l−1 − X̄n| ≤ x), where 1(A)

denotes the indicator function of the set A. In the fixed-b framework, the ratio

b = l/n is kept constant as n→∞.
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For a given α ∈ [0, 1), define the subsampling-based critical values as π̃n,l(1−
α) = inf{x : L̃n,l(x) ≥ 1 − α}. Then under the small-b asymptotic theory, the

100(1− α)% symmetric confidence interval for µ is(
X̄n − n−1/2π̃n,l(1− α), X̄n + n−1/2π̃n,l(1− α)

)
. (1)

In the context of hypothesis testing, if the alternative hypothesis is H1 : µ 6= µ0,

then we reject the null hypothesis at the significance level α if p-value is less than

or equal to α, where the p-value is defined as

p̃val
Fb

n,l = p̃val
Fb

n,l(µ0) =
1

N

N∑
j=1

1
(√

n|X̄n − µ0| ≤
√
l|X̄j,j+l−1 − X̄n|

)
, (2)

where we often omit the dependence of p̃val
Fb

n,l on µ0 for notational simplicity.

By duality of confidence interval and hypothesis testing, the confidence interval

is {
µ : p̃val

Fb

n,l(µ) in (2) > α
}
.

The above subsampling based interval is constructed implicitly assuming

the limiting null distribution of p-value is U(0, 1), which is no longer true under

the fixed-b framework, see Lahiri (2001). As a remedy, Shao and Politis (2013)

calibrated the nominal coverage level on the basis of the pivoting limiting nul-

l distribution of the p-value under the fixed-b asymptotics, and obtained more

accurate confidence intervals by taking into account the influence of b. Specif-

ically, under the fixed-b asymptotics, the limiting null distribution of p̃val
Fb

n,l is

the distribution of G̃b, where

G̃b = (1− b)−1
∫ 1−b

0
1
(
|W (1)| ≤ |W (b+ t)−W (t)− bW (1)|/

√
b
)
dt,

and W (t) is a standard Brownian motion. Let G̃b(α) denote the 100α% quantile

of the distribution of G̃b. Then the p-value calibrated fixed-b based 100(1−α)%

symmetric confidence interval is {µ : p̃val
Fb

n,l in (2) > G̃b(α)}, i.e.,(
X̄n − n−1/2π̃n,l

(
1− G̃b(α)

)
, X̄n + n−1/2π̃n,l

(
1− G̃b(α)

))
. (3)

In Shao and Politis (2013), the value G̃b(α) was obtained by Monte Carlo simu-

lation.
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Define

βn(b) := P

(
max

j=1,··· ,N
|
√
l(X̄j,j+l−1 − X̄n)| <

√
n|X̄n − µ0|

)
, (4)

where µ0 is the true value of µ, and its limit

β(b) := P

(
sup

t∈[0,1−b]
|(W (b+ t)−W (t)− bW (1))|/

√
b < |W (1)|

)
,

where W (t) is a standard Brownian motion. Then the coverage probability of

(1) and (3) have a nontrivial upper bound, i.e.,

P (µ0 ∈ CI) ≤ P

(√
n|X̄n − µ0| ≤ max

j=1,··· ,N
|
√
l(X̄j,j+l−1 − X̄n)|

)
= 1− P

(√
n|X̄n − µ0| > max

j=1,··· ,N
|
√
l(X̄j,j+l−1 − X̄n)|

)
= 1− βn(b)→ 1− β(b), (5)

where b = l/n. Throughout the paper, we call 1−βn(b) the finite sample coverage

bound and 1−β(b) the limiting bound. If 1−βn(b) < 1−α, then the confidence

set is bound to undercover and the amount of undercoverage gets more severe

when βn(b) gets farther from zero. For large n and under the small b asymptotics,

this problem does not occur because βn(b) ≈ β(0) = 0. But under the fixed-b

asymptotics or for small sample size, the bound is strictly less than 1 in both

finite sample or limit. This seems the first time such a phenomenon was brought

up for discussion in the literature.

Since β(b) := P (G̃b = 0), the following two cases can occur. (i) If β(b) > α,

then G̃b(α) = 0, and the inequality in (5) becomes an equality. In this case,

it is impossible to construct a confidence interval with asymptotically correct

coverage. (ii) If β(b) ≤ α, then a CI of asymptotically valid coverage can be

constructed, but whether the finite sample coverage bound reaches the target

level is unknown for a given sample size. The quantity βn(b) depends on the

joint distribution of time series, the form of the parameter, block size and sample

size, so is in general difficult to calculate. Table 1 below provides numerical

values of βn(b) and β(b) for a few combinations of b’s and n’s under different

levels of dependence strength. See Section 3 for more discussions.
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2.1 Finite dimensional parameter

The issue of coverage bound also exists when we deal with general finite dimen-

sional parameters. Following Politis et al. (1999), we assume that the parameter

of interest is θ(P ) ∈ Rd, where P is the joint probability law that governs the

p-dimensional stationary sequence {Xt}t∈Z. Let θ̂n = θ̂n(X1, · · · , Xn) be an es-

timator of θ = θ(P ) based on the observations (X1, · · · , Xn). Further we define

the subsampling estimator of θ(P ) by θ̂j,j+l−1 = θ̂l(Xj , · · · , Xj+l−1) on the ba-

sis of the subsample (Xj , · · · , Xj+l−1), j = 1, · · · , N . Let ‖ · ‖ be a norm in

Rd. The subsampling-based distribution estimator of ‖
√
n(θ̂n − θ)‖ is denoted

as L̃n,l(x) = N−1
∑N

j=1 1(‖
√
l(θ̂j,j+l−1 − θ̂n)‖ ≤ x). In the testing context (say

H0 : θ = θ0 versus H1 : θ 6= θ0), we define the subsampling based p-value as

p̃val
Fb

n,l = N−1
N∑
j=1

1(‖
√
n(θ̂n − θ)‖ ≤ ‖

√
l(θ̂j,j+l−1 − θ̂n)‖), (6)

where we do not distinguish θ and θ0 for notational convenience because they

are the same under the null.

Suppose that θ(P ) = T (F ), where F is the marginal distribution of X1 ∈ Rp,

and T is a functional that takes value in Rd. Then a natural estimator of T (F )

is θ̂n = T (ρ1,n), where ρ1,n = n−1
∑n

t=1 δXt is the empirical distribution and δx

stands for the point mass at x. Similarly, θ̂j,j+l−1 = T (ρj,j+l−1), where ρj,j+l−1 =

l−1
∑j+l−1

h=j δXh
. Under some regularity conditions on T and moment and weak

dependence assumptions on the time series, Theorem 1 in Shao and Politis (2013)

showed that the limiting null distribution of p̃val
Fb

n,l is the distribution of G̃b,d,

where

G̃b,d =
1

1− b

∫ 1−b

0
1
(
‖Σ1/2Wd(1)‖ ≤ ‖Σ1/2(Wd(b+r)−Wd(r)−bWd(1))‖/

√
b
)
dr

with Wd(·) representing the d-dimensional vector of independent Brownian mo-

tions and Σ = Σ(P ) denoting the long run variance matrix corresponding to

T (F ). Specifically,

Σ =
∞∑

j=−∞
cov(IF (X0, P ), IF (Xj , P )), (7)

where IF (X;P ) stands for the influence function corresponding to T ; see Section

3.1 of Shao and Politis (2013) for the definition.
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In the special case d = 1, G̃b,1 = G̃b, and is pivotal. However, for d ≥ 2,

G̃b,d is no longer pivotal; it critically depends on the unknown covariance matrix

Σ. One way out is to approximate the limiting null distribution G̃b,d further by

subsampling, see Shao and Politis (2013). Since this procedure mimics the idea

of double-bootstrap, it was termed double subsampling procedure in the latter

paper.

Let G̃b,d(α) be the αth-quantile of G̃b,d that can be consistently approxi-

mated by subsampling. Then the calibrated 100(1 − α)% subsampling-based

confidence region for θ contains all points θ0 for which the test of H0 : θ = θ0

fails to reject the null hypothesis, namely,{
θ ∈ Rd : p̃val

Fb

n,l in (6) > G̃b,d(α)
}
, (8)

whereas the traditional subsampling-based confidence region is{
θ ∈ Rd : p̃val

Fb

n,l in (6) > α
}
.

Define

βn(b; d; Σ) = P

(
max

j=1,··· ,N
‖
√
l(θ̂j,j+l−1 − θ̂n)‖ <

√
n‖θ̂n − θ‖

)
. (9)

Let F (x−) := limy↑x F (y). The coverage probability of (8) is

P (θ ∈ (8)) = P
({
θ ∈ Rd : 1− L̃n,l(

√
n‖θ̂n − θ‖−) > G̃b,d(α)

})
= P

({
θ ∈ Rd : L̃n,l(

√
n‖θ̂n − θ‖−) < 1− G̃b,d(α)

})
= P

({
θ ∈ Rd :

√
n‖θ̂n − θ‖ ≤ (1− G̃b,d(α))-th quantile of L̃n,l

})
≤ P

(√
n‖θ̂n − θ‖ ≤ max

j=1,··· ,N
‖
√
l(θ̂j,j+l−1 − θ̂n)‖

)
= 1− βn(b; d; Σ). (10)

Let β(b; d; Σ) be the limit of βn(b; d; Σ) as n→∞. In the special case d = 1,

β(b; d; Σ) = β(b) that does not depend on the nuisance parameter Σ. For d ≥ 2,

let

β(b; d; Σ) = P

(
sup

r∈[0,1−b]
‖Σ1/2(Wd(b+r)−Wd(r)−bWd(1))‖/

√
b < ‖Σ1/2Wd(1)‖

)
.

If β(b; d; Σ) ≥ α, then P (G̃b,d = 0) ≥ α, and G̃b,d(α) = 0. Then the inequality

in (10) becomes equality. Again we would run into the issue of undercoverage if

βn(b; d; Σ) > α.
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2.2 Infinite dimensional parameter

In the time series setting, the subsampling methods have been used to provide

an approximation of the nonpivotal limiting distribution when the parameter

of interest is of infinite dimension, such as marginal distribution function and

spectral distribution function of a stationary time series; see Politis et al. (1999b).

In what follows, we use ‖F −G‖∞ to denote supx∈R |F (x)−G(x)| and focus on

the confidence band construction for marginal distribution function.

Consider a stationary sequence {Xt}t∈Z and let m(s) = P (X0 ≤ s) be its

marginal cumulative distribution function (cdf). Given the observations {Xt}nt=1,

the empirical distribution function is defined as mn(s) = n−1
∑n

t=1 1(Xt ≤ s).

To construct a confidence band for m(·), it is known from Berkes et al. (2009)

that
√
n(mn(s)−m(s))⇒ K(s, 1), where {K(s, t), (s, r) ∈ [−∞,∞]× [0, 1]} is a

two-parameter mean zero Gaussian process with

cov
(
K(s, r),K(s′, r′)

)
= (r ∧ r′)Γ(s, s′), (11)

and Γ(s, s′) =
∑∞

k=−∞ cov (1(X0 ≤ s),1(Xk ≤ s′)). Then by the continuous

mapping theorem,
√
n‖mn−m‖∞ →D sups∈R |K(s, 1)|, whose distribution is not

pivotal since the covariance kernel Γ(·, ·) depends on unknown nuisance parame-

ters. To describe the fixed-b subsampling method, let
√
l (mt,t+l−1(s)−mn(s)),

t = 1, · · · , N = n− l+ 1, be the subsampling counterpart of
√
n (mn(s)−m(s)),

where mt,t+l−1(s) = l−1
∑t+l−1

h=t 1(Xh ≤ s). Define the p-value

p̃val
Fb

n,l = N−1
N∑
t=1

1
(√

l‖mt,t+l−1 −mn‖∞ ≥
√
n‖mn −m‖∞

)
. (12)

Let b = l/n. Under the fixed-b asymptotics, the limiting null distribution of the

p-value is the distribution of Gb, where

Gb :=
1

1− b

∫ 1−b

0
1
(

sup
s∈R
|K(s, r + b)−K(s, r)− bK(s, 1)|/

√
b

≥ sup
s∈R
|K(s, 1)|

)
dr.

Note that the distribution of Gb is not pivotal for a given b, because it depend-

s upon the Gaussian process K(s, t), whose covariance structure is tied to the
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unknown dependence structure of Xt. So subsampling at the first stage is insuf-

ficient under the fixed-b asymptotic framework.

To make the inference feasible, a double-sampling procedure was employed

in Shao and Politis (2013) to approximate the sampling distribution of the p-

value or its limiting null distribution; see also Section 3.1. Denote Gb(α) the α-th

quantile of Gb and Ĝb(α) a consistent estimator by subsampling in the second

stage. For a given α ∈ (0, 1), the 100(1 − α)% calibrated subsampling-based

confidence band for m(·) is{
m : m is a distribution function and p̃val

Fb

n,l in (12) > Ĝb(α)
}
, (13)

Define

βn(b,K) := P

(
max

j=1,··· ,N

√
l‖mj,j+l−1 −mn‖∞ <

√
n‖mn −m‖∞

)
(14)

Following the same argument in Section 2.1, The coverage bound of (13) can be

derived as

P

(
max

j=1,··· ,N

√
l‖mj,j+l−1 −mn‖∞ ≥

√
n‖mn −m‖∞

)
= 1− βn(b,K),

with the limit of βn(b,K) being

β(b,K) := P

(
sup

r∈(0,1−b)
sup
s∈R
|K(s, r + b)−K(s, r)− bK(s, 1)|/

√
b < sup

s∈R
|K(s, 1)|

)
.

2.3 Finite sample coverage bound for fixed-b subsampling

To investigate the severity of the coverage bound issue, we present the finite

sample coverage bounds of the subsampling based confidence set for time series

data through numerical simulations. Suppose Xt is generated from a vector

autoregression (VAR) model Xt = ρIdXt−1 + εt with εt ∈ Rd, where Id is a

d × d identity matrix. Assuming that εt ∼ i.i.d. N(0, Id), namely, there is no

cross-sectional correlation for the time series, we present the values of coverage

bounds βn(b; d; Σd) in Table 1 with different choices of b and sample size n for

d = 1, 2, 3. The sample size n is 50, 100, 500, 3000,∞. We approximate the

asymptotic coverage bound β(b; d; Σd) (i.e. for n =∞) by simulating independent

Wiener processes for 5,000 times, where each Wiener process is approximated by

a normalized partial sum of 50,000 i.i.d. standard normal random variables.
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Insert Table 1 here!

Insert Table 2 here!

Tables 1 and 2 summarize the coverage bound for the mean and median re-

spectively by fixed-b subsampling. We can see that the coverage bound decreases

as the positive dependence strengthens whereas for negative ρ the coverage bound

tends to inflate as compared to the i.i.d. case. In general there is a decreasing

trend in the coverage bound as the dimension d increases. Also the bound much

depends upon b and is moderately sensitive to b especially in the case of high

positive correlation. Although no universal pattern can be found to dictate the

selection of b based on the coverage bound, the simulation result does suggest

that b in the range of (0, 0.2) tends to deliver higher coverage probability.

Tables 1 and 2 reveal that even after p-value calibration, an asymptotical-

ly valid confidence set can have potential undercoverage issue in finite sample.

In that situation, if a high confidence level is desired, it is recommended that

the bound be computed to see if such a high confidence level is attainable. As

commented in Shao and Politis (2013), “undercoverage occurs (for fixed-b sub-

sampling methods) and it becomes more severe as the dependence positively

strengthens”, see Figures 1-3 therein. This phenomenon can be partially ex-

plained and is echoed by the coverage bound presented in Table 1.

Insert Figure 1 here!

We further investigate the impact of the dimensionality d of the parameter

on the limiting coverage bound. Figure 1 presents the coverage bound for vector

mean at d = 2, 3, 5, 10, 15, 20, 50 and a range of b’s in (0, 0.5), where the data

are generated from i.i.d. multivariate standard normal distribution with sample

size n = 5, 000. It can be seen that, as the dimension d increases, even for i.i.d.

Gaussian data, the finite sample coverage bound deviates away from 1. Notice

that the upper bound can be close to zero when both b and d are large. And we

would expect a farther deviation from 1 on the coverage bound if the data exhibit

positive dependence, or if the sample size is small, as seen from Tables 1 and 2.

These numerical findings call for special caution from the practitioners when

dealing with confidence set in one of the following situations, (1) the nominal

level is close to 1, say 99%; (2) the dimension of the parameter d is large; (3) the

(positive) dependence is strong; (4) b is large; (5) sample size n is small.
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Insert Table 3 here!

For the infinite dimensional case, we examine the confidence band for the

marginal distribution function of an AR(1) model: Xt = ρXt−1 + εt, where

εt ∼ i.i.d. N(0, 1− ρ2) so the theoretical marginal distribution of Xt is standard

normal. Table 3 shows the coverage bound for the confidence band at different

levels of dependence. Not surprisingly, the coverage bound is significantly smaller

than 1 if sample size is small (n = 50) and the dependence is strong (ρ = 0.8);

the choice of b plays an important role on the coverage bound with larger b

corresponding to lower bound in general, but we notice that for some very small

b’s, the bound can be far below 1; namely, the bound is sensitive to the choice of

b. Interestingly, the negative correlation (i.e., ρ = −0.5), which helps in bringing

up the coverage bound in the vector parameter case, corresponds to a different

pattern for infinite dimensional parameter. Specifically, except for d = 0.02,

the coverage bound for ρ = −0.5 is either comparable to, or smaller than that

of ρ = 0, indicating that a potential undercoverage can be caused by not only

positive, but also negative value of ρ.

3 Generalized subsampling

The basic idea of the subsampling is to approximate the sampling distribution

of a statistic on the basis of the values of the statistic computed over smaller

subsets of the data. In the time series setting, for given observations from a time

series {Xi}ni=1, the statistic is recomputed over the n−l+1 subsets of size l of the

form {Xi, Xi+1, · · · , Xi+l−1}. The traditional way of performing subsampling in

the time series context [Politis and Romano (1994)] has two important features:

(i) To retain the time series dependence, blocks of the consecutive observations

are used and blocks are of the same length; (ii) the block size typically satisfies

l/n+ 1/l = o(1) as n→∞ to show the consistency of the subsampling based ap-

proximation in both distribution approximation and variance estimation. Both

requirements seem natural as the goal is to achieve consistent estimation of sam-

pling distribution or variance of the normalized statistic.

We propose the new GS method to relax the above requirements for the use

of subsampling method. Our method still uses values of the statistic computed
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over blocks of the data (subsamples), but the blocks can be of different size and a

scaling parameter g is introduced to alleviate the coverage bound problem. The

applicability of the GS is limited to approximately linear statistic with asymptot-

ic normal limiting distribution, so its scope of applicability is narrower than that

for subsampling. On the other hand, as we shall demonstrate later, its coverage

bound can be fairly close to 1 and it can outperform fixed-b subsampling in terms

of coverage accuracy especially when the coverage bound for fixed-b subsampling

is substantially below 1. It is closely related to the SN approach [Shao (2010)],

where the use of inconsistent normalizer leads to a nonstandard limiting distri-

bution of the studentized statistic, but it can be used in the inference of infinite

dimensional parameters, for which the SN approach seems not directly applica-

ble. It is also intimately related to fixed-b subsampling by Shao and Politis (2013)

where the subsampling is shown to be inconsistent under a fixed-b asymptotic

framework and a p-value based calibration is proposed to yield asymptotically

valid confidence sets. We follow the same p-value based calibration approach and

our development for the GS method is parallel to that in Shao and Politis (2013).

3.1 GS Methodology details

Denote θ̂t = θ̂1,t andmt = m1,t to be the estimate based on subsample (X1, · · · , Xt).

For a vector parameter θ ∈ Rd, we shall approximate the sampling distribution

of
√
n‖θ̂n − θ‖ by

Mn,g(x) = n−1
n∑
t=1

1
(
gn−1/2‖t(θ̂t − θ̂n)‖ ≤ x

)
,

where g is a scaling parameter introduced to alleviate the coverage bound prob-

lem for g = 1. We shall leave the choice of g and its impact on finite sample

performance to later sections. Here the use of recursive estimators {θ̂t}nt=1 is mo-

tivated by the good finite sample performance of the self-normalized approach

in Shao (2010); also see Nordman et al. (2013) for a related formulation in the

blockwise empirical likelihood context. Similar to the subsampling under the

fixed-b framework, the distribution estimator Mn,g(x) is inconsistent, but we can

use p-value calibration to construct a confidence set with asymptotically correct

coverage. In the testing context (say H0 : θ = θ0 versus H1 : θ 6= θ0), we define
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GS-based p-value as

p̃val
GS

n,g = n−1
n∑
t=1

1
(
g‖n−1/2t(θ̂t − θ̂n)‖ ≥ ‖

√
n(θ̂n − θ)‖

)
(15)

where we do not distinguish θ and θ0 for notational convenience because they

are the same under the null. Its limiting null distribution is

Hg,d =

∫ 1

0
1
(
g‖Σ(P )1/2 (Wd(r)− rWd(1)) ‖ ≥ ‖Σ(P )1/2Wd(1)‖

)
dr, (16)

where Σ(P ) is defined in (7).

In the special case of d = 1, such as inference for the mean of a univariate

time series, Hg,1 := Hg becomes pivotal since Σ(P ) in (16) gets canceled, and

the quantiles of Hg can be obtained by monte carlo simulations. Let Hg(α) be

the α-th quantile of the distribution Hg. Then the corresponding 100(1 − α)%

confidence interval for µ is{
µ : p̃val

GS

n,g > Hg(α)
}

=

{
µ : n−1

n∑
t=1

1
(
gn−1/2|t(X̄t − X̄n)| ≥ |

√
n(X̄n − µ)|

)
> Hg(α)

}
=

(
X̄n − n−1/2cn,g (1−Hg(α)) , X̄n + n−1/2cn,g (1−Hg(α))

)
(17)

where cn,g(1− α) = inf{x : Mn,g(x) ≥ 1− α} for α ∈ [0, 1).

Define βGSn (g) := P (maxt=1,··· ,n n
−1/2g|t(X̄t − X̄n)| <

√
n|X̄n − µ|) and

βGS(g) := P (supr∈(0,1) g|W (r) − rW (1)| < |W (1)|). The coverage bound of

the interval in (17) is

P (µ ∈ (17)) = P
(√
n(|X̄n − µ| < cn,g(1− α)

)
≤ P

(√
n|X̄n − µ| ≤ max

t=1,··· ,n
gn−1/2|t(X̄t − X̄n)|

)
= 1− βGSn (g).

For d > 1, notice Hg,d depends on the unknown long-run variance matrix

Σ(P ) and is not pivotal, we opt to bypass this difficulty by subsampling approx-

imation at a second stage, see Section 3.2 in Shao and Politis (2013) for more

discussions. For the purpose of the completeness, we present the details here.

Denote by n′ the subsampling width at the second stage. For each subsample
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{Xj , · · · , Xj+n′−1}, we define the subsampling counterpart of p̃val
GS

n,l as

q
(j)
n′,g = (n′)−1

n′∑
t=1

1
(
g‖n′−1/2t(θ̂j,j+t−1 − θ̂j,j+n′−1)‖ ≥ ‖n′

1/2
(θ̂j,j+n′−1 − θ̂n)‖

)
for j = 1, · · · , n−n′+1. Denote the empirical distribution function of {q(j)n′,g}

n−n′+1
j=1

by Qn,n′,g(x) = (n − n′ + 1)−1
∑n−n′+1

j=1 1(q
(j)
n′,g ≤ x), which can be used to ap-

proximate the sampling distribution or the limiting null distribution of p̃val
GS

n,l .

Let cn,n′,g(1−α) = inf{x : Qn,n′,g(x) ≥ 1−α}. Then the calibrated 100(1−α)%

subsampling-based confidence region for θ is{
θ ∈ Rd : p̃val

GS

n,l in (15) > cn,n′,g(α)
}
, (18)

which is equivalent to{
θ ∈ Rd :

√
n‖θ̂n − θ‖ < (1− cn,n′,g(α))-th quantile of Mn,g

}
. (19)

Define βGSn (g; d; Σ) := P (maxt=1,··· ,n n
−1/2g‖t(θ̂t− θ̂n)‖ <

√
n‖θ̂n−θ‖) and

βGS(g; d; Σ) := P (supr∈(0,1) g‖Σ1/2(Wd(r)− rWd(1))‖ < ‖Σ1/2Wd(1)‖). Similar-

ly we can show that the coverage bound of (18) is 1− βGSn (g; d; Σ). The value of

1 − βGSn (g; d; Id) is tabulated in Tables 5 and 6, from which we can see an im-

provement of the finite as well as asymptotic bound over the fixed-b subsampling

results in Tables 1 and 2; see more comments in Section 3.2.

In estimating the marginal cdf of a stationary process, let gn(t, s) = n−1/2t(mt(s)−
mn(s)), t = 1, · · · , n be the GS counterpart of

√
n(mn(s)−m(s)), we approximate

the distribution of ‖
√
n(mn −m)‖∞ by

Mn,g(x) = n−1
n∑
t=1

1
(
gn−1/2‖t(mt −mn)‖∞ ≤ x

)
.

And the p-value

p̃val
GS

n,g = n−1
n∑
t=1

1
(
gn−1/2t‖mt −mn‖∞ ≥

√
n‖mn −m‖∞

)
(20)

has a limiting null distribution of

Hg :=

∫ 1

0
1

(
g sup
s∈R
|K(s, r)− rK(s, 1)| ≥ sup

s∈R
|K(s, 1)|

)
dr,
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where the Gaussian process K(s, r) has a covariance structure determined by

the unknown dependence structure of Xt, see the definition in (11). Therefore a

second-stage subsampling needs to be employed. Specifically, let n′ be the sub-

sampling window size at the second stage. For each subsample {Xt, · · · , Xt+n′−1},
the subsampling counterpart of p̃val

GS

n,g is defined as

h
(t)
n′,g = (n′)−1

n′∑
j=1

1(g(n′)−1/2j‖mt,t+j−1−mt,t+n′−1‖∞ ≥ (n′)1/2‖mt,t+n′−1−mn‖∞)

for t = 1, · · · , n−n′+1. Then we approximate the sampling distribution of p̃val
GS

n,g

or its limiting null distribution Hg by the empirical distribution of {h(t)n′,g}
n−n′+1
t=1 ,

which is denoted as

Jn,n′,g(x) = (n− n′ + 1)−1
n−n′+1∑
t=1

1(h
(t)
n′,g ≤ x).

Denote Hg(α) the α-th quantile of Hg and Ĥg(α) the subsampling-based esti-

mator, i.e., Ĥg(α) = inf{x : Jn,n′,g(x) ≥ α}. Then the confidence band for m(·)
is {

m : m is a distribution function and p̃val
GS

n,g in (20) > Ĥg(α)
}
. (21)

The following proposition states the consistency of subsampling in the second

stage, which implies that the coverage for the calibrated confidence band is

asymptotically correct. Let

Vg(r, ε) = P

{∣∣∣∣g sup
s∈R
|K(s, r)− rK(s, 1)| − sup

s∈R
|K(s, 1)|

∣∣∣∣ = ε

}
Proposition 1. Assume that 1/n′ + n′/n = o(1), and equation (4) in Shao and

Politis (2013) holds.

(a) The limiting null distribution of the p-value p̃val
GS

n,g is the distribution of

Hg provided that Vg(r, 0) = 0 for every r ∈ [0, 1].

(b) Suppose that the process Xt is α-mixing, Hg is a continuous random

variable and Vg(r, ε) = 0 for every r ∈ [0, 1] and ε ≥ 0. Then we have

sup
x∈R
|Jn,n′,g(x)− P (Hg ≤ x)| = op(1).

In other words, the asymptotic coverage probability of the confidence band in

expression (21) is 1− α.
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The above proposition is analogous to Theorem 3 in Shao and Politis (2013)

in terms of technical conditions and results. Actually, the arguments present-

ed in the proof of Theorems 3 in Shao and Politis (2013) can be extended in a

straightforward fashion to prove the result stated above. Since there is no addi-

tional novelty, we decide not to present the details. It is worth pointing out that

the conditions on Hg and Vg(r, ε) are not easy to verify and their verification

may be related to the regularity of the distribution of the maximum of Gaussian

processes; see Azäıs and Wschebor (2001) and references therein. Furthermore,

the assumption that 1/n′ + n′/n = o(1) implies that the consistency of second-

stage subsampling holds under the small-b asymptotics, where b = n′/n. If we

view b = n′/n as fixed, then the asymptotic coverage of the calibrated confidence

set is still different from the nominal level. One can perform further calibration

by subsampling, but the selection of the subsampling window size at each stage

usually requires expensive computation and the finite sample improvement in

coverage accuracy is not guaranteed by doing subsampling iteratively. Finally

we note that our GS is a form of prepivoting [Beren (1987, 1988)], but the lim-

iting null distribution of the p-value is not U(0, 1) in our setting, and it depends

on g and possibly some aspects of the data generating process (for vector and

infinitely dimensional parameters).

3.2 Coverage bound for GS

In this Section, we adopt the set-up in Section 2.3 and investigate the finite

sample coverage bound of GS, i.e., 1− βGSn (g) and its limit.

Insert Table 5 here!

Insert Table 6 here!

Tables 5 and 6 present the coverage bound for the vector mean and median

respectively by GS. Without the scaling parameter g (i.e., g = 1), the coverage

bound is at most 60%, indicating the ‘crude’ confidence interval is not meaningful

at usual confidence level (say, 95%). There is a increasing trend in the coverage

bound as g increases, and the bound is close to 1 on the range of g ∈ [3,∞). We

refrain from using too big value of g since it leads to a wider CI while preserving

similar coverage probability, see Section 4 for more details. Simulation study

shows that g ∈ [3, 5] is a sensible choice for most data generating processes we
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examined. Although strong positive dependence makes the coverage bound lower,

it seems GS can quickly adapts to dependence, and bring the coverage bound

towards 1 by increasing g.

Insert Figure 2 here!

Figure 2 has the same format as Figure 1, and it depicts how the dimen-

sionality affects the coverage bound of GS. It is shown that the coverage bound

quickly stabilizes and gets up to 95% for g ∈ [3, 5] regardless of d, although the

crude CI bound (g = 1) reaches zero for large d. Compared to Figure 1, we can

see that although high coverage bound can be achieved by shrinking the fraction

b in high dimension case, it leads to instability as the subsample also shrinks,

which could lead to undercoverage on the positively moderate/strong dependence

case because a large block size is typically needed to accommodate the positive

dependence as the dimension increases; moreover, empirical coverage probabil-

ity at small b is typically not optimal for positively dependent time series, see

Figures 3 and 4 in Section 4 for more details.

Insert Table 4 here!

Table 4 summarizes the coverage bound for the marginal cdf by GS. We can

see that bound for GS at small samples (n = 50, 100) is quite close to 1 as long

as g ≥ 3.5. For large samples, the coverage bound is quite robust to the choice

of g (other than g = 1 case), and it is comparable to the best coverage bound for

the fixed-b method. It appears interesting that negative ρ brings up the coverage

bound of GS for the marginal cdf for g ≥ 2.5.

4 Numerical studies

In the previous sections we have illustrated the improvement on the least upper

bound on coverage probability by GS over the fixed-b subsampling. In this section

we compare the empirical coverage probability of the confidence set by GS, fixed-

b, and SN methods, and pay particular attention to the case where the finite

sample bound for the fixed-b subsampling is substantially below 1.

We simulate gaussian (vector) AR(1) model and construct the confidence set

for the finite dimensional parameter (univariate mean, vector mean) or confidence

band for the marginal cdf. In the univariate mean case, the limiting null distri-
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bution of the p-value is pivotal for both fixed-b and GS, and the quantile H̃g(α)

can be simulated and G̃b(α) has been tabulated in Shao and Politis (2013). In

vector and infinite dimensional parameter case, we employ a second stage sub-

sampling method to approximate the limiting null distribution of the p-value

for both fixed-b method and GS, as described in Section 3.1. More specifical-

ly, following the proposal by Bickel and Sakov (2008), a data driven bandwidth

selection procedure in the second stage subsampling is carried out as follows:

Step 1 For a predetermined interval [K1,K2] and γ ∈ (0, 1), we consider a sequence

of nj ’s of the form nj = bγj−1K2c, for j = 1, 2, · · · , blog(K2/K1)/ log(1/γ)c.

Step 2 For each nj , find Jn,nj , where Jn,nj is the subsampling-based distribution

estimator for the sampling distribution of the p-value.

Step 3 Set j0 = argminj=1,··· ,blog(K2/K1)/{− log(γ)}c supx∈R |Jn,nj (x) − Jn,nj+1(x)|.
Then the optimal block size is γj0K2. If the difference is minimized for a

few values of j, then pick the largest among them.

In the simulation, we set (K1,K2, γ) = (5, 0.3n, 0.75), which corresponds to a

sequence of block lengths of (30, 22, 16, 12, 9, 7, 5) when n = 100.

Insert Figure 3 here!

Figure 3 compares the empirical coverage probability for the CI of the u-

nivariate mean constructed by GS, fixed-b and SN methods. Following Shao

and Politis (2013), the range of b is [0.01, 0.16] since the formula given therein

for the critical value G̃b(α) may become negative for b > 0.16 and α = 0.05

and is not usable. The range of g is chosen to be [2.5, 10]. It shows that, for

ρ = 0, 0.5, 0.8, GS delivers more accurate coverage probability than the fixed-b

subsampling, and is quite comparable to SN for a range of g’s. As ρ > 0 becomes

larger, fixed-b subsampling encounters more severe undercoverage issue, whereas

GS manages to bring the coverage probability toward the nominal level. The

fixed-b subsampling relies heavily on the choice of b, while GS performs quite

stably for g ∈ [3, 10], and is comparable to SN method in terms of both coverage

accuracy and interval length. When ρ = −0.5, all three methods exhibit over-

coverage phenomena, which is consistent with the high coverage bound presented

in Tables 1 and 5. The coverage probability delivered by GS confidence interval

is closer to the nominal level and as a trade off, the length of CI is moderately
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longer compared to fixed-b approach. The pattern is the same for median and

quantiles, and is not presented in the paper.

Insert Figure 4 here!

Figure 4 demonstrates the empirical coverage probability of the confidence

region for a 3-dimensional vector mean of a VAR(1) model. It can be seen that

when the dependence is moderate (e.g., ρ = 0.5), the coverage probability of the

fixed-b method is not too far away from the nominal level, and in this case GS

can barely improve the coverage. As dependence becomes positively stronger,

the coverage probability of the fixed-b subsampling deviates away from 95% level

by a larger amount, and GS brings up the coverage probability much closer

to the nominal level. When ρ < 0, GS is still dominantly better than fixed-b

subsampling except for b = 0.01. We also compare the volume of the confidence

region. Notice that the confidence region constructed by fixed-b subsampling

and GS are d-dimensional balls with radius determined by the p-value calibrated

critical value, while SN method results in a confidence ellipsoid. For an ellipsoid

with semi-principal axes of length a, b, c, define the equivalent radius to be R =

(abc)1/3 such that it has the same volume as a 3D ball with radius R. Again

we see a wider confidence region radius by GS as a reasonable trade-off for more

accurate coverage probability. Overall, the performance of GS is stable for a

wide range of g, and its performance is comparable to the SN method in terms of

coverage and confidence region radius when ρ = 0.5, and can vastly outperform

SN method in coverage when ρ = 0.8 or 0.95, but when ρ = −0.5, SN does better

in coverage.

Insert Figure 5 here!

Figure 5 shows the empirical coverage probability of the confidence band for

the marginal cdf of AR(1) model by GS and the fixed-b method. SN method is not

applicable for infinite dimensional parameter and is not compared here. It seems

that GS is slightly worse than fixed-b subsampling when dependence is weak

or moderate, but GS’s advantage shows up as the dependence strengthens, for

either positive or negative ρ, and the coverage probability for GS is satisfactorily

close to the nominal level and quite stable across a wide range. As expected, the

GS-based confidence set is typically wider, as a price we pay for more accurate

coverage.
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Overall, GS’s performance is quite competitive, and it displays distinctive ad-

vantage over the fixed-b subsampling when the dependence is (positively) strong,

and it is comparable to SN for finite dimensional parameters.

5 Conclusion

In this paper, we study the coverage upper bound on the coverage probabilities

of fixed-b subsampling based confidence sets. We derive the formulae for both

finite sample bound and the limiting bound, and tabulate them for several com-

binations of (n, b) and time series models with strong/weak dependence. This

seems to be the first time that the coverage bound problem is recognized for

subsampling methods. Our numerical results show that the bound can be far

from 1 and the finite sample coverage can be far below the nominal level when

(1) the dimension of the parameters is large; (2) the dependence of the time se-

ries is positively strong; (3) b is large. This finding suggests that caution should

be taken when applying subsampling methods to time series inference with high

dimensional parameter or strong dependence.

The proposed GS methodology naturally combines the recursive subsample

idea in the self-normalization of Shao (2010) and p-value calibration idea in Shao

and Politis (2013), and introduces a scaling parameter g to alleviate the bound

problem when g = 1. The presented numerical comparison with SN and fixed-b

subsampling shows that the GS can deliver comparable or sometimes favorable

coverage accuracy for a range of g’s. It is certainly interesting to ask what is the

optimal g and are there any data-driven algorithm for its choice. We leave this

for future research. Furthermore, it is worth mentioning a few variants of GS

method. For example, we can use different weights for the values computed over

blocks of possibly different size, which generalizes the scaling idea. Also, we may

use all the possible blocks of consecutive observations in the calculation of values

of the subsample statistic. In addition, we expect the coverage bound problem

also occurs for block bootstrap based confidence set, in view of the development

on fixed-b block bootstrap in Shao and Politis (2013). All these topics are worthy

of further investigation.
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Figure 1: Bounds on the coverage probabilities for fixed-b subsampling for the mean

at nominal level 95% (dashed line). The data are generated from multivariate standard

normal distribution with n = 5, 000 and the number of Monte Carlo replications is 5,000.
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Figure 2: Bounds on the coverage probabilities of GS for the mean at nominal level 95%

(dashed line). The data are generated from multivariate standard normal distribution

with n = 5, 000 and the number of Monte Carlo replications is 5,000.
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Figure 3: Empirical coverage probabilities and CI width for the mean by GS (‘+’), fixed-

b (‘◦’) and SN (solid line) at nominal level 95% (dashed line). The data are generated

from Gaussian AR(1) models with n = 50, the number of Monte Carlo replications is

5,000.
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Figure 4: Empirical coverage probabilities and (equivalent) radius of confidence region

for 3-dimensional vector mean by GS (‘+’), fixed-b (‘◦’) and SN (solid line) at nominal

level 95% (dashed line). The data are generated from vector Gaussian AR(1) models

with n = 100, the number of Monte Carlo replications is 5,000.
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Figure 5: Coverage probabilities and widths of confidence bands for the marginal cdf by

fixed-b and generalized subsampling. The data are generated from AR(1) models with

n = 100 and the number of Monte Carlo replications is 5,000.
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