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Summary. The upper bounds on the coverage probabilities of the confidence regions based
on blockwise empirical likelihood and non-standard expansive empirical likelihood methods
for time series data are investigated via studying the probability of violating the convex hull
constraint.The large sample bounds are derived on the basis of the pivotal limit of the blockwise
empirical log-likelihood ratio obtained under fixed b asymptotics, which has recently been shown
to provide a more accurate approximation to the finite sample distribution than the conventional
χ2-approximation. Our theoretical and numerical findings suggest that both the finite sample
and the large sample upper bounds for coverage probabilities are strictly less than 1 and the
blockwise empirical likelihood confidence region can exhibit serious undercoverage when the
dimension of moment conditions is moderate or large, the time series dependence is positively
strong or the block size is large relative to the sample size. A similar finite sample coverage
problem occurs for non-standard expansive empirical likelihood.To alleviate the coverage bound
problem, we propose to penalize both empirical likelihood methods by relaxing the convex hull
constraint. Numerical simulations and data illustrations demonstrate the effectiveness of our
proposed remedies in terms of delivering confidence sets with more accurate coverage. Some
technical details and additional simulation results are included in on-line supplemental material.

Keywords: Convex hull constraint; Coverage probability; Fixed b asymptotics; Heteroscedasti-
city–auto-correlation robustness; Moment condition

1. Introduction

Empirical likelihood (EL) (Owen, 1988, 1990) is a non-parametric methodology for deriving
estimates and confidence sets for unknown parameters, which shares some of the desirable prop-
erties of parametric likelihood (see DiCiccio et al. (1991) and Chen and Cui (2006)). Because of
its effectiveness and flexibility, it has advanced in many branches in statistics, such as regression
models, time series and censored data; see Owen (2001) for a nice treatment of the subject.

The EL-based confidence sets inherit some good features from their parametric likelihood
counterparts, but there is a finite sample upper bound for the coverage of the EL ratio confidence
region (see Owen (2001), page 209, and Tsao (2004)) due to the convex hull constraint, which
may limit its applicability and make it less appealing. For example, the EL confidence region for
the mean of a random sample is nested within the convex hull of the data and its coverage level is
necessarily smaller than that of the convex hull itself. The upper bound can be much smaller than
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nominal coverage level 1 −α in the small sample and multi-dimensional situations. Following
the terminology in Tsao and Wu (2013), the finite sample coverage bound problem is due to the
mismatch between the domain of the EL and the parameter space, so it is also called a mismatch
problem. There have been a few recent proposals to alleviate or resolve the mismatch problem;
see, for example adjusted EL (Chen et al., 2008; Emerson and Owen, 2009; Liu and Chen, 2010;
Chen and Huang, 2012), penalized EL (Bartolucci, 2007; Lahiri and Mukhopadhyay, 2012) and
the domain expansion approach (Tsao and Wu, 2013, 2014). However, all these works deal with
independent estimation equations, and their direct applicability to the important time series
case is not clear.

In this paper, our interest concerns the coverage bound problems for EL methods tailored
to stationary and weakly dependent time series. Although many variants have been proposed
to extend EL to the time series setting (see Nordman and Lahiri (2014) for a recent review), it
seems that no investigation has been conducted regarding the coverage bound problem, which
is expected to exist but its effect in the time series setting is unknown. We focus on two EL
methods: blockwise EL (BEL), proposed by Kitamura (1997), and non-standard expansive BEL
(EBEL), recently proposed by Nordman et al. (2013). BEL applies EL to the blockwise-averaged
moment conditions to accommodate the dependence in time series non-parametrically and it
has some useful properties of EL, such as Wilks’s theorem. In Kitamura (1997), the limiting
χ2-distribution for the empirical log-likelihood ratio (up to a multiplicative constant) was shown
under traditional small b asymptotics, in which b, the fraction of block size relative to sample
size, goes to 0 as the sample size n→∞. Adopting fixed b asymptotics (Kiefer and Vogelsang,
2005), in which b ∈ .0, 1/ is held fixed as n →∞, Zhang and Shao (2014) derived the pivotal
limit of the empirical log-likelihood ratio at the true parameter value and used that as the basis
for confidence region construction. The pivotal limit depends on b and the simulations show
that the fixed-b-based confidence set has more accurate coverage than the small b counterpart,
indicating that the approximation by the fixed b pivotal limit is more accurate than the small b

counterpart (i.e. χ2).
Since this paper is related to our previous work in Zhang and Shao (2014), it pays to highlight

the difference. The focus of this paper is rather different from that of Zhang and Shao (2014),
and we investigate the coverage upper bound problem of the block-based EL methods for time
series. The technique that we use to derive the large sample bound, which depends on b, is
completely different from that involved in the derivation of the fixed b limit of the EL ratio
statistic in Zhang and Shao (2014). The main contribution of the current paper is

(a) to identify the coverage bound problem for block-based EL methods in time series settings
and to study the factors (e.g. sample size, block size, joint distribution of time series and
the form of moment conditions) that determine its magnitude (the large sample bound
that we derive under fixed b asymptotics provides an approximation to its finite sample
counterpart and the approximation is accurate for large n and

(b) to propose penalized BEL and EBEL methods as remedies of the coverage bound problem,
and to show their effectiveness through theory and simulations.

Let 1 −βn denote the probability that the convex hull of the moment conditions at the true
parameter value contains the origin as an interior point and it is a natural upper bound on
the coverage probability of the BEL ratio confidence region (with any finite critical values)
regardless of its confidence level. In Tsao (2004), a finite sample upper bound was derived
for independent estimation equations and the EL method. Tsao’s technique is tailored to the
independent case and seems not applicable to time series data. The calculation of the finite
sample bound in the dependent and BEL case is challenging since it depends on the sample
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size, block size, dimension and form of moment conditions as well as the joint distribution of
time series. To shed some light on the coverage bound 1−βn, we approximate 1−βn by its large
sample counterpart 1 −β, where β is shown to be the probability that the pivotal limit (under
fixed b asymptotics) equals ∞. We further provide an analytical formula for β as a function of
b in the case k =1, and we derive an upper bound for 1−β in the case k>1, where k denotes the
dimension of moment conditions. Interestingly, we discover that β =β.b/> 0 for any b> 0 and
β can be close to 1 for fixed b ∈ .0, 1/ if the dimension of moment conditions k is moderately
large. Compared with Tsao (2004) and Kitamura (1997), the large sample bound problem (i.e.
β > 0) is a unique feature that is associated with BEL under fixed b asymptotics and it does not
occur under the traditional small b asymptotic approximation or for independent estimation
equations. It is also worth pointing out that the large sample bound is always 1 under small b

asymptotics regardless of the choice of block size, and it provides an inaccurate approximation
of the finite sample bound and could lead to an overoptimistic and thus misleading inference. In
corroboration with our theoretical results, our simulations show that the finite sample coverage
bound can deviate substantially from 1 when

(a) the block size is large relative to the sample size (i.e. b is large),
(b) the dimension of moment conditions is moderate or high and
(c) the time series dependence is positively strong.

In any one of these cases, constructing a confidence set of a conventional nominal level (say,
95% or 99%) is likely to lead to undercoverage. Thus our finding represents a cautionary note
on the recent (theoretical) extension of BEL in the high dimensional setting (see Chang et al.
(2015)), where the dimension of moment conditions can also grow to ∞ as the sample size n

grows to ∞.
EBEL uses a sequence of nested blocks with growing sizes so no choice of block size is involved,

and the empirical log-likelihood ratio at the true parameter value converges to a pivotal but non-
standard limit. Unlike BEL, there is no large sample bound problem for EBEL as the probability
that the pivotal limit of EBEL equals ∞ is 0. However, the finite sample bound can be far below
the nominal level as shown in our simulations and results in a severe undercoverage. To alleviate
the finite sample undercoverage problem that is caused by the convex hull constraint, we propose
to penalize BEL and EBEL by dropping the convex hull constraint. Penalized EL (PEL) was
first introduced by Bartolucci (2007) for the inference of the mean of independent and identically
distributed (IID) data, and our generalization to the time series context requires a non-trivial
modification. In particular, we introduce a new normalization matrix that takes the dependence
into account and we derive the limit of log-EL ratio at the true value under fixed b asymptotics.
Our numerical results in the on-line supplementary material suggest that fixed b asymptotics not
only provide better approximation for the original BEL (see Zhang and Shao (2014)) but also
tends to provide a better finite sample approximation for its penalized counterpart. Our new
PEL ratio test statistic can be viewed as an intermediate between the empirical log-likelihood
ratio test statistic and the self-normalized score test statistic (see expression (21) in Section 4.1)
with the tuning parameter in the penalization term determining the amount of relaxation of the
convex hull constraint. Our numerical results show the effectiveness of the two penalization-
based EL methods in terms of delivering more accurate confidence sets for a range of tuning
parameters. It is worth noting that the undercoverage problem that is associated with BEL
methods may be alleviated by applying a block bootstrap approximation, as pointed out by a
referee. However, the block bootstrap does not completely solve the coverage bound problem.
In particular, when the finite sample bound is below the nominal level, the undercoverage is
bound to occur for any finite critical values, including bootstrap based. By contrast, the finite
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sample bounds for our penalized BEL and EBEL are always 1, so they are free of the coverage
bound problem; see remark 2 in Section 3.1 for more discussions.

A word on notation: let D[0, 1] be the space of functions on [0, 1] which are right continuous
and have left limits, endowed with the Skorokhod topology (Billingsley, 1999). Weak conver-
gence in D[0, 1] or more generally in the Rq-valued function space Dq[0, 1] is denoted by ‘⇒’,
where q ∈ N. Convergence in probability and convergence in distribution are denoted by ‘→p’
and ‘→d’ respectively. Let �a� be the integer part of a ∈ R. The notation N.v, Σ/ is used to
denote the multivariate normal distribution with mean v and covariance Σ. Technical details
and some simulation results are gathered in the on-line supplementary material. The data sets
and R code that are used for this paper can be found at the second author’s personal web page
https://publish.illinois.edu/xshao/publications-full-list/.

2. Blockwise empirical likelihood and expansive blockwise empirical likelihood

Suppose that we are interested in the inference of a p-dimensional parameter vector θ, which
is identified by a set of moment conditions. Denote by θ0 the true parameter of θ which is an
interior point of a compact parameter space Θ ⊆ Rp. Let {zt}n

t=1 be n observations from an
Rl-valued stationary time series and assume that the moment conditions

E[f.zt , θ0/]=0, t =1, 2, : : : , n, .1/

hold, where f.zt , θ/ : Rl ×Θ→Rk is a map which is differentiable with respect to θ and

rank{E[@f.zt , θ0/=@θ′]}=p

with k �p. To deal with time series data, we consider the fully overlapping smoothed moment
condition (Kitamura, 1997) which is given by

ftn.θ/= 1
m

t+m−1∑
j=t

f.zj, θ/

with t = 1, 2, : : : , n − m + 1 and m =�nb� for b ∈ .0, 1/. The overlapping data blocking scheme
aims to preserve the underlying dependence between neighbouring time observations. Consider
the profile empirical log-likelihood function based on the fully overlapping smoothed moment
conditions,

Ln.θ/= sup
{

N∑
t=1

log.πt/ :πt �0,
N∑

t=1
πt =1,

N∑
t=1

πt ftn.θ/=0
}

, N :=n−m+1: .2/

Standard Lagrange multiplier arguments imply that the maximum is attained when

πt = 1
N{1+λ′ftn.θ/} ,

N∑
t=1

ftn.θ/

1+λ′ftn.θ/
=0,

where λ is the Lagrange multiplier. By duality, the empirical log-likelihood ratio function (up
to a multiplicative constant) is given by

elr.θ/= 2
nb

max
λ∈Rk

N∑
t=1

log{1+λ′ftn.θ/}, θ ∈Θ: .3/

Under traditional small b asymptotics, i.e. nb2 + 1=.nb/ → 0 as n → ∞, and suitable weak
dependence assumptions (Kitamura (1997); also see theorem 1 of Nordman and Lahiri (2014)),
it can be shown that
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elr.θ0/
d→χ2

k: .4/

As pointed out by Nordman et al. (2013), the coverage accuracy of BEL can depend crucially on
the block length m=�nb� and appropriate choices can vary with respect to the joint distribution
of the series. To capture the choice of block length in the asymptotics, Zhang and Shao (2014)
adopted the fixed b approach that was proposed by Kiefer and Vogelsang (2005) in the context of
heteroscedasticity–auto-correlation robust testing and derived the non-standard limit of elr.θ0/.
To proceed, we make the following assumption which can be verified under suitable moment
and weak dependence assumptions on f.zj, θ0/ (see for example Phillips (1987)).

Assumption 1. Assume that Σ�nr�
j=1f.zj, θ0/=

√
n ⇒ ΛWk.r/ for r ∈ [0, 1], where ΛΛ′ = Ω =

Σ∞
j=−∞ Γj with Γj =E[f.zt+j, θ0/f.zt , θ0/′] and Wk.r/ is a k-dimensional vector of independent

standard Brownian motions.

Under assumption 1, Zhang and Shao (2014) showed that, when n→∞ and b is held fixed,

elr.θ0/
d→Uel,k.b/ := 2

b
max
λ∈Rk

∫ 1−b

0
log[1+λ′{Wk.r +b/−Wk.r/}]dr, .5/

where we define log.x/ =−∞ for x � 0: The asymptotic distribution Uel,k.b/ is non-standard
yet pivotal for a given b, and its critical values can be obtained via simulation or the bootstrap.
Given b∈ .0, 1/, a 100.1−α/% confidence region for the parameter θ0 is then given by

CI.1−α; b/=
{

θ ∈Θ :
elr.θ/

1−b
�uel,k.b; 1−α/

}
, .6/

where uel,k.b; 1−α/ denotes the 100.1−α/% quantile of the distribution P{Uel,k.b/=.1−b/�x}.
It was demonstrated in Zhang and Shao (2014) that the confidence region based on the fixed
b approximation has more accurate coverage than the traditional counterpart. Our analysis in
the next section reveals an interesting coverage upper bound problem associated with the fixed
b approach in the BEL framework. This result provides some insight on the use of fixed-b-based
critical values as suggested in Zhang and Shao (2014). It also sheds some light on the finite
sample coverage bound problem that can occur as long as the BEL ratio statistic is used to
construct the confidence region. Moreover, we propose a penalized version of the fixed-b-based
BEL, which improves the finite sample performance of the method in Zhang and Shao (2014).

To avoid the choice of block length and also to improve the finite sample coverage, Nordman
et al. (2013) proposed a new version of BEL which uses a non-standard data blocking rule. To
describe their approach, we let

f̃ tn.θ/= ω.t=n/

n

t∑
j=1

f.zj, θ/

for t =1, 2, : : : , n, where ω.·/ : [0, 1]→ [0, ∞/ denotes a non-negative weight function. The block
collection, which constitutes a type of forward scan in the block subsampling language of
McElroy and Politis (2007), contains a data block of every possible length for a given sample
size n. It is worth noting that this non-standard data blocking rule bears some resemblance to
recursive estimation in the self-normalization approach of Shao (2010). Following Nordman
et al. (2013), we define the EBEL ratio function as

ẽlr.θ/= 1
n

max
λ∈Rk

n∑
t=1

log{1+λ′ f̃ tn.θ/}: .7/
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For the smooth function model, Nordman et al. (2013) showed that

ẽlr.θ0/
d→Uebel,k.ω/=max

λ∈Rk

∫ 1

0
log{1+λ′ω.r/Wk.r/}dr: .8/

The numerical studies in Nordman et al. (2013) indicate that EBEL generally exhibits compa-
rable (or in some cases even better) coverage accuracy than BEL with χ2-approximation and
suitable block size. Though the fixed-b-based BEL and EBEL provide an improvement over
traditional χ2-based BEL, our study in the next section reveals that both fixed-b-based BEL
and EBEL can suffer seriously from the coverage upper bound problem in finite samples. To
the best of our knowledge, this is the first time that the coverage upper bound problem has been
revealed for EL methods in time series.

3. Bounds on the coverage probabilities

3.1. Large sample bounds
In the framework of BEL, asymptotic theory is typically established under small b asymptotics,
where the large sample bound problem does not occur as the empirical log-likelihood ratio
statistic converges to a χ2-limit. However, in finite samples, the coverage upper bound 1−βn can
deviate significantly from 1. To shed some light on the finite sample coverage bound, we derive a
limiting upper bound on the coverage probabilities of the BEL ratio confidence region based on
the fixed b limiting distribution given in expression (5). The fixed b method that is adopted here
reflects the coverage upper bound problem in the asymptotics, whereas the original BEL under
the small b asymptotics is somewhat ‘overoptimistic’ as the corresponding upper bound in the
limit is always 1 regardless of what the finite sample bound is. Define Dk.r; b/=Wk.r+b/−Wk.r/

and A=Ab ={λ∈Rk : minr∈.0,1−b/{1+λ′Dk.r; b/}�0}: Let

tk.r; b/= Dk.r; b/

|Dk.r; b/| I{|Dk.r; b/|> 0}

be the direction of Dk.r; b/ on the (k − 1)-dimensional sphere Sk−1, where | · | denotes the
Euclidean norm and I{·} denotes the indicator function. We first present the following lemma
regarding the unboundedness of A.

Lemma 1. Define the convex hull H.Dk/={Σs
j=1αj Dk.rj; b/ : s∈N, αj �0, Σs

j=1αj =1, rj ∈
.0, 1 − b/}. Then the set A is unbounded if and only if the origin is not an interior point of
H.Dk/.

From the proof of lemma 1 (which is given in the on-line supplementary material) and the
fact that the components of Dk.r; b/ are linearly independent (with probability 1), we know
that {A is unbounded} implies that {Uel,k.b/ = ∞}. However, when Uel,k.b/ = ∞, it is easy
to see that A cannot be bounded. Therefore we have P.A is unbounded/ = P{Uel,k.b/ = ∞}.
Let Hn.θ0; b/ = {ΣN

t=1 αt ftn.θ0/ : αt � 0, ΣN
t=1 αt = 1} and denote by Ho

n.θ0; b/ the interior of
Hn.θ0; b/. By lemma 1 and strong approximation, we have, for large n, P{the origin is not
contained in Ho

n.θ0; b/}≈P.A is unbounded/=P{Uel,k.b/=∞}:

It was conjectured in Zhang and Shao (2014) that P.A is unbounded/ > 0, which implies
that P.Uel,k.b/=∞/ > 0. In what follows, we give an affirmative answer to this conjecture and
provide an explicit formula for the probability P.A is unbounded/ when k=1: For k=1, we must
have {A is unbounded}= {D1.r; b/ � 0, ∀ r ∈ .0, 1 − b]}∪ {D1.r; b/ � 0, ∀ r ∈ .0, 1 − b]}. By the
symmetry of a Wiener process, we have P.A is unbounded/=2P{D1.r; b/�0, ∀ r ∈ .0, 1−b]}:

For β > 0, we let φβ.·/ =φ.·=√β/=
√

β with φ.x/ = {1=.
√

2π/} exp.−x2=2/ being the standard
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normal density. For two vectors x = .x1, x2, : : : , xL/′ and y = .y1, y2, : : : , yL/′ of real numbers
with L∈N, define the matrix Qβ,L.x, y/= .φβ.xi −yj//L

i,j=1. Let qβ,L.x, y/ be the determinant of
Qβ,L.x, y/. For a vector x= .x1, x2, : : : , xL/′, denote by xs1:s2 = .xs1 , xs1+1, : : : , xs2/′ the subvector
of x for 1� s1 � s2 �L: Using similar arguments to those in Shepp (1971) (also see Karlin and
Mcgregor (1959)), we prove the following result.

Theorem 1. If L=1=b is a positive integer, we have

P{D1.r; b/�0, ∀ r ∈ .0, 1−b]/=
∫

0=x1<x2<x3<:::<xL+1

q1,L.x1:L, x2:.L+1//dx2 dx3: : : dxL+1, .9/

where x= .x1, : : : , xL+1/′. If bL+ τ =1 with L being a positive integer and 0 < τ <b, we have

P{D1.r; b/�0, ∀ r ∈ .0, 1−b]}=
∫

: : :

∫
S

qξ,L+1.x, y/q1−ξ,L.x2:.L+1/, y1:L/dy1 dx2 dy2

: : : dxL+1dyL+1, 0 < ξ = τ=b< 1, .10/

where x= .x1, : : : , xL+1/′ with x1 = 0, y = .y1, : : : , yL+1/′ and the integral is over the set S :=
{.y1, x2, y2, : : : , xL+1, yL+1/∈R2L+1 : 0 <x2 <: : :<xL+1, y1 <y2 <: : :<yL+1}.

Theorem 1 provides an exact formula for the probability P.A is unbounded/ when k =1. The
probability can be manually calculated when L is small. In particular, if b = 1

2 (i.e. L = 2), we
have

P.A is unbounded/=2
∫

0<x2<x3

{φ.−x2/φ.x2 −x3/−φ.−x3/φ.0/}dx2 dx3

=2
{

Φ2.0/−φ.0/

∫ 0

−∞
Φ.x/dx

}
=0:18169,

where Φ.·/ denotes the distribution function of the standard normal random variable. When
b= 1

3 (i.e. L=3), direct calculation yields that

P.A is unbounded/=2
{

Φ3.0/+ φ2.0/

4
+

∫
0<x2<x3

φ.−x3/φ.x3 −x2/Φ.x2 −x3/dx2 dx3

}

−2
{∫

0<x2<x3

φ2.x3 −x2/Φ.−x3/dx2 dx3 +φ2.0/Φ.0/

+
∫

0<x2<x3

φ.−x2/φ.0/Φ.x2 −x3/dx2 dx3

}

=2
{

1
8

+ φ2.0/

4
+

∫ 0

−∞
φ.u/Φ2.u/du+ φ2.0/

2
√

2

− 1√
.4π/

∫ ∞

0
Φ.−x3/Φ.

√
2x3/dx3 −φ2.0/

}
=0:03635:

The calculation for larger L is still possible but is more involved. An alternative way is to
approximate the probabilities in expression (9) and (10) by using Monte Carlo simulation; see
Table 1 and Fig. 1. Utilizing the result in theorem 1, we can derive a (conservative) upper bound
on P.A is bounded/ (i.e. 1−β) in the multi-dimensional case. For k> 1, we let D

.j/
k .r; b/ be the
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Fig. 1. Bounds on the coverage probabilities for the BEL and EBEL (the data are generated from a mul-
tivariate standard normal distribution with n D 5000 and the number of Monte Carlo replications is 10000):
�, k D5I 4, k D10I C, k D15I �, k D20I }, k D50

jth element of Dk.r; b/ and Vj ={D
.j/
k .r; b/�0, ∀ r ∈ .0, 1−b]}∪{D

.j/
k .r; b/�0, ∀ r ∈ .0, 1−b]}

with 1� j �k: By the independence of the components of Dk.r; b/, it is easy to derive that

P.A is unbounded/�P.∪k
j=1 Vj/=1−P.∩k

j=1 Vc
j /=1−Pk.Vc

1/

=1− [1−2P{D
.j/
k .r; b/�0, ∀ r ∈ .0, 1−b]}]k:

Therefore, we obtain the following result.

Proposition 1. When L=1=b is a positive integer, we have

P{Uel,k.b/<∞/�
{

1−2
∫

0=x1<x2<x3<:::<xL+1

q1,L.x1:L, x2:.L+1//dx2 dx3: : : dxL+1

}k

, .11/

where x = .x1, : : : , xL+1/′. When bL + τ = 1 with L being a positive integer and 0 < τ < b, we
have

P{Uel,k.b/<∞}

�
{

1−2
∫

: : :

∫
S

qξ,L+1.x, y/q1−ξ,L.x2:.L+1/, y1:L/dy1dx2 dy2: : : dxL+1 dyL+1

}k

,

0 < ξ = τ=b< 1, .12/

where x = .x1, : : : , xL+1/′ with x1 = 0, y = .y1, : : : , yL+1/′ and the integral is over the set S :=
{.y1, x2, y2, : : : , xL+1, yL+1/∈ R2L+1 : 0 < x2 <: : : < xL+1, y1 < y2 <: : : < yL+1}. When k = 1, the
inequality becomes equality in expressions (11) and (12).

If the (asymptotic) critical value based on the fixed b pivotal limit Uel,k.b/ is used to construct
a 100.1−α/% confidence region, then the following several cases can occur.
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Table 1. Bounds on the coverage probabilities for BEL†

n ρ k Bounds (%) for the following values of L=1=b:

2 3 4 5 6 7 8 9 10 15 20

50 0.0 1 73.61 93.61 98.07 99.30 99.83 99.93 99.98 99.99 99.99 100.00 100.00
0.0 2 37.22 75.83 90.47 95.71 98.80 99.52 99.82 99.97 99.97 100.00 100.00
0.2 1 71.20 92.26 97.36 98.92 99.70 99.87 99.94 99.99 99.99 100.00 100.00
0.2 2 33.45 71.65 87.90 93.80 97.89 99.02 99.68 99.91 99.91 100.00 100.00
0.5 1 66.47 89.26 95.61 97.83 99.21 99.57 99.80 99.93 99.93 100.00 100.00
0.5 2 26.73 63.07 81.76 89.19 95.31 97.20 98.60 99.43 99.43 99.98 100.00
0.8 1 56.83 80.69 89.45 92.89 95.82 96.93 97.91 98.63 98.63 99.62 99.84
0.8 2 15.98 44.42 62.81 72.30 81.15 85.25 89.09 92.53 92.53 97.24 98.84

−0.5 1 80.16 96.44 99.24 99.80 99.98 99.99 100.00 100.00 100.00 100.00 100.00
−0.5 2 48.66 85.17 95.78 98.61 99.84 99.90 100.00 100.00 100.00 100.00 100.00

100 0.0 1 76.36 94.13 98.34 99.57 99.90 99.97 99.99 99.99 99.99 100.00 100.00
0.0 2 40.72 76.22 91.04 96.94 99.13 99.76 99.90 99.97 99.99 100.00 100.00
0.2 1 74.59 93.17 97.86 99.40 99.85 99.95 99.98 99.99 99.99 100.00 100.00
0.2 2 37.51 73.02 89.00 95.91 98.68 99.47 99.80 99.90 99.97 100.00 100.00
0.5 1 71.16 91.01 96.77 98.92 99.65 99.84 99.95 99.98 99.99 100.00 100.00
0.5 2 32.39 67.18 84.64 93.24 97.33 98.54 99.47 99.69 99.85 100.00 100.00
0.8 1 63.71 85.58 93.20 96.71 98.53 99.08 99.49 99.64 99.76 99.98 99.99
0.8 2 22.53 53.78 72.08 83.59 91.28 94.11 96.37 97.40 98.21 99.78 99.90

−0.5 1 80.78 96.27 99.21 99.82 99.99 99.99 100.00 100.00 100.00 100.00 100.00
−0.5 2 48.77 83.68 95.10 98.70 99.67 99.99 100.00 100.00 100.00 100.00 100.00

500 0.0 1 79.87 95.51 98.96 99.79 99.96 99.98 100.00 100.00 100.00 100.00 100.00
0.0 2 45.60 80.19 93.63 98.12 99.57 99.87 99.95 99.99 100.00 100.00 100.00
0.2 1 79.16 95.11 98.83 99.74 99.95 99.98 99.99 100.00 100.00 100.00 100.00
0.2 2 44.10 79.22 92.90 97.75 99.44 99.83 99.94 99.98 99.99 100.00 100.00
0.5 1 77.50 94.37 98.52 99.63 99.92 99.97 99.98 100.00 100.00 100.00 100.00
0.5 2 41.33 76.71 91.50 96.83 99.10 99.68 99.86 99.96 99.98 100.00 100.00
0.8 1 73.91 92.43 97.65 99.25 99.75 99.90 99.95 99.98 99.99 100.00 100.00
0.8 2 35.56 70.69 87.36 94.58 97.81 99.13 99.58 99.84 99.92 100.00 100.00

−0.5 1 81.92 96.36 99.30 99.86 99.97 100.00 100.00 100.00 100.00 100.00 100.00
−0.5 2 49.76 83.39 95.42 98.87 99.74 99.91 99.97 100.00 100.00 100.00 100.00

1000 0.0 1 80.06 95.67 99.05 99.78 99.96 99.99 100.00 100.00 100.00 100.00 100.00
0.0 2 45.25 80.59 94.01 98.16 99.54 99.87 99.97 99.99 100.00 100.00 100.00
0.2 1 79.49 95.43 98.97 99.77 99.95 99.99 100.00 100.00 100.00 100.00 100.00
0.2 2 44.09 79.60 93.50 98.02 99.39 99.84 99.97 99.98 100.00 100.00 100.00
0.5 1 78.40 94.94 98.79 99.72 99.94 99.99 100.00 100.00 100.00 100.00 100.00
0.5 2 42.06 77.83 92.50 97.55 99.23 99.73 99.89 99.95 100.00 100.00 100.00
0.8 1 76.01 93.68 98.27 99.48 99.86 99.95 100.00 100.00 100.00 100.00 100.00
0.8 2 37.93 73.21 89.65 96.21 98.57 99.49 99.76 99.90 99.97 100.00 100.00

−0.5 1 81.64 96.30 99.24 99.85 99.98 100.00 100.00 100.00 100.00 100.00 100.00
−0.5 2 48.21 82.96 95.11 98.76 99.74 99.92 99.98 100.00 100.00 100.00 100.00

∞ 0.0 1 81.70 96.26 99.23 99.85 99.97 99.99 100.00 100.00 100.00 100.00 100.00
0.0 2 48.58 82.93 95.04 98.72 99.70 99.91 99.99 100.00 100.00 100.00 100.00

†The number of Monte Carlo replications is 50000 for k =1 (10000 for k =2). For the last row n=∞, we approx-
imate the probability P.A is bounded/ by simulating independent Wiener processes, where the Wiener process
is approximated by a normalized partial sum of 50000 for k = 1 (10000 for k = 2) IID standard normal random
variables and the number of replications is 100000 for k =1 (50000 for k =2).

(a) P{Uel,k.b/<∞}=1−β �1−α; then the fixed-b-based critical value is ∞. In this case, it
is impossible to construct a meaningful confidence region as {θ ∈Θ|elr.θ/�∞}=Θ. In
the case k=1, the value of β is known but, in the case k=2 or higher, only an upper bound
for 1−β is provided in proposition 1. Thus, if the upper bound is no greater than 1−α,
then we cannot construct a sensible confidence region based on fixed b critical values.
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(b) P{Uel,k.b/ < ∞} = 1 − β > 1 − α; then the fixed-b-based critical value is finite. The
100.1 − α/% quantile of the distribution of Uel,k.b/=.1 − b/ (i.e. uel,k.b; 1 − α/) is the
100γ% quantile of the conditional distribution P{Uel,k.b/=.1 − b/ � x|Uel, k.b/ < ∞},
where γ = .1 −α/=.1 −β/. In the simulation experiment of Zhang and Shao (2014), the
100.1−α/% quantile of the conditional distribution was used as the critical value. Note
that the largest b considered in Zhang and Shao (2014) was 0:2, which corresponds to
β ≈1−0:9985=0:0015 when k =1 and β ≈1−0:9872=0:0128 when k =2, as seen from
Table 1. This suggests that the critical values that were used in Zhang and Shao (2014)
are wrong, but not by much.

(c) In the event that uel,k.b; 1−α/ is finite, which occurs in case (b) above or when the χ2-based
critical values are used,

P{θ0 ∈CI.1−α; b/}�P{the origin is contained in Ho
n.θ0; b/}=1−βn,

which is a finite sample bound. The quantity βn depends on joint distributions of time
series, the form of f , the block size and the sample size, so it is in general difficult to
calculate. We present some numerical results on βn in Section 3.2 below. If 1−βn �1−α,
then the confidence region is bound to undercover and the amount of undercoverage
becomes severe when βn is further from 0.

Proposition 1 shows that, for any fixed b ∈ .0, 1/, the bound decays exponentially to zero
as the dimension k grows. This result suggests that caution needs to be taken in the recent
extension of the BEL to the high dimensional setting (see Chang et al. (2015)), where the
dimension of moment condition k can grow with respect to sample size n. In Chang et al.
(2015), small b asymptotics were adopted, and no discussion on such a coverage bound issue
(either finite sample or large sample) seems provided. It would be interesting to extend the
fixed b asymptotic approach to BEL in the high dimensional setting and we leave it for future
investigation.

The large sample bound on the coverage probabilities depends crucially on how the smoothed
moment conditions are constructed. By lemma 1 of Nordman et al. (2013), we know that, for
EBEL, the set Aω = {λ∈ Rk : minr∈.0,1/{1 +λ′ω.r/Wk.r/}� 0} is bounded with probability 1,

Table 2. Bounds on the coverage probabilities for EBEL†

ρ k Bounds (%) for the following values of n:

50 100 500 1000 5000

0.0 1 84.02 89.51 94.64 96.18 98.30
0.0 2 52.45 62.66 78.48 84.22 92.09
0.2 1 82.20 87.93 93.99 95.74 98.12
0.2 2 48.95 59.47 76.50 82.55 91.51
0.5 1 77.57 84.31 92.35 94.57 97.72
0.5 2 41.24 52.96 72.31 79.09 89.84
0.8 1 65.99 75.78 88.32 91.91 96.52
0.8 2 26.56 39.06 62.10 71.32 85.62

−0.5 1 87.42 91.75 95.89 96.83 98.70
−0.5 2 60.24 69.35 82.52 87.16 93.87

†The number of Monte Carlo replications is 10000. The bounds on
the coverage probabilities for EBEL do not depend on the choice
of the weight function ω.·/.
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which implies that P{Uebel,k.ω/ < ∞}= 1. Thus, for large samples, no upper bound problem
occurs for EBEL. However, the numerical results in Table 2 show that the finite sample bounds
on the coverage probabilities of the EBEL ratio confidence regions can be significantly lower
than 1, which indicates that the convergence of the EBEL ratio statistic ẽlr.θ0/ to its limit
Uebel,k.ω/ is in fact slow and substantial undercoverage can be associated with EBEL-based
confidence regions in any one of the following three cases:

(a) the dependence is positively strong;
(b) the sample size n is small;
(c) k is moderate, say k �3.

Remark 1. The convex hull constraint is related to the underlying distance measure between
π = .π1, : : : , πN/ and .1=N, : : : , 1=N/ in EL. If we consider alternative non-parametric likeli-
hood such as the Euclidean likelihood or, more generally, members of the Cressie–Read power
divergence family of discrepancies, then the origin is allowed to be outside the convex hull of the
smoothed moment conditions as long as the weights are allowed to be negative. No coverage
upper bound problem occurs for these alternative non-parametric likelihoods but, since EL has
a certain optimality property (Kitamura, 2006; Kitamura et al., 2013), it is still a worthwhile
effort to seek remedies of the coverage bound problem based on EL.

Remark 2. An alternative way to calibrate the sampling distribution is the block bootstrap.
To illustrate the idea, consider the linear model, i.e. yt = x′

tθ + ut , where xt and θ are .l − 1/-
dimensional vectors (p = l − 1 in this case), and the stationary time series {xt} and {ut} are
uncorrelated. Define ft.θ/=xt.yt −x′

tθ/ and zt = .x′
t , yt/

′: Assume that n=dnln, where dn denotes
the block size in the bootstrap and ln is the number of blocks. Let M1, : : : , Mln be independent and
identically distributed (IID) uniform random variables on {0, : : : , n − dn} and let zÅ

.j−1/dn+i =
zMj+i with 1� j � ln and 1� i�dn: Let fÅ

tn.θ̂/ be the smoothed moment condition based on the
bootstrap sample {zÅ

i }, where θ̂ is the ordinary least squares estimator based on the original
sample. The naive bootstrap version of elr.θ0/ is given by

elrÅ.θ̂/= 2
nb

max
λ∈Rk

N∑
t=1

log.1+λ′[fÅ
tn.θ̂/−EÅ{fÅ

tn.θ̂/}]/,

where EÅ denotes the expectation conditional on {zi}n
i=1. Alternatively, θ̂ may be replaced by

EÅ.Σn
t=1xÅ

t xÅ′
t /−1EÅ.Σn

t=1xÅ
t yÅ

t /. The bootstrap critical value obtained from this procedure is
expected to provide a better finite sample approximation compared with the χ2-calibration. The
intuition is that, besides the time series dependence (which is captured by the blocking strategy
in the block bootstrap) and the effect of sample size, the choice of block size �bn� is also reflected
in the bootstrap statistic through the construction of fÅ

tn. This is essentially the rationale behind
the fixed b approach. On the basis of the arguments in Gonçalves and Vogelsang (2011), it is
expected that the bootstrap test statistic elrÅ.θ̂/ has the same limiting distribution (condition-
ally on the data) as that of elr.θ0/ derived under fixed b asymptotics. Therefore, the bootstrap
calibration indeed has a deep connection with the fixed b approach. Investigation along this
direction is very interesting and will be pursued in the future.

However, a remedy to the coverage bound problem seems necessary when the (finite sample)
bound is less than the nominal level, which could happen in the case of high dimension, small
sample size, strong dependence or large b. In this case, a naive application of the above bootstrap
method to calibrate may not work as there is an intrinsic coverage upper bound for whatever
critical values (including bootstrap based). This motivates us to develop the penalized approach
in the next section, which is free of the coverage bound problem.
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3.2. Finite sample results on coverage bounds
To evaluate the upper bounds on the coverage probabilities for BEL and EBEL, we simulate time
series from auto-regressive (AR(1)) models with AR(1) coefficient ρ=−0:5, 0, 0:2, 0:5, 0:8, and
IID standard normal errors. The sample size n = 50, 100, 500, 1000, 5000, ∞. We approximate
the probability P.A is bounded/ by simulating independent Wiener processes, where the Wiener
process is approximated by the normalized partial sum of 50000 IID standard normal random
variables and the number of Monte Carlo replications is 100000. When k > 1, we simulate
vector AR (VAR(1)) processes with the coefficient matrix A1 =ρIk for ρ =−0:5, 0, 0:2, 0:5, 0:8,
and standard multivariate normal errors. Table 1 summarizes the upper bounds on the coverage
probabilities for BEL with b = 1=L for L = 2, 3, : : : , 10, 15, 20, and Table 2 provides the finite
sample upper bounds on the coverage probabilities for EBEL. For BEL, it is seen from Table 1
that the upper bound on the coverage probability decreases as the block size increases and
the positive dependence strengthens. The bound in the multi-dimensional case is lower than
its counterpart in the univariate case, which is consistent with our theoretical finding. It is
interesting that negative dependence (corresponding to ρ=−0:5) tends to bring the upper bound
higher. In practice, if the dependence is expected to be positively strong, a large block size is
preferable. However, our result indicates that the corresponding upper bound on the coverage
probabilities will be lower for larger block size. It is also worth noting that the upper bounds on
the coverage probabilities generally increase as the sample size grows and the result in proposition
1 provides conservative bounds on 1−β when k=2. For EBEL, though its large sample bound is
1, its finite sample bound can be significantly lower than 1 as seen from Table 2. To assess the effect
of the dimensionality k further, we present the coverage upper bounds for k = 5, 10, 15, 20, 50
and L=2, 3, : : : , 20, 30, 40, 50 in Fig. 1, where data are generated from a multivariate standard
normal distribution with sample size n=5000. We observe that

(a) as k grows, a smaller b (or larger L) is required to deliver meaningful finite sample upper
bounds (say, larger than nominal level) and

(b) the coverage upper bound for EBEL can be close to zero for k =15 or larger.

We expect that the bound can grow worse when we increase the positive dependence in the
observations. On the basis of the numerical results for this specific setting, we suggest that
special attention is paid to the potential coverage bound problem for the following cases:

(i) the nominal level is close to 1 (such as 99%);
(ii) the dimension of moment conditions k is moderate or high;
(iii) the (positive) dependence is strong;
(iv) b is large.

4. Penalized blockwise empirical likelihood and expansive blockwise
empirical likelihood

The convex hull constraint violation underlying the mismatch is well known in the EL litera-
ture (see Owen (1990, 2001)). Various methods have been proposed to bypass this constraint,
such as PEL (Bartolucci, 2007; Lahiri and Mukhopadhyay, 2012), adjusted EL (Chen et al.,
2008; Emerson and Owen, 2009; Liu and Chen, 2010; Chen and Huang, 2012) and extended
EL (Tsao and Wu, 2013, 2014). Motivated by the theoretical findings as well as the finite
sample results in Section 3.2, we propose a remedy based on penalization to circumvent the
coverage bound problem which leads to improved coverage accuracy under fixed b asymp-
totics.
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4.1. Penalized blockwise empirical likelihood
To overcome the convex hull constraint violation problem, Bartolucci (2007) dropped the convex
hull constraint in the formulation of EL for the mean of a random sample and defined the
likelihood by penalizing the unconstrained EL by using the Mahalanobis distance. Recently,
Lahiri and Mukhopadhyay (2012) introduced a modified version of Bartolucci’s (2007) PEL in
the mean case. Under the assumption that the observations are IID and the components of each
observation are dependent, Lahiri and Mukhopadhyay (2012) derived asymptotic distributions
of the PEL ratio statistic in the high dimensional setting. Other variants of PEL where a penalty
function is added to the standard EL were considered by Otsu (2007) for efficient estimation
in semiparametric models and Tang and Leng (2010) for consistent parameter estimation and
variable selection in linear models. Otsu (2007) and Tang and Leng (2010) either penalized
high dimensional parameters or roughness of unknown non-parametric functions, and their
PELs still suffer from the same convex hull constraint violation problem as standard EL does.
In what follows, we shall consider a penalized version of the BEL ratio test statistic in the
moment condition models, which allows weak dependence within the moment conditions and
may be computed even when the origin does not belong to the convex hull of the smoothed
moment conditions. Compared with existing penalization methods in the literature, our method
is different in three aspects. First, our method is designed for dependent data where existing
methods are applicable only to independent moment conditions. Second, our theoretical result
is established under fixed b asymptotics, which are expected to provide a better approximation
to the finite sample distribution. And we suggest the use of the fixed-b-based critical values that
capture the choice of tuning parameters (also see the simulations in the on-line supplementary
material). Third, our formulation produces a new class of statistic between the empirical log-
likelihood ratio statistic and the self-normalized score statistic which is of interest in its own
right. To illustrate the idea, we first consider the case k =p, i.e. the moment condition is exactly
identified (see remark 3 for the general overidentified case). Define the simplex �N = {π =
.π1, : : : , πN/ :πt �0, ΣN

t=1 πt =1} and the quadratic distance measure δn.μ/ := δΨn.μ/=μ′Ψ−1
n μ

for μ ∈ Rk, where Ψn ∈ Rk×k is an invertible normalization matrix. Let μπ.θ/ = ΣN
t=1 πt ftn.θ/

with π = .π1, : : : , πN/∈�N . We consider penalized BEL (PBEL) as follows:

Lpbel,n.θ/= max
π∈�N

N∏
t=1

πt exp
[

− nτ

2
δn{μπ.θ/}

]
: .13/

The PBEL ratio test statistic is then defined as

elrpbel.θ/=− 2
nb

log{NN Lpbel,n.θ/}= min
π∈�N

[
− 2

nb

N∑
t=1

log.Nπt/+ τ

b
δn{μπ.θ/}

]
:

Under the constraint that μ=ΣN
t=1 πt ftn.θ/, it is not difficult to derive that

πt = 1
N[1+λ′{ftn.θ/−μ}]

,
N∑

t=1

ftn.θ/−μ

1+λ′{ftn.θ/−μ} =0,

by using standard Lagrange multiplier arguments. Denote by Hn.θ; b/ = {ΣN
t=1 πt ftn.θ/ : π ∈

�N}: Thus we deduce that

elrpbel.θ/= min
μ∈Hn.θ;b/

(
2
nb

max
λ∈Rk

N∑
t=1

log[1+λ′{ftn.θ/−μ}]+ τ

b
δn.μ/

)
, .14/

where μ is minimized to balance the empirical log-likelihood ratio and the penalty term.
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Proposition 2. If the space that is spanned by {ftn.θ/}N
t=1 is of k dimension, we have

elrpbel.θ/= min
μ∈Rk

(
2
nb

max
λ∈Rk

N∑
t=1

log[1+λ′{ftn.θ/−μ}]+ τ

b
δn.μ/

)
: .15/

The condition that the space that is spanned by {ftn.θ/}N
t=1 is of k dimension is fairly mild

because k is fixed and N grows with n. Note that the minimizer μÅ of equation (15) is necessarily
contained in Hn.θ; b/, which implies that the origin of Rk is contained in the convex hull of
{ftn.θ/ −μÅ}N

t=1. In addition, since the empirical log-likelihood ratio and the penalty term in
equation (15) are both convex functions of μ, it is not difficult to obtain μÅ in practice. Let
τ = cÅn with cÅ being a non-negative constant which controls the magnitude of the penalty
term, and suppose that Ψ−1

n →d .ΛΦkΛ′/−1 as n→∞, where Φk ∈ Rk×k is a pivotal limit. For
example, if we let Q.·, ·/ : [0, 1]2 →R be a positive semidefinite kernel, then one possible choice
of the normalization matrix Ψn is given by

Ψn.θ̂n/= 1
n

n∑
t=1

n∑
j=1

Q

(
t

n
,

j

n

)
f.zt , θ̂n/f ′.zj, θ̂n/, .16/

where θ̂n is a preliminary estimator obtained by solving the equationΣn
j=1f.zj, θ/=0. In practice,

one can choose Q.r, s/=κ.r − s/ with κ.·/ being the kernels that are used in the heteroscedas-
ticity and auto-correlation consistent estimation, such as the Bartlett kernel or the quadratic
spectral kernel. Under appropriate conditions (see, for example, Kiefer and Vogelsang (2005)
and Sun (2013)), it can be shown that

Ψn.θ̂n/
d→Λ

∫ 1

0

∫ 1

0
Q.r, s/dBk.r/dB′

k.s/Λ′ :=ΛΦkΛ′, .17/

where Φk = ∫ 1
0

∫ 1
0 Q.r, s/dBk.r/dB′

k.s/ with Bk.r/=Wk.r/− r Wk.1/. Therefore, under assump-
tion 1, we have

elrpbel.θ0/
d→Upbel,k.b/

= min
μ∈H.b/

(
2
b

max
λ∈Rk

∫ 1−b

0
log

[
1+λ′

{
Λ

Dk.r; b/

b
−μ

}]
dr + cÅ

b
μ′.ΛΦkΛ′/−1μ

)
, .18/

where H.b/ denotes the convex hull of {ΛDk.r; b/=b : r∈ .0, 1−b/}. When μ is outside the convex
hull of {ΛDk.r; b/=b : r ∈ .0, 1−b/}, the separating hyperplane theorem (see for example section
11 of Rockafellar (1970)) implies that maxλ∈Rk

∫ 1−b
0 log[1+λ′{ΛDk.r; b/=b−μ}]dr =∞. Thus

we have the simplified expression

Upbel,k.b/= min
μ∈Rk

(
2
b

max
λ∈Rk

∫ 1−b

0
log

[
1+λ′

{
Λ

Dk.r; b/

b
−μ

}]
dr + cÅ

b
μ′.ΛΦkΛ′/−1μ

)

= min
μ̃∈Rk

(
2
b

max
λ̃∈Rk

∫ 1−b

0
log

[
1+ λ̃

′
{

Dk.r; b/

b
− μ̃

}]
dr + cÅ

b
μ̃′Φ−1

k μ̃

)
, .19/

where λ̃ = Λ′λ and μ̃ = Λ−1μ: Note that the limiting distribution Upbel,k.b/ is pivotal and its
critical values can be simulated by approximating the Brownian motion with the standardized
or normalized partial sum of IID standard normal random variables. As to the pivotal limit
Upbel,k.b/, we have the following result.

Proposition 3. For b∈ .0, 1/ and cÅ > 0, P{Upbel,k.b/<∞}=1.

Thus, compared with BEL, PBEL is well defined and does not suffer from the convex hull
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violation problem in both large sample and finite sample cases, though it involves the choice of
additional tuning parameters such as cÅ and Ψn.

When cÅ =∞, we have μÅ =0 and the PBEL ratio statistic reduces to the BEL ratio statistic.
In contrast,

elrpbel.θ/= cÅ min
μ∈Rk

(
2

cÅnb
max
λ∈Rk

N∑
t=1

log[1+λ′{ftn.θ/−μ}]+ n

b
δn.μ/

)
, .20/

and

max
λ∈Rk

N∑
t=1

log
[

1+λ′
{

ftn.θ/− 1
N

N∑
t=1

ftn.θ/

}]
=0:

Thus, for small cÅ, the minimizer μÅ should be close to ΣN
t=1ftn.θ/=N. In this case, the penalty

term dominates and the PBEL ratio statistic evaluated at the true parameter value behaves like
the self-normalized score statistic which is defined as

Sn.θ0/=nδn

(
N∑

t=1

ftn.θ0/

N

)
=n

(
N∑

t=1

ftn.θ0/

N

)′
Ψ−1

n .θ̂n/

(
N∑

t=1

ftn.θ0/

N

)
: .21/

We callSn.θ0/ the self-normalized score statistics as ftn.θ/ plays the role of the score in likelihood-
based inference and the self-normalizer Ψn.θ̂n/ is an inconsistent estimator of the asymptotic
variance matrix Ω in the spirit of the self-normalized approach of Shao (2010). Therefore, on
the basis of the quadratic distance measure, the penalized BEL ratio statistic can be viewed as
a combination of the BEL ratio statistic and the self-normalized score statistic.

Remark 3. When the moment condition is overidentified (i.e. k > p), we shall consider the
normalization matrix Ψn =Ψn.θ̂n/ with θ̂n being a preliminary estimator such as the one-step
generalized method-of-moments estimator with the weighting matrix Wn →p W0, where W0 is a
k ×k positive definite matrix. To illustrate the idea, define

Gt.θ/= 1
n

t∑
j=1

@f.zj, θ/

@θ′

and G0 =E{Gn.θ0/}. Let ûj ={G′
n.θ̂n/Wn Gn.θ̂n/}−1G′

n.θ̂n/Wnf.zj, θ̂n/: Consider the normal-
ization matrix

Ψn.θ̂n/= 1
n

n∑
t=1

n∑
j=1

Q

(
t

n
,

j

n

)
ût û

′
j:

Under suitable conditions (see Kiefer and Vogelsang (2005)), it can be deduced that

Ψn.θ̂n/→d Δ
∫ 1

0

∫ 1

0
Q.r, s/dBp.r/dBp.s/Δ′,

whereΔ∈Rp×p is an invertible matrix such thatΔΔ′ =.G′
0W0G0/−1G′

0W0ΩW0G0.G′
0W0G0/−1:

In this case, the PBEL ratio test statistic can be defined as

elrpbel.θ/= min
μ∈Rp

(
2
nb

max
λ∈Rp

N∑
t=1

log[1+λ′ {gtn.θ/−μ}]+ τ

b
μ′Ψ−1

n .θ̂n/μ

)
,

where gtn.θ/={G′
n.θ̂n/WnGn.θ̂n/}−1 G′

n.θ̂n/Wn ftn.θ/ is the transformed smooth moment con-
dition. Following the arguments above, it can be shown that elrpbel.θ0/ admits the same pivotal
limit,
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elrpbel.θ0/
d→Upbel,p.b/= min

μ̃∈Rp

{
2
b

max
λ̃∈Rp

∫ 1−b

0
log

[
1+λ̃

′
{

Dp.r; b/

b
− μ̃

}]
dr + cÅ

b
μ̃′Φ−1

p μ̃

}
:

.22/

4.2. Penalized expansive blockwise empirical likelihood
As demonstrated in Section 3.2, EBEL suffers seriously from the convex hull violation problem
in finite samples. To deal with the convex hull condition, we introduce penalized EBEL (PEBEL)
which is shown to provide significant finite sample improvement in Section 5. We describe the
idea for exactly identified moment condition models. The results below can be extended to more
general cases following the discussion in remark 3. Recall that

f̃ tn.θ/= ω.t=n/

n

t∑
j=1

f.zj, θ/

for t =1, 2, : : : , n. We consider the PEBEL ratio test statistic which is defined as

elrpebel.θ/=−1
n

log{nn Lpebel,n.θ/}= min
π∈�n

[
− 1

n

n∑
t=1

log.nπt/+ τ δn{μ̃π.θ/}
]

, τ = cÅn,

where

Lpebel,n.θ/=max
π∈�n

n∏
t=1

πt exp[−nτ δn{μ̃π.θ/}], .23/

and μ̃π.θ/=Σn
t=1πt f̃ tn.θ/ with π = .π1, : : : , πn/∈�n. Following similar derivations in the proof

of proposition 3, we deduce that

elrpebel.θ/= min
μ∈H̃n.θ/

(
1
n

max
λ∈Rk

n∑
t=1

log[1+λ′{f̃ tn.θ/−μ}]+ τ δn.μ/

)

= min
μ∈Rk

(
1
n

max
λ∈Rk

n∑
t=1

log[1+λ′{f̃ tn.θ/−μ}]+ τ δn.μ/

)
, .24/

where H̃n.θ/ denotes the convex hull of {f̃ tn.θ/}n
t=1. Under suitable assumptions (see Nordman

et al. (2013)), it can be shown that

elrpebel.θ0/
d→ min

μ̃∈Rk

(
max
λ̃∈Rk

∫ 1

0
log[1+ λ̃

′{ω.r/Wk.r/− μ̃}]dr + cÅμ̃′Φ−1
k μ̃

)
: .25/

Note that PEBEL is free of b, but again it requires the choice of a tuning parameter cÅ. For large
cÅ, we have μÅ ≈0 and δn.μÅ/≈0 with μÅ being the minimizer in equation (24). Thus PEBEL
behaves like EBEL when cÅ is large. Following the discussion in Section 4.1, as cÅ grows close
to 0, μÅ approaches Σn

t=1f̃tn.θ/=n which satisfies that

max
λ∈Rk

n∑
t=1

log
[

1+λ′
{

f̃ tn.θ/−
n∑

t=1

f̃ tn.θ/

n

}]
=0:

Thus, for small cÅ, the behaviour of the PEBEL ratio statistic evaluated at the true parameter
value is closely related to the self-normalized score statistic given by

S̃n.θ0/=nδn

(
n∑

t=1

f̃ tn.θ0/

n

)
=n

(
n∑

t=1

f̃ tn.θ0/

n

)′
Ψ−1

n .θ̂n/

(
n∑

t=1

f̃ tn.θ0/

n

)
: .26/
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Remark 4. To resolve the coverage upper bound problem, we may consider adjusted versions
of BEL and EBEL, which retain the formulation of BEL and EBEL but add one or two pseudo-
observations to the sample (see Chen et al. (2007) and Emerson and Owen (2009)). However, a
direct extension to the current setting may not work because of temporal dependence in moment
conditions. A possible strategy is to add a small fraction of artificial data points instead of one
or two pseudo-observations, and to derive the limiting distributions under fixed b asymptotics.
This approach also requires the choice of additional tuning parameters such as the fraction of
points being added. The extended EL method (Tsao and Wu, 2013, 2014) is a nice alternative to
the original EL, and it has been shown to enjoy the Bartlett correctability in the IID data case.
Nevertheless, an extension to the time series setting seems very non-trivial. We shall investigate
these alternative solutions in future research.

5. Numerical results

In this section, we conduct simulation studies to evaluate the finite sample performance of the
penalization methods that were proposed in Section 4. We shall focus on the confidence region
for the mean of univariate or multivariate time series. In the univariate case, we consider the
AR(1) process zt =ρzt−1 +"t with ρ=−0:5, 0:2, 0:5, 0:8, and the moving average MA(1) process
zt =θεt−1 +εt with θ=−0:5, 0:2, 0:5, 0:95, where {"t} and {εt} are two sequences of IID standard
normal errors. In the multi-dimensional case (i.e. k>1), we generate multivariate time series with
each component being independent AR(1) or MA(1) processes. The sample sizes considered are
n = 100 and n = 400. In the on-line supplementary material, we present additional simulation
results for time series regression models, where the results are qualitatively similar to those for
the mean.

5.1. Penalized blockwise empirical likelihood
To implement PBEL, we consider the self-normalization matrix Ψn (Shao, 2010), which is
defined as

Ψn.θ̂n/= 1
n

n∑
i=1

n∑
j=1

(
1−

∣∣∣∣ i− j

n

∣∣∣∣
)

.zi − z̄n/.zj − z̄n/′, .27/

where θ̂n = z̄n =Σn
j=1 zj=n: The tuning parameter cÅ is chosen between 0.01 and 2. As pointed

out in Section 4.1, the limiting distribution of PBEL under the fixed b asymptotics is pivotal and
it can be approximated numerically. Table 1 in the on-line supplementary material summarizes
the simulated critical values for the limiting distributions of BEL and PBEL. Selected simulation
results are presented in Figs 2 and 3. In the univariate case, the performances of PBEL with
cÅ = 2 and BEL are generally comparable in terms of the coverage probability and interval
width. PBEL with cÅ =0:01 delivers more accurate coverage compared with the two alternatives
especially when the positive dependence is strong, although the corresponding interval width is
slightly wider for relatively small b. This finding is presumably because the finite sample bounds
for BEL do not deviate much from 1 for k =1 and not quite large b (see Table 1). The simulation
results for the MA models are quantitatively similar and thus are not presented here for brevity.
In the case k =2, PBEL tends to provide better coverage uniformly over b compared with BEL
(when the dependence is positive). The improvement becomes more significant as the block size
grows. Also PBEL with cÅ =0:01 delivers the most accurate coverage in most cases. Unreported
numerical results show that, for k =1, 2 and cÅ between 0:01 and 2, the performance of PBEL
is generally between the two cases reported here. To assess the effect of dimensionality, we
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Fig. 2. (a)–(d) Coverage probabilities and (e)–(h) interval widths for the mean delivered by PBEL
with Q.r , s/ D .1 � jr � sj/I.jr � sj � 1/ and BEL, where k D 1 (the nominal level is 95% and the num-
ber of Monte Carlo replications is 1000) (�, PBEL, fixed b asymptotics, c* D 0.01, n D 100I 4, PBEL, fixed b
asymptotics, c* D0.01, nD400I C, PBEL, fixed b asymptotics, c* D2, nD100I �, PBEL, fixed b asymptotics,
c* D 2, n D 400I }, BEL, fixed b asymptotics, n D 100I r, BEL, fixed b asymptotics, n D 400/ : (a), (e) AR.1/,
ρD0.2I (b), (f) AR.1/,ρD0.5I (c), (g) AR.1/,ρD0.8I (d), (h) AR.1/,ρD�0.5
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Fig. 3. Coverage probabilities for the mean delivered by PBEL with Q.r , s/ D .1 � jr � sj/I.jr � sj � 1/,
and BEL, where (a)–(d) k D 2 (�, PBEL, fixed b asymptotics, c* D 0.01, n D 100I 4, PBEL, fixed b
asymptotics, c* D0.01, nD400I C, PBEL, fixed b asymptotics, c* D2, nD100I �, PBEL, fixed b asymptotics,
c* D2, nD400I }, BEL, fixed b asymptotics, nD100I r, BEL, fixed b asymptotics, nD400/ and (e)–(h) k D5
.�, PBEL, fixed b asymptotics, b* D 0.05, n D 100I 4, PBEL, fixed b asymptotics, c* D 0.05, n D 400/I C,
PBEL, fixed b asymptotics, b D 0.1, n D 100I �, PBEL, fixed b asymptotics, b D 0.1, n D 400/ (the nominal
level is 95% and the number of Monte Carlo replications is 1000): (a), (e) AR(1), ρ D 0.2; (b), (f) AR(1),
ρD0.5; (c), (g) AR(1), ρD0.8; (d), (h) AR(1), ρD�0.5
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Table 3. Coverage probabilities for the mean delivered by BEL†

n b Coverage probabilities (%) for the following values of ρ:

0.2 0.5 0.8 −0.5

100 0:05 88.5 (97.8) 76.1 (86.7) 34.3 (24.1) 98.6 (99.9)
100 0:10 84.7 (37.3) 74.6 (17.6) 42.4 (1.4) 97.5 (80.9)
400 0:05 93.8 (99.9) 91.8 (99.6) 80.3 (92.6) 97.2 (100.0)
400 0:10 93.0 (68.0) 90.2 (55.8) 78.7 (26.1) 96.5 (87.2)

†The data are generated from the VAR(1) process with the coefficient
matrix being ρIk for k = 5 or k = 10. The numbers in parentheses are the
coverage upper bounds for the case k =10.

present the coverage probabilities for PBEL with b = 0:05 and b = 0:1, and various cÅ when
k =5 (see Figs 3(e)–3(h)). Along with Table 3, which also shows the coverage bound for the case
k =10, we see that PBEL with suitable cÅ offers improvement over the unpenalized counterpart.
The coverage upper bound problem clearly shows up for BEL especially when the dependence
is strong and dimension k is large. We also note that the choice of cÅ (that delivers the most
accurate coverage) is delicate in this case as it depends on b, the sample size n and the underlying
dependence structure. Overall, the finite sample performance of PBEL is satisfactory in terms of
delivering better coverage (especially when the bound is substantially below 1) compared with
BEL under fixed b asymptotics.

5.2. Penalized expansive blockwise empirical likelihood
We implement PEBEL with Ψn being the self-normalization matrix in equation (27) and var-
ious choices of cÅ. The simulated critical values for PEBEL are summarized in Table 2 in the
on-line supplementary material. We present the coverage probabilities and interval widths for
unweighted EBEL and PEBEL (i.e. w.t/= 1) in Figs 4 and 5. Compared with EBEL, PEBEL
significantly improves coverage probabilities in all the cases considered here. Figs 4(e)–4(h) sug-
gest that PEBEL can also deliver smaller interval widths for the range of cÅ being considered.
In the univariate case, the choice of small cÅ seems to provide both better coverage and shorter
interval width. In the case of k =2, a relatively large cÅ tends to provide good coverage as well,
and the performance of PEBEL is not affected much by the choice of cÅ. It is worth noting that,
when k = 5, the performance of PEBEL deteriorates for cÅ = 2, which, along with the above
findings in the cases k =1 and k =2, suggests that the optimal cÅ that delivers the most accurate
coverage and the sensitivity of the coverage with respect to cÅ can very much depend on the
underlying dimensionality k. To sum up, the numerical results demonstrate the usefulness of
PEBEL as it provides significant improvement over EBEL provided that cÅ is suitably chosen.

In view of Figs 5(e)–5(h), there seems to be an optimal cÅ in terms of delivering the most
accurate coverage when ρ= 0:5 and ρ= 0:8. Below we present a simple block-bootstrap-based
method for choosing the tuning parameter cÅ. Suppose that n=dnln where dn, ln ∈Z. Condition-
ally on the sample {zl}n

l=1, we let M1, : : : , Mln be IID uniform random variables on {0, : : : , ln −1}
and define zÅ

.j−1/dn+i = zMjdn+i with 1� j � ln and 1� i�dn: In other words, {zÅ
t }n

t=1 is a non-
overlapping block bootstrap sample with block size dn. For each cÅ, we can compute the times
that the sample mean z̄n is contained in the confidence region constructed on the basis of the
bootstrap sample {zÅ

l }n
l=1 and then compute the empirical coverage probabilities based on B
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Fig. 4. (a)–(d) Coverage probabilities and (e)–(h) interval widths for the mean delivered by PEBEL
with various c* and Q.r , s/ D .1 � jr � sj/I.jr � sj � 1/ and EBEL, where k D 1 (the nominal level is
95% and the number of Monte Carlo replications is 1000) (�, PEBEL, fixed b asymptotics, n D 100I 4,
PEBEL, fixed b asymptotics, n D 400; , EBEL, fixed b asymptotics, n D 100; , EBEL, fixed b
asymptotics, n D 400/: (a), (e) AR(1), ρ D 0.2; (b), (f) AR(1), ρ D 0.5; (c), (g) AR(1), ρ D 0.8; (d), (h) AR(1)
ρD�0.5
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Fig. 5. Coverage probabilities for the mean delivered by PEBEL with various c* and Q.r , s/ D
.1 � jr � sj/I.jr � sj � 1/ and EBEL, where (a)–(d) k D 2 and (e)–(h) k D 5 (the nominal level is
95% and the number of Monte Carlo replications is 1000) (�, PEBEL, fixed b asymptotics, n D 100I
4, PEBEL, fixed b asymptotics, n D 400; , EBEL, fixedb asymptotics, n D 100; , EBEL, fixed b
asymptotics, n D 400/: (a), (e) AR(1), ρ D 0.2; (b), (f) AR(1), ρ D 0.5; (c), (g) AR(1), ρ D 0.8; (d), (h) AR(1),
ρD�0.5
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bootstrap samples. This is based on the notion that z̄n is the true mean for the bootstrap sample
conditionally on the data and the cÅ that delivers the most accurate coverage for bootstrap
samples is an estimate of the optimal cÅ for the original series. Specifically, we consider the case
n= 100 and dn = 5, and set B = 100 and the number of Monte Carlo replications to be 100 to
see whether this scheme works well. For the VAR(1) model with coefficient matrix 0:5I5, the
coverage probability based on the above tuning parameter selection procedure is 98% and the
most frequently chosen cÅ is 0.4 (33%). When the coefficient matrix is 0:8I5, the corresponding
coverage probability is 90% and the most frequently chosen cÅ is 0.1 (51%), which is identical
to the empirically optimal cÅ as seen from Fig. 5(g). Hence the method of choosing the tuning
parameter cÅ seems to perform quite well. We shall leave a more detailed examination of this
bootstrap-based tuning parameter selection method to a separate work.

6. Records of hemispheric temperatures

To illustrate the finite sample performance further, we apply the penalization methods (PBEL
and PEBEL) and their unpenalized counterparts to the so-called hemisphere temperature
anomaly time series HadCRUT3v that is available from the Climate Research Unit (UK).
The data, consisting of adjusted monthly temperature averages from 1850 to 2010, combine
the land and marine gridded temperature anomalies, after correcting for non-climatic (e.g. in-
strumental) errors and adjusting the variance (see for example Rayner et al. (2006) and Jones
et al. (2011) and references therein for more details about the data set). Following Kim et al.
(2013), we consider the annual average anomalies for months December–January–February and
June–July–August over the years 1850–2009 in both northern and southern hemispheres; the
December–February values are means of average temperature anomalies of December of the

Table 4. Confidence intervals CI and coverage probabilities for the hemispheric temperatures records†

Method m cÅ Results for northern hemisphere Results for southern hemisphere

CI CP4 (%) CP8 (%) CI CP4 (%) CP8 (%)

PBEL 4 0.05 [1:012, 1:336] 90.6 82.2 [0:862, 0:949] 93.5 91.3
4 0.1 [0:961, 1:431] 98.5 95.6 [0:833, 0:977] 99.0 99.4
4 0.2 [0:983, 1:404] 98.0 94.5 [0:837, 0:973] 98.7 99.1
4 1 [1:028, 1:330] 93.2 86.0 [0:854, 0:957] 95.5 95.1
4 2 [1:031, 1:326] 93.1 85.5 [0:854, 0:956] 95.1 94.8

BEL 4 — [1:033, 1:323] 92.7 85.0 [0:855, 0:955] 95.0 94.8
PBEL 8 0.05 [0:983, 1:417] 91.5 84.8 [0:858, 0:948] 93.7 92.5

8 0.1 [1:022, 1:377] 90.3 83.0 [0:860, 0:946] 92.1 89.2
8 0.2 [0:974, 1:481] 98.1 95.1 [0:838, 0:976] 98.6 99.1
8 1 [1:029, 1:383] 93.9 87.5 [0:853, 0:956] 95.5 94.6
8 2 [1:034, 1:374] 93.0 86.2 [0:855, 0:955] 95.2 94.3

BEL 8 — [1:039, 1:365] 92.3 84.9 [0:856, 0:953] 94.7 93.6
PEBEL — 0.05 [0:738, 1:825] 93.7 90.5 [0:868, 0:952] 95.2 95.1

— 0.1 [0:742, 1:830] 93.6 90.6 [0:869, 0:955] 95.2 95.3
— 0.2 [0:746, 1:832] 93.6 90.8 [0:871, 0:962] 95.0 95.5
— 1 [0:800, 1:786] 92.8 90.5 [0:876, 0:988] 94.6 94.8
— 2 [0:831, 1:760] 92.3 89.7 [0:877, 1:002] 94.6 94.6

EBEL — — [1:059, 1:538] 87.0 84.4 [0:880, 1:133] 89.6 93.3

†The columns CP4 and CP8 correspond to the coverage probabilities based on the bootstrap samples with block
size dn =4 and dn =8 respectively.
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Fig. 6. Plot of f.Zt, θ̂/ D Xt.Yt � Xtθ̂/ with Zt D .Xt, Yt/: , northern hemisphere; , southern
hemisphere

current year and January and February of the next year. We consider fitting a simple linear
regression model

Yt =Xtθ + εt , t =1, : : : , 160,

for predicting the December–February temperature anomalies {Yt} from the June–August
anomalies {Xt}. Define the estimating equation f.Zt , θ/ = Xt.Yt − Xtθ/ with Zt = .Xt , Yt/

′. If
the model is correctly specified and E.Xtεt/ = 0, then E{f.Zt , θ0/} = 0 with θ0 being the true
parameter. We apply the penalization methods and their unpenalized versions to compute 95%
confidence intervals for θ0 (Table 4). Since θ0 is unknown to us, it makes a fair comparison of
various EL methods difficult as we do not really know whether the constructed confidence inter-
val covers θ0 or not. For this, we propose to apply the EL methods to non-overlapping bootstrap
samples which mimic the dependence structure of the original time series, and to make a fair
comparison. In particular, let n=dnln where n=160 and dn, ln ∈Z. Let M1, : : : , Mln be IID uni-
form random variables on {0, : : : , ln − 1} and let .XÅ

.j−1/dn+i, YÅ
.j−1/dn+i/ = .XMjdn+i, YMjdn+i/

with 1� j � ln and 1� i�dn: It is not difficult to verify that EÅ{Σn
t=1X

Å
t .YÅ

t −XÅ
t θ̂/}=0, where

θ̂ = Σ160
t=1XtYt=Σ160

t=1X2
t is the ordinary least square estimator and EÅ denotes the expectation

conditional on the sample {Xt , Yt}160
t=1: Thus, for the bootstrap sample, the true θ is θ̂ condi-

tional on the data and we can compute the empirical coverage probabilities for θ̂ based on 1000
bootstrap samples, where the block size dn is chosen to be 4 or 8. It is seen from Table 4 that, for
the northern hemisphere, undercoverage occurs for BEL, whereas PBEL with suitable choice
of cÅ can deliver better coverage. In such cases, the corresponding interval widths delivered by
PBEL based on the original data are wider. For the southern hemisphere, BEL provides quite
accurate coverage and PBEL with cÅ = 1, 2 is comparable with BEL in terms of the coverage
accuracy based on the bootstrap samples and the confidence intervals based on the original
data. In view of Table 4, PEBEL provides better coverage compared with the unpenalized ver-
sion for all cases that are considered here. For the northern hemispheric temperature anomalies,
the PEBEL-based confidence intervals are wider whereas, for the southern anomalies, PEBEL
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delivers shorter interval widths. On the basis of 1000 bootstrap samples, we can compute the
percentages of convex hull violation for EBEL. For the northern hemisphere, the upper bounds
are 90.1% and 88.2% for dn =4 and dn =8 respectively; for the southern hemisphere, the upper
bounds are 93.2% and 96.5%, showing a serious deficiency of the EBEL method. It is worth
pointing out that the penalized methods generally deliver wider interval widths for the northern
hemispheric data (in particular, PEBEL seems quite conservative in this case). This finding might
be due to the following facts. First, the June–August temperature anomalies appear to be worse
predictors for the December–February anomalies in the northern hemisphere (with adjusted R2

0.6234) than in the southern hemisphere (with adjusted R2 0.8768). Second, the plot of f.Zt , θ̂/

in the northern hemisphere (Fig. 6) tends to exhibit certain non-stationarity features (e.g. in
the second-order property), which may pose difficulty in constructing a confidence interval for
θ.

7. Conclusion

In this paper, we studied the upper bounds on the coverage probabilities of the BEL- and EBEL-
based confidence regions via theory and simulations. Our theoretical results, which are derived
for the pivotal limit of the BEL ratio obtained under fixed b asymptotics, suggest that the large
sample coverage upper bound for BEL is strictly less than 1 for any b ∈ .0, 1/. This result is in
sharp contrast with those corresponding to EL for independent moment conditions, where the
large sample bound is always equal to 1 because of the χ2-limit. By numerical simulations, we
discover that the finite sample coverage bounds for both BEL and EBEL can be far below the
nominal level in the cases when

(a) the dimension of moment condition k is moderate or high,
(b) the dependence of moment conditions is positively strong or
(c) b is large for BEL.

The deterioration in the coverage for the EBEL-based confidence region with respect to k is
especially noticeable. These phenomena appear to be discovered for the first time for these two
important EL methods in the time series context, which will hopefully lead to a new research
direction on EL methods for dependent data.

To overcome the convex hull constraint and related undercoverage problem, we introduce
the penalization-based BEL and EBEL methods, which drop the convex hull constraint and
penalize the original EL by using the quadratic distance measure, and derive their limiting
distributions under fixed b asymptotics. Interestingly, the penalization generates a new class of
statistics which lies in between the empirical log-likelihood ratio statistic and the self-normalized
score statistic through the choice of a tuning parameter cÅ. Our simulation studies show that
the penalization-based methods can outperform their unpenalized counterparts in terms of
coverage accuracy especially when the coverage bound is below the nominal level. In addition,
we propose a method of choosing the tuning parameter and demonstrate its effectiveness through
a simulation example. It is worth mentioning that our techniques (i.e. fixed b asymptotics and
penalization) are expected to be extendable to other variants of EL methods for time series or
spatial data, such as tapered blockwise EL (Nordman, 2009) and spatial EL (Nordman and
Caragea, 2008). We shall leave these for future investigation.
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