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Abstract: In this article, we investigate the upper bounds on coverage probabilities
of the subsampling-based confidence sets in the time series setting. Under the fixed-
b asymptotic framework, where b is the ratio of block size relative to sample size,
we derive the limiting coverage bound and obtain the finite sample coverage bound
by simulations. Our findings suggest that the coverage bound is strictly below 1
for positive b, and it can be far away from 1 and the fixed-b subsampling method in
Shao and Politis (2013) can exhibit serious undercoverage when (1) the dimension
of the parameter is large; (2) the time series dependence is (positively) strong;
or (3) b is large. To alleviate the problem, we propose a generalized subsampling
method that combines useful features of fixed-b subsampling and self-normalization,
and demonstrate its effectiveness in terms of delivering more accurate coverage via

numerical studies.
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1 Introduction

Since the seminal work of Politis and Romano (1994), subsampling has become an
important and widely applicable tool in various inference problems for time series
and dependent data of other types; see Politis, Romano and Wolf (1999a). The
theoretical treatment in most subsampling-related work adopts the traditional
small-b asymptotics, where b is the fraction of the subsampling block size (or
window width, bandwidth) relative to total sample size, and subsampling can
be shown to be consistent under mild conditions. Recently, Shao and Politis
(2013) introduced the fixed-b asymptotics [Kiefer and Vogelsang (2005)] into the
subsampling-based inference and proposed a p-value based calibration approach
to alleviate the inconsistency of subsampling under the fixed-b framework. This

new approach allows the effect of block size on the subsampling approximation
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to be captured to the first order, and is shown to deliver more accurate coverage
as compared to its small-b counterpart in simulation studies.

Although the fixed-b subsampling based confidence set improves its small-b
counterpart in terms of coverage accuracy, it can be seen from the numerical
results of Shao and Politis (2013) that when the dependence of the time series is
positively strong and sample size is small, the empirical coverage level can still
be far below the nominal level, resulting in inaccurate inference. This severe
undercoverage may be explained by the fact that the theoretical justification in
fixed-b subsampling hinges on the continuous mapping theorem and the func-
tional central limit theorem, and the latter approximation (based on functional
CLT) tends to get worse when the time series dependence gets positively stronger
and sample size gets smaller. One can quantify the approximation error by de-
veloping an edgeworth expansion for the distribution of the p-value under the
fixed-b asymptotics, but that seems very involved; see Zhang and Shao (2013)
for a recent attempt in a related context.

In this paper, we offer a new perspective on the serious undercoverage for
fixed-b subsampling based confidence sets, and we discover an intrinsic coverage
bound problem associated with the subsampling approach that seems largely
unnoticed in the literature. Specifically, there is a nontrivial finite sample (least)
upper bound on the coverage probability of the subsampling based confidence set
regardless of its confidence level and this bound is determined by the factors such
as block size, sample size, dimension of the parameter, the strength and the sign
of the time series dependence etc. To gain more insights, we conduct numerical
simulations and tabulate the finite sample bounds for a few combinations of
sample size, block size, and time series models with varying dependence. In
addition, we derive the limiting bound (the limit of finite sample bound as n —
o0) as a function of b, for both finite and infinitely dimensional parameters.

To alleviate the severe undercoverage associated with the fixed-b subsam-
pling, we propose the generalized subsampling (GS) method as an alternative.
The GS still uses values of the statistic computed over blocks of the data (subsam-
ples), but the blocks can be of different size and a scaling parameter is introduced
to allow the finite sample bound and the limiting bound be close to 1. The GS
inherits two main ingredients from Shao (2010) and Shao and Politis (2013). It
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uses the idea of prepivoting by looking at the p-value in Shao and Politis (2013)
instead of using a direct studentization, which seems not applicable to the in-
ference of infinite dimensional parameter. It also uses the recursive subsample
estimates, as used in the self-normalized (SN) approach of Shao (2010), which
leads to inconsistent subsampling approximation but can be calibrated to yield
asymptotically valid inference. We further investigate the coverage bound for
GS for both finite and infinitely dimensional parameters. Our numerical results
indicate that the bound can be very close to 1 as long as the scaling parameter
is in a certain range. Furthermore we show in simulation studies that the finite
sample coverage of the GS approach can be comparable or favorable in some
settings in comparison with the SN method and fixed-b subsampling method.
The rest of the paper is organized as follows. In Section 2, we point out
the problem of coverage bound for scalar, vector, and infinite dimensional pa-
rameters respectively, and investigate both finite sample and asymptotic bounds
by simulation. In Section 3, we propose a generalized subsampling method and
study its coverage bound. In Section 4, we compare GS method to the SN and
fixed-b subsampling methods via numerical simulations. Section 5 provides some

concluding remarks.

2 Coverage Bounds for subsampling based confidence

sets

To help the readers understand the coverage bound issue with the fixed-b sub-
sampling approach, we shall describe the idea in the context of a simple in-
ference problem: inference for the mean p = E(X;) of a univariate station-
ary time series based on the observations {X;};",. In this case, the subsam-
pling method approximates the sampling distribution of \/n(X, — p), where
X, =n""1 > g Xt is the sample mean, with the empirical distribution generated
by its subsample counterpart \/l()’(jw,l—)’(n), where Xj,jﬂfl =1 Zfijl_l X;,
j=1,---,N=n—10+ 1. To construct a symmetric two sided confidence inter-
val for p, consider En,l(:c) =N} Z;VZI 1V X jy1-1 — Xn| < ), where 1(A)
denotes the indicator function of the set A. In the fixed-b framework, the ratio

b =1/n is kept constant as n — oo.
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For a given a € [0, 1), define the subsampling-based critical values as 7, ;(1—
a) = inf{z : Enl(:n) > 1 — a}. Then under the small-b asymptotic theory, the

100(1 — )% symmetric confidence interval for p is

(Xn Y%, (1 @), X+ 0 V27 (1 — a)) . (1)
In the context of hypothesis testing, if the alternative hypothesis is Hy : u # o,
then we reject the null hypothesis at the significance level « if p-value is less than
or equal to «, where the p-value is defined as

—— Fb — Fb 1
Pvalml = PW%I(MO) = N

N
> o1 (ValZn = ol < VilK e - Kal), ()

j=1

where we often omit the dependence of pfv\c;l:s on o for notational simplicity.
By duality of confidence interval and hypothesis testing, the confidence interval
is

{M : pfv\glfz(u) in (2) > a}.

The above subsampling based interval is constructed implicitly assuming
the limiting null distribution of p-value is U(0, 1), which is no longer true under
the fixed-b framework, see Lahiri (2001). As a remedy, Shao and Politis (2013)
calibrated the nominal coverage level on the basis of the pivoting limiting nul-
1 distribution of the p-value under the fixed-b asymptotics, and obtained more
accurate confidence intervals by taking into account the influence of b. Specif-
ically, under the fixed-b asymptotics, the limiting null distribution of ﬁgli I; is
the distribution of éb, where

_ 1-b
Gy = (1 b)—l/o 1 (IW ()] < Wb+ 1) W(t) — bW (1)|/V5) dt

and W (t) is a standard Brownian motion. Let Gy(c) denote the 100a% quantile
of the distribution of G. Then the p-value calibrated fixed-b based 100(1 — )%

—— Fb ~
symmetric confidence interval is {p : pvalil in (2) > Gp(a)}, ie.,
(Xn —n V2% (1 - éb(a)) X+ 02, (1 - éb(a))) . (3)

In Shao and Politis (2013), the value Gj(ar) was obtained by Monte Carlo simu-

lation.
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Define

ﬁn(b) =P < maxN ‘\[Z(Xj,j+l—1 - Xn)’ < \/E‘Xn - MO’) ’ (4>

_7217 )

where pg is the true value of u, and its limit

p(b) =P ( sup |(W(b+1) = W(t) — bW (1))|/Vb < !W(l)!> ;

t€[0,1-b]

where W (t) is a standard Brownian motion. Then the coverage probability of

(1) and (3) have a nontrivial upper bound, i.e.,

Punecn) < P(Vil%, -l < max VK- X))

LA

= 1—B,(b) —» 1 - B(b), (5)

= 1-P (\/5|Xn —fio| > max VX jpi1 — Xn)|>

where b = [/n. Throughout the paper, we call 1—f3,(b) the finite sample coverage
bound and 1 — 3(b) the limiting bound. If 1 — f,(b) < 1 — «, then the confidence
set is bound to undercover and the amount of undercoverage gets more severe
when ,,(b) gets farther from zero. For large n and under the small b asymptotics,
this problem does not occur because f3,(b) ~ $(0) = 0. But under the fixed-b
asymptotics or for small sample size, the bound is strictly less than 1 in both
finite sample or limit. This seems the first time such a phenomenon was brought
up for discussion in the literature.

Since 3(b) := P(Gy = 0), the following two cases can occur. (i) If 3(b) > a,
then C:'b(oz) = 0, and the inequality in (5) becomes an equality. In this case,
it is impossible to construct a confidence interval with asymptotically correct
coverage. (ii) If B(b) < «, then a CI of asymptotically valid coverage can be
constructed, but whether the finite sample coverage bound reaches the target
level is unknown for a given sample size. The quantity (,(b) depends on the
joint distribution of time series, the form of the parameter, block size and sample
size, so is in general difficult to calculate. Table 1 below provides numerical
values of (,(b) and B(b) for a few combinations of b’s and n’s under different

levels of dependence strength. See Section 3 for more discussions.
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2.1 Finite dimensional parameter

The issue of coverage bound also exists when we deal with general finite dimen-
sional parameters. Following Politis et al. (1999), we assume that the parameter
of interest is #(P) € R?, where P is the joint probability law that governs the
p-dimensional stationary sequence {X;}icz. Let 0, = én(Xl, -+, X,) be an es-
timator of §# = #(P) based on the observations (X, -+, X,,). Further we define
the subsampling estimator of §(P) by éj,]q»lfl = éz(Xj, -++,Xj4—1) on the ba-
sis of the subsample (Xj,---,X;4-1), 7 = 1,---,N. Let || - || be a norm in
R?. The subsampling-based distribution estimator of ||y/n(6, — 0)]| is denoted
as En,(x) =N-! Z;Vﬂ l(H\ﬂ(éj7j+l,1 —6,)| < x). In the testing context (say
Hy : 0 = 0y versus Hy : 0 # ), we define the subsampling based p-value as

N
—— Fb B . . .
pval,; = N " 1([Va(0n = 0)l| < VIO 5411 — 6u)), (6)

j=1

where we do not distinguish 6 and 6y for notational convenience because they
are the same under the null.

Suppose that §(P) = T'(F), where F is the marginal distribution of X; € R?,
and T is a functional that takes value in R%. Then a natural estimator of T'(F)
is 0, = T(p1.n), where py,, = n~! > iy 0x, is the empirical distribution and 0,
stands for the point mass at . Similarly, 0; ;1,1 = T(pjj11_1), Where pj j1 =
It Zf;lj_l 0x,. Under some regularity conditions on 7' and moment and weak
dependence assumptions on the time series, Theorem 1 in Shao and Politis (2013)
showed that the limiting null distribution of pfv\glﬁ is the distribution of ébd,

where
1-b
Gra =1 [ 1(IZAWal0)] < 2 Waltrr) W) —b1Wa(1) VB

with Wy(+) representing the d-dimensional vector of independent Brownian mo-
tions and ¥ = ¥(P) denoting the long run variance matrix corresponding to
T(F). Specifically,
o
=Y cov(IF(Xo,P),IF(X;,P)), (7)
j=—00

where I F(X; P) stands for the influence function corresponding to 7; see Section
3.1 of Shao and Politis (2013) for the definition.
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In the special case d = 1, éb,l = éb, and is pivotal. However, for d > 2,
éb,d is no longer pivotal; it critically depends on the unknown covariance matrix
>.. One way out is to approximate the limiting null distribution éb,d further by
subsampling, see Shao and Politis (2013). Since this procedure mimics the idea
of double-bootstrap, it was termed double subsampling procedure in the latter
paper.

Let éb,d(a) be the ath-quantile of éb,d that can be consistently approxi-
mated by subsampling. Then the calibrated 100(1 — a)% subsampling-based
confidence region for 6 contains all points 6y for which the test of Hy : 6 = 6y

fails to reject the null hypothesis, namely,
{0eRT: pual,;in (6) > Grala)}, (8)
whereas the traditional subsampling-based confidence region is
{9 eR?: ﬁa/lfj in (6) > oz}.
Define
ur:) = P (Vi1 = 8] < vl —0l). )
Let F(x—) := limyy, F(y). The coverage probability of (8) is
Pe (8)=P({0€R":1—Lyy(/albn—0]7) > Gra(a)})
= P({0eR": Lyy(valldy —0]7) < 1-Gral)})
- p ({9 eRY: Vnl|f, — 0] < (1 - Gya(a))-th quantile of jiml})

IN

P (Valla =01 < s [Vije1-1 =0l ) = 1= Baftsd: D). (10)

Let B(b; d; X) be the limit of 3,,(b; d; X) as n — oo. In the special case d = 1,
B(b;d; X)) = (b) that does not depend on the nuisance parameter ¥. For d > 2,
let

Bb;d;x) = P( up [SY2 (W (btr) = Wa(r)—bWa(1))]|/ Vb < ||21/2Wd<1>||>.

If B(b;d; %) > a, then P(éb,d =0) > a, and é(,’d(a) = 0. Then the inequality
in (10) becomes equality. Again we would run into the issue of undercoverage if
Bn(b;d; X)) > a.
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2.2 Infinite dimensional parameter

In the time series setting, the subsampling methods have been used to provide
an approximation of the nonpivotal limiting distribution when the parameter
of interest is of infinite dimension, such as marginal distribution function and
spectral distribution function of a stationary time series; see Politis et al. (1999b).
In what follows, we use |F' — G||« to denote sup,cr |F(z) — G(x)| and focus on
the confidence band construction for marginal distribution function.

Consider a stationary sequence {X;}iez and let m(s) = P(Xo < s) be its
marginal cumulative distribution function (cdf). Given the observations {X;}} ;,
the empirical distribution function is defined as m,(s) = n™1 Y7, 1(X; < s).
To construct a confidence band for m(-), it is known from Berkes et al. (2009)
that \/n(my(s) —m(s)) = K(s,1), where {K(s,t),(s,r) € [-00,00] x [0,1]} is a

two-parameter mean zero Gaussian process with
cov (K(s,r),K(s',r')) = (r Ar")[(s,8), (11)

and I'(s,s’) = > o2 cov(1(Xp <s),1(X, <&')). Then by the continuous
mapping theorem, /n||my, —m||« —p sup,er |K (s, 1)|, whose distribution is not
pivotal since the covariance kernel I'(+,-) depends on unknown nuisance parame-
ters. To describe the fixed-b subsampling method, let VI (mg y;_1(s) — mn(s)),
t=1,---,N =n—1+1, be the subsampling counterpart of /n (my(s) —m(s)),
where my 1 _1(s) =171 ZZ'Z_I 1(X}, < s). Define the p-value

N

—— Fb

paly, = N3 1 (\/Zumt,t“_l — e = Valma — mHOO) . (12)
t=1

Let b =[/n. Under the fixed-b asymptotics, the limiting null distribution of the
p-value is the distribution of G, where
1 1-b

Gy om 1(sup |K (5,7 +b) — K(s,r) — bK(s,1)|/Vb
1-b 0 seR

> sup | K (s, 1)\)d7“.
seR

Note that the distribution of Gy is not pivotal for a given b, because it depend-

s upon the Gaussian process K (s,t), whose covariance structure is tied to the
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unknown dependence structure of X;. So subsampling at the first stage is insuf-
ficient under the fixed-b asymptotic framework.

To make the inference feasible, a double-sampling procedure was employed
in Shao and Politis (2013) to approximate the sampling distribution of the p-
value or its limiting null distribution; see also Section 3.1. Denote Gp(«) the a-th
quantile of G, and éb(a) a consistent estimator by subsampling in the second
stage. For a given a € (0,1), the 100(1 — )% calibrated subsampling-based

confidence band for m(-) is
— Fb ~
{m : m is a distribution function and pval,, ; in (12) > Qb(a)} , (13)

Define

B0, 1€) = P (e, Villmg s =l < Vil <) (4
Following the same argument in Section 2.1, The coverage bound of (13) can be
derived as

P (o Vilmsers = malle 2 Vil <) = 1= 20 K),

.7:17’ )

with the limit of 3, (b, K) being

B(b,K) :=P < sup  sup |[K(s,r +b) — K(s,7) —bK(s,1)|/Vb < sup\K(s,l)\) .
re(0,1-b) s€eR s€ER

2.3 Finite sample coverage bound for fixed-b subsampling

To investigate the severity of the coverage bound issue, we present the finite
sample coverage bounds of the subsampling based confidence set for time series
data through numerical simulations. Suppose X; is generated from a vector
autoregression (VAR) model X; = plyX;—1 + ¢ with ¢ € Rd, where I; is a
d x d identity matrix. Assuming that ¢; ~ i.i.d. N(0,I;), namely, there is no
cross-sectional correlation for the time series, we present the values of coverage
bounds 5, (b;d; X4) in Table 1 with different choices of b and sample size n for
d = 1,2,3. The sample size n is 50,100,500, 3000,00. We approximate the
asymptotic coverage bound 3(b; d; ¥4) (i.e. for n = c0) by simulating independent
Wiener processes for 5,000 times, where each Wiener process is approximated by

a normalized partial sum of 50,000 i.i.d. standard normal random variables.
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Insert Table 1 here!

Insert Table 2 here!

Tables 1 and 2 summarize the coverage bound for the mean and median re-
spectively by fixed-b subsampling. We can see that the coverage bound decreases
as the positive dependence strengthens whereas for negative p the coverage bound
tends to inflate as compared to the i.i.d. case. In general there is a decreasing
trend in the coverage bound as the dimension d increases. Also the bound much
depends upon b and is moderately sensitive to b especially in the case of high
positive correlation. Although no universal pattern can be found to dictate the
selection of b based on the coverage bound, the simulation result does suggest
that b in the range of (0,0.2) tends to deliver higher coverage probability.

Tables 1 and 2 reveal that even after p-value calibration, an asymptotical-
ly valid confidence set can have potential undercoverage issue in finite sample.
In that situation, if a high confidence level is desired, it is recommended that
the bound be computed to see if such a high confidence level is attainable. As
commented in Shao and Politis (2013), “undercoverage occurs (for fixed-b sub-
sampling methods) and it becomes more severe as the dependence positively
strengthens”, see Figures 1-3 therein. This phenomenon can be partially ex-
plained and is echoed by the coverage bound presented in Table 1.

Insert Figure 1 here!

We further investigate the impact of the dimensionality d of the parameter
on the limiting coverage bound. Figure 1 presents the coverage bound for vector
mean at d = 2,3,5,10,15,20,50 and a range of b’s in (0,0.5), where the data
are generated from i.i.d. multivariate standard normal distribution with sample
size n = 5,000. It can be seen that, as the dimension d increases, even for i.i.d.
Gaussian data, the finite sample coverage bound deviates away from 1. Notice
that the upper bound can be close to zero when both b and d are large. And we
would expect a farther deviation from 1 on the coverage bound if the data exhibit
positive dependence, or if the sample size is small, as seen from Tables 1 and 2.
These numerical findings call for special caution from the practitioners when
dealing with confidence set in one of the following situations, (1) the nominal
level is close to 1, say 99%; (2) the dimension of the parameter d is large; (3) the

(positive) dependence is strong; (4) b is large; (5) sample size n is small.



GENERALIZED SUBSAMPLING 11

Insert Table 3 here!

For the infinite dimensional case, we examine the confidence band for the
marginal distribution function of an AR(1) model: X; = pX;_1 + ¢, where
e ~i.i.d. N(0,1 — p?) so the theoretical marginal distribution of X; is standard
normal. Table 3 shows the coverage bound for the confidence band at different
levels of dependence. Not surprisingly, the coverage bound is significantly smaller
than 1 if sample size is small (n = 50) and the dependence is strong (p = 0.8);
the choice of b plays an important role on the coverage bound with larger b
corresponding to lower bound in general, but we notice that for some very small
b’s, the bound can be far below 1; namely, the bound is sensitive to the choice of
b. Interestingly, the negative correlation (i.e., p = —0.5), which helps in bringing
up the coverage bound in the vector parameter case, corresponds to a different
pattern for infinite dimensional parameter. Specifically, except for d = 0.02,
the coverage bound for p = —0.5 is either comparable to, or smaller than that
of p = 0, indicating that a potential undercoverage can be caused by not only

positive, but also negative value of p.

3 Generalized subsampling

The basic idea of the subsampling is to approximate the sampling distribution
of a statistic on the basis of the values of the statistic computed over smaller
subsets of the data. In the time series setting, for given observations from a time
series {X;}7_,, the statistic is recomputed over the n—[+1 subsets of size [ of the
form {X;, X;11, -, X;4i—1}. The traditional way of performing subsampling in
the time series context [Politis and Romano (1994)] has two important features:
(i) To retain the time series dependence, blocks of the consecutive observations
are used and blocks are of the same length; (ii) the block size typically satisfies
[/n+1/l = o0(1) as n — oo to show the consistency of the subsampling based ap-
proximation in both distribution approximation and variance estimation. Both
requirements seem natural as the goal is to achieve consistent estimation of sam-
pling distribution or variance of the normalized statistic.

We propose the new GS method to relax the above requirements for the use

of subsampling method. Our method still uses values of the statistic computed
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over blocks of the data (subsamples), but the blocks can be of different size and a
scaling parameter g is introduced to alleviate the coverage bound problem. The
applicability of the GS is limited to approximately linear statistic with asymptot-
ic normal limiting distribution, so its scope of applicability is narrower than that
for subsampling. On the other hand, as we shall demonstrate later, its coverage
bound can be fairly close to 1 and it can outperform fixed-b subsampling in terms
of coverage accuracy especially when the coverage bound for fixed-b subsampling
is substantially below 1. It is closely related to the SN approach [Shao (2010)],
where the use of inconsistent normalizer leads to a nonstandard limiting distri-
bution of the studentized statistic, but it can be used in the inference of infinite
dimensional parameters, for which the SN approach seems not directly applica-
ble. It is also intimately related to fixed-b subsampling by Shao and Politis (2013)
where the subsampling is shown to be inconsistent under a fixed-b asymptotic
framework and a p-value based calibration is proposed to yield asymptotically
valid confidence sets. We follow the same p-value based calibration approach and
our development for the GS method is parallel to that in Shao and Politis (2013).

3.1 GS Methodology details

Denote ; = él,t and m; = m1 4 to be the estimate based on subsample (X1, -, X}).

For a vector parameter § € R%, we shall approximate the sampling distribution

of /1|6 — 6| by

12 (9n™ 2110 = 6] < =)

where g is a scaling parameter introduced to alleviate the coverage bound prob-
lem for ¢ = 1. We shall leave the choice of g and its impact on finite sample
performance to later sections. Here the use of recursive estimators {f;}"_; is mo-
tivated by the good finite sample performance of the self-normalized approach
in Shao (2010); also see Nordman et al. (2013) for a related formulation in the
blockwise empirical likelihood context. Similar to the subsampling under the
fixed-b framework, the distribution estimator M,, 4(x) is inconsistent, but we can
use p-value calibration to construct a confidence set with asymptotically correct

coverage. In the testing context (say Hy : 6 = 0y versus Hy : 6 # 6), we define
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GS-based p-value as

n

poalg =101 (gln V240 — 61 = VARG, —0))  (15)

t=1

where we do not distinguish 6 and 6y for notational convenience because they

are the same under the null. Its limiting null distribution is

1
Hya = [ 1 (9I2(P) Wale) = rWa) | = [S(P) WD) dr. - (16)

where 3(P) is defined in (7).

In the special case of d = 1, such as inference for the mean of a univariate
time series, Hy 1 := H, becomes pivotal since ¥(P) in (16) gets canceled, and
the quantiles of Hy can be obtained by monte carlo simulations. Let H,(a) be
the a-th quantile of the distribution H,. Then the corresponding 100(1 — )%

confidence interval for p is
— GS
{,u tpual, o > Hg(a)}

- {u n 12 (gn2/210(%, - n>\zw<xn—u>|)>ﬂg<a>}

= (% n*l/%mg (1= Hy(@)), Ko+ 0" ey (1= Hy(e))  (17)

where ¢, ¢(1 — a) = inf{z : M, 4(x) > 1 — a} for a € [0,1).

Define 85%(g) := P(max;—1 .. ,n~Y2g|t(X; — X,)| < /n|Xn — p|) and
B3 (g) = P(sup,co1y g|W(r) — rW(1)| < [W(1)]). The coverage bound of
the interval in (17) is

Pre () = P (V1 %a ] < cugll =)
P (VA% =l < o gn V2K - X)) = 1= 595(0),

IN

For d > 1, notice Hy4 depends on the unknown long-run variance matrix
Y(P) and is not pivotal, we opt to bypass this difficulty by subsampling approx-
imation at a second stage, see Section 3.2 in Shao and Politis (2013) for more
discussions. For the purpose of the completeness, we present the details here.

Denote by n/ the subsampling width at the second stage. For each subsample



14 YINXIAO HUANG AND XTAOFENG SHAO

—GS
{Xj, -+, Xj4w—1}, we define the subsampling counterpart of pval, ; as

1/2 /4 A
12 (ol =246 5101~ Oy ) | 2 (0 g1 — B0

forj =1,--- ,n—n’+1. Denote the empirical distribution function of {qg) p ?;1",“
by Qung(z) = (n—n'+1)71 > s 1"“ 1(q,; (J) < x), which can be used to ap-

—GS
proximate the sampling distribution or the hmlting null distribution of pval,,

Let ¢ppy g(1 — ) =inf{x : Qp v g(z) > 1 —a}. Then the calibrated 100(1 — )%

subsampling-based confidence region for 6 is
4 —CS .
{6 € R: pval,; in (15) > cn,n/’g(a)}, (18)
which is equivalent to
{9 eRY: Vb, — 0| < (1— Cn,nt g(r))-th quantile of Mn,g} . (19)

Define 855 (g; d; ¥) := P(maxi_1.. n n~ gt — 0,)|| < /n]|fn—0]) and
B9 (g;d: 3) = P(supye oy 9llS/2(Wa(r) — rWa(D)]] < [SY2Wg(1)]). Similax-
ly we can show that the coverage bound of (18) is 1 — 39%(g; d; ¥). The value of
1-— 57?5 (g9;d; 1;) is tabulated in Tables 5 and 6, from which we can see an im-
provement of the finite as well as asymptotic bound over the fixed-b subsampling
results in Tables 1 and 2; see more comments in Section 3.2.

In estimating the marginal cdf of a stationary process, let g, (¢, s) = n~Y2t(my(s)—
mu(s)),t =1,--- ,nbethe GS counterpart of v/n(my,(s)—m(s)), we approximate
the distribution of ||/n(m, —m)||s by

=n 12 (gn V2)1t(my — ma)||oe < x) .
And the p-value
poalsy = 371 (gn Pty — mloe 2 Vil - mll)  (20)
=
has a limiting null distribution of

1
Hy = / 1 <gsup |K(s,r) —rK(s,1)| > sup |K(s,1)|> dr,
0 seR seR
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where the Gaussian process K (s,r) has a covariance structure determined by
the unknown dependence structure of X;, see the definition in (11). Therefore a
second-stage subsampling needs to be employed. Specifically, let n’ be the sub-
sampling window size at the second stage. For each subsample { X3, -+, X¢1 1},
the subsampling counterpart of Mli i is defined as

n/

hf’f’),g = (n)"! Z 1(9(7/)71/23‘Hmt,t-l—j—l_mt,t+n’—1Hoo 2 (n/)l/zHmt,t+n’—1_mnH<>0)
j=1

— G
fort =1,--- ,n—n/+1. Then we approximate the sampling distribution of pval,, 4

or its limiting null distribution H, by the empirical distribution of {hff,)g :‘:_1”,“

which is denoted as
n—n'+1
Jawg(@) = —n'+ 170 37 1(nl) <)
t=1
Denote Hy(cv) the a-th quantile of H, and 7:[\9(04) the subsampling-based esti-
mator, i.e., ’I—Atg(a) = inf{x : J, n 4(x) > a}. Then the confidence band for m(-)
is
. . . — G5 . N
{m : m is a distribution function and pval,, , in (20) > ’Hg(a)} . (21)

The following proposition states the consistency of subsampling in the second
stage, which implies that the coverage for the calibrated confidence band is
asymptotically correct. Let
Vy(r,e) =P {‘gsup |K(s,7) —rK(s,1)| —sup |K (s, 1)|‘ = e}
seR seR

PrOPOSITION 1. Assume that 1/n’ +n'/n = o(1), and equation (4) in Shao and
Politis (2013) holds.

(a) The limiting null distribution of the p-value ];J(;lij is the distribution of
My provided that Vy(r,0) =0 for every r € [0, 1].

(b) Suppose that the process Xy is a-mixing, Hg is a continuous random
variable and Vy(r,e) = 0 for every r € [0,1] and € > 0. Then we have

iggun,nﬂg(f) — P(Hy < 2)| = 0p(1).

In other words, the asymptotic coverage probability of the confidence band in

expression (21) is 1 — a.
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The above proposition is analogous to Theorem 3 in Shao and Politis (2013)
in terms of technical conditions and results. Actually, the arguments present-
ed in the proof of Theorems 3 in Shao and Politis (2013) can be extended in a
straightforward fashion to prove the result stated above. Since there is no addi-
tional novelty, we decide not to present the details. It is worth pointing out that
the conditions on H, and Vy(r,€) are not easy to verify and their verification
may be related to the regularity of the distribution of the maximum of Gaussian
processes; see Azais and Wschebor (2001) and references therein. Furthermore,
the assumption that 1/n’ +n’/n = o(1) implies that the consistency of second-
stage subsampling holds under the small-b asymptotics, where b = n//n. If we
view b = n//n as fixed, then the asymptotic coverage of the calibrated confidence
set is still different from the nominal level. One can perform further calibration
by subsampling, but the selection of the subsampling window size at each stage
usually requires expensive computation and the finite sample improvement in
coverage accuracy is not guaranteed by doing subsampling iteratively. Finally
we note that our GS is a form of prepivoting [Beren (1987, 1988)], but the lim-
iting null distribution of the p-value is not U(0, 1) in our setting, and it depends
on g and possibly some aspects of the data generating process (for vector and

infinitely dimensional parameters).

3.2 Coverage bound for GS

In this Section, we adopt the set-up in Section 2.3 and investigate the finite
sample coverage bound of GS, i.e., 1 — BF9(
Insert Table 5 here!
Insert Table 6 here!

Tables 5 and 6 present the coverage bound for the vector mean and median

g) and its limit.

respectively by GS. Without the scaling parameter g (i.e., g = 1), the coverage
bound is at most 60%, indicating the ‘crude’ confidence interval is not meaningful
at usual confidence level (say, 95%). There is a increasing trend in the coverage
bound as g increases, and the bound is close to 1 on the range of g € [3,00). We
refrain from using too big value of g since it leads to a wider CI while preserving
similar coverage probability, see Section 4 for more details. Simulation study

shows that g € [3,5] is a sensible choice for most data generating processes we
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examined. Although strong positive dependence makes the coverage bound lower,
it seems GS can quickly adapts to dependence, and bring the coverage bound
towards 1 by increasing g.

Insert Figure 2 here!

Figure 2 has the same format as Figure 1, and it depicts how the dimen-
sionality affects the coverage bound of GS. It is shown that the coverage bound
quickly stabilizes and gets up to 95% for g € [3, 5] regardless of d, although the
crude CI bound (g = 1) reaches zero for large d. Compared to Figure 1, we can
see that although high coverage bound can be achieved by shrinking the fraction
b in high dimension case, it leads to instability as the subsample also shrinks,
which could lead to undercoverage on the positively moderate/strong dependence
case because a large block size is typically needed to accommodate the positive
dependence as the dimension increases; moreover, empirical coverage probabil-
ity at small b is typically not optimal for positively dependent time series, see
Figures 3 and 4 in Section 4 for more details.

Insert Table 4 here!

Table 4 summarizes the coverage bound for the marginal cdf by GS. We can
see that bound for GS at small samples (n = 50,100) is quite close to 1 as long
as g > 3.5. For large samples, the coverage bound is quite robust to the choice
of g (other than g = 1 case), and it is comparable to the best coverage bound for
the fixed-b method. It appears interesting that negative p brings up the coverage
bound of GS for the marginal cdf for g > 2.5.

4 Numerical studies

In the previous sections we have illustrated the improvement on the least upper
bound on coverage probability by GS over the fixed-b subsampling. In this section
we compare the empirical coverage probability of the confidence set by GS, fixed-
b, and SN methods, and pay particular attention to the case where the finite
sample bound for the fixed-b subsampling is substantially below 1.

We simulate gaussian (vector) AR(1) model and construct the confidence set
for the finite dimensional parameter (univariate mean, vector mean) or confidence

band for the marginal cdf. In the univariate mean case, the limiting null distri-
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bution of the p-value is pivotal for both fixed-b and GS, and the quantile H g()
can be simulated and Gy() has been tabulated in Shao and Politis (2013). In
vector and infinite dimensional parameter case, we employ a second stage sub-
sampling method to approximate the limiting null distribution of the p-value
for both fixed-b method and GS, as described in Section 3.1. More specifical-
ly, following the proposal by Bickel and Sakov (2008), a data driven bandwidth

selection procedure in the second stage subsampling is carried out as follows:

Step 1 For a predetermined interval [K7, K] and v € (0, 1), we consider a sequence
of nj’s of the form nj = |y 71Ky|, forj = 1,2, -+, |log(Ka/K1)/log(1/7)].

Step 2 For each ny, find Jp,,, where Jp,; is the subsampling-based distribution

estimator for the sampling distribution of the p-value.

Step 3 Set jo = argminj:L,_,ilog(KQ/Kl)/{,log(w)}J SUP;cr ‘Jn,nj (33) - Jn,nj+1 (CL‘)|
Then the optimal block size is 779 Ky. If the difference is minimized for a

few values of j, then pick the largest among them.

In the simulation, we set (K1, K2,v) = (5,0.3n,0.75), which corresponds to a
sequence of block lengths of (30,22,16,12,9,7,5) when n = 100.

Insert Figure 3 here!

Figure 3 compares the empirical coverage probability for the CI of the u-
nivariate mean constructed by GS, fixed-b and SN methods. Following Shao
and Politis (2013), the range of b is [0.01,0.16] since the formula given therein
for the critical value éb(a) may become negative for b > 0.16 and a = 0.05
and is not usable. The range of g is chosen to be [2.5, 10]. It shows that, for
p = 0,0.5,0.8, GS delivers more accurate coverage probability than the fixed-b
subsampling, and is quite comparable to SN for a range of ¢g’s. As p > 0 becomes
larger, fixed-b subsampling encounters more severe undercoverage issue, whereas
GS manages to bring the coverage probability toward the nominal level. The
fixed-b subsampling relies heavily on the choice of b, while GS performs quite
stably for g € [3,10], and is comparable to SN method in terms of both coverage
accuracy and interval length. When p = —0.5, all three methods exhibit over-
coverage phenomena, which is consistent with the high coverage bound presented
in Tables 1 and 5. The coverage probability delivered by GS confidence interval

is closer to the nominal level and as a trade off, the length of CI is moderately
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longer compared to fixed-b approach. The pattern is the same for median and
quantiles, and is not presented in the paper.

Insert Figure 4 here!

Figure 4 demonstrates the empirical coverage probability of the confidence
region for a 3-dimensional vector mean of a VAR(1) model. It can be seen that
when the dependence is moderate (e.g., p = 0.5), the coverage probability of the
fixed-b method is not too far away from the nominal level, and in this case GS
can barely improve the coverage. As dependence becomes positively stronger,
the coverage probability of the fixed-b subsampling deviates away from 95% level
by a larger amount, and GS brings up the coverage probability much closer
to the nominal level. When p < 0, GS is still dominantly better than fixed-b
subsampling except for b = 0.01. We also compare the volume of the confidence
region. Notice that the confidence region constructed by fixed-b subsampling
and GS are d-dimensional balls with radius determined by the p-value calibrated
critical value, while SN method results in a confidence ellipsoid. For an ellipsoid
with semi-principal axes of length a, b, ¢, define the equivalent radius to be R =
(abe)'/3 such that it has the same volume as a 3D ball with radius R. Again
we see a wider confidence region radius by GS as a reasonable trade-off for more
accurate coverage probability. Overall, the performance of GS is stable for a
wide range of g, and its performance is comparable to the SN method in terms of
coverage and confidence region radius when p = 0.5, and can vastly outperform
SN method in coverage when p = 0.8 or 0.95, but when p = —0.5, SN does better
in coverage.

Insert Figure 5 here!

Figure 5 shows the empirical coverage probability of the confidence band for
the marginal cdf of AR(1) model by GS and the fixed-b method. SN method is not
applicable for infinite dimensional parameter and is not compared here. It seems
that GS is slightly worse than fixed-b subsampling when dependence is weak
or moderate, but GS’s advantage shows up as the dependence strengthens, for
either positive or negative p, and the coverage probability for GS is satisfactorily
close to the nominal level and quite stable across a wide range. As expected, the
GS-based confidence set is typically wider, as a price we pay for more accurate

coverage.
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Overall, GS’s performance is quite competitive, and it displays distinctive ad-
vantage over the fixed-b subsampling when the dependence is (positively) strong,

and it is comparable to SN for finite dimensional parameters.

5 Conclusion

In this paper, we study the coverage upper bound on the coverage probabilities
of fixed-b subsampling based confidence sets. We derive the formulae for both
finite sample bound and the limiting bound, and tabulate them for several com-
binations of (n,b) and time series models with strong/weak dependence. This
seems to be the first time that the coverage bound problem is recognized for
subsampling methods. Our numerical results show that the bound can be far
from 1 and the finite sample coverage can be far below the nominal level when
(1) the dimension of the parameters is large; (2) the dependence of the time se-
ries is positively strong; (3) b is large. This finding suggests that caution should
be taken when applying subsampling methods to time series inference with high
dimensional parameter or strong dependence.

The proposed GS methodology naturally combines the recursive subsample
idea in the self-normalization of Shao (2010) and p-value calibration idea in Shao
and Politis (2013), and introduces a scaling parameter g to alleviate the bound
problem when g = 1. The presented numerical comparison with SN and fixed-b
subsampling shows that the GS can deliver comparable or sometimes favorable
coverage accuracy for a range of ¢g’s. It is certainly interesting to ask what is the
optimal g and are there any data-driven algorithm for its choice. We leave this
for future research. Furthermore, it is worth mentioning a few variants of GS
method. For example, we can use different weights for the values computed over
blocks of possibly different size, which generalizes the scaling idea. Also, we may
use all the possible blocks of consecutive observations in the calculation of values
of the subsample statistic. In addition, we expect the coverage bound problem
also occurs for block bootstrap based confidence set, in view of the development
on fixed-b block bootstrap in Shao and Politis (2013). All these topics are worthy

of further investigation.
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Figure 1: Bounds on the coverage probabilities for fixed-b subsampling for the mean

at nominal level 95% (dashed line). The data are generated from multivariate standard

normal distribution with n = 5,000 and the number of Monte Carlo replications is 5,000.
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Figure 2: Bounds on the coverage probabilities of GS for the mean at nominal level 95%

(dashed line). The data are generated from multivariate standard normal distribution

with n
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Figure 3: Empirical coverage probabilities and CI width for the mean by GS (‘4’), fixed-
b (‘o’) and SN (solid line) at nominal level 95% (dashed line). The data are generated
from Gaussian AR(1) models with n = 50, the number of Monte Carlo replications is
5,000.
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Figure 4: Empirical coverage probabilities and (equivalent) radius of confidence region
for 3-dimensional vector mean by GS (‘4’), fixed-b (‘o’) and SN (solid line) at nominal
level 95% (dashed line). The data are generated from vector Gaussian AR(1) models
with n = 100, the number of Monte Carlo replications is 5,000.
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Figure 5: Coverage probabilities and widths of confidence bands for the marginal cdf by
fixed-b and generalized subsampling. The data are generated from AR(1) models with
n = 100 and the number of Monte Carlo replications is 5,000.
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