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Summary. The paper is concerned with inference for linear models with fixed regressors and
weakly dependent stationary time series errors. Theoretically, we obtain asymptotic normality
for the M -estimator of the regression parameter under mild conditions and establish a uniform
Bahadur representation for recursive M -estimators. Methodologically, we extend the recently
proposed self-normalized approach of Shao from stationary time series to the regression set-up,
where the sequence of response variables is typically non-stationary in mean. Since the limiting
distribution of the self-normalized statistic depends on the design matrix and its corresponding
critical values are case dependent, we develop a simulation-based approach to approximate the
critical values consistently. Through a simulation study, we demonstrate favourable finite sam-
ple performance of our method in comparison with a block-bootstrap-based approach. Empirical
illustrations using two real data sets are also provided.
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1. Introduction

Consider the following p-variate linear model:

Yt =xT
t,nβ+ et , t =1, 2, . . . , n, .1/

where ‘T’ denotes matrix transpose, and xt,n = .xt1,n, xt2,n, . . . , xtp,n/T, 1� t �n, are p×1 known
deterministic design vectors. In what follows we omit the subscript n in the notation if no con-
fusion arises. As a typical estimation procedure, let ρ be a convex function and the unknown
parameter vector β is estimated by the minimizer

β̂n =arg min
β∈Rp

n∑
t=1

ρ.Yt −xT
t β/: .2/

Note that ρ.x/=αmax.x, 0/+ .1−α/ max.−x, 0/, 0<α<1, leads to quantile regression (Koen-
ker, 2005). Other popular choices of ρ are Lq-regression with ρ.x/=|x|q and Huber’s estimation
with ρ.x/ = x2 1.|x| � c/=2 + .cx − c2=2/1.|x| > c/, c > 0. Considerable efforts have been made
in the study of the limiting behaviour of β̂n, when the error et is dependent; see Koul (1977),
Portnoy (1977, 1979, 1991), Prakasa Rao (1981), Babu (1989), Phillips (1991) and Wu (2007a),
among others. Related work includes Cui et al. (2004), where et is assumed to be a spatially
correlated process.
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In statistical applications, an important problem is to construct a confidence region or to
perform hypothesis testing for β. In the case of temporally dependent errors, the asymptotic
variance of β̂n admits a complicated form. For example, suppose that xt = 1, and ρ.x/ = |x|.
Then, under certain regularity conditions, it can be shown that .β̂n −β/

√
n⇒N{0,σ2∞=ϕ′.0/2},

where ‘⇒’ stands for convergence in distribution, and ϕ.·/ and σ2∞ are defined in conditions 2
and 10 in Section 2.1 respectively. Consistent estimation of σ2∞ and ϕ′.0/ is possible but quite
involved. Basically, σ2∞ is the long-run variance of the transformed sequence ψ.et/ (see con-
dition 1), which can be estimated by the lag window type of estimate with a choice of kernel
function and truncation lag. As for ϕ′.0/, it corresponds to the so-called sparsity (Koenker,
2005) in the special case of quantile regression, and a consistent estimate can be formed with
the choice of another bandwidth parameter. In practice, the practitioner may find the selection
of bandwidths a difficult task although there are bandwidth selection algorithms developed
for problems of both types. The choice of bandwidth usually depends on another user-chosen
number or it admits an analytical expression under the assumption of a parametric model, the
violation of which could lead to poor finite sample performance. Therefore it seems desirable
to develop alternative methods that do not involve any bandwidth selection and still lead to
asymptotically valid inference.

Recently, Shao (2010) proposed the so-called self-normalized (SN) approach to construct-
ing confidence intervals (regions) for quantities that are associated with a stationary time
series. A distinctive feature of the SN approach is that no smoothing parameters or band-
widths are involved and the SN statistic is asymptotically pivotal. The major goal of this
paper is to extend the SN approach to regression model (1) with time series errors. The exten-
sion is very non-trivial and it differs from Shao’s work in three important aspects. First,
though their covariance structure is stationary, the response variables {Yt}n

t=1 in model (1) are
typically non-stationary in mean over time, so the argument on the basis of influence func-
tions in Shao (2010) is not directly applicable. To circumvent the difficulty, we establish a uni-
form Bahadur representation for β̂�sn�, s∈ .0, 1], where �a� stands for the integer part of a∈R

and β̂�sn� stands for the estimate of β based on the subsample {xt , Yt}�sn�
t=1 , and thus we bypass

the influence-function-based argument. Second, the key technical assumption in Shao (2010)
for the validity of the SN approach is not yet verified for certain important statistics, such as
sample quantiles. Our regression set-up includes Shao’s as a special case because, if we let xt =
1 for t = 1, . . . , n, then Yt =β0 + et are stationary time series. So our results provide a direct
verification of the assumption that is needed in the use of the SN approach for a large class
of statistics with sample quantiles as a prominent example. Third, the limiting distribution of
our SN statistic is not pivotal and it depends on the design matrix, so we cannot directly use
the critical values of the particular limiting distribution that were described in Lobato (2001)
and Shao (2010). We propose a simulated-based method to approximate the critical values
consistently.

The rest of the paper is organized as follows. Section 2 presents theoretical assumptions and
results, and introduces the SN approach in the regression set-up. Section 3 compares the SN
approach with the block-bootstrap-based approach for both least squares regression and median
regression via simulations. Empirical illustrations are given in Section 4 and some discussions
are provided in Section 5. Proofs are gathered in Appendix A.

2. Asymptotic theory and methodology

Throughout the paper, we assume that the error .et/ is a stationary process which admits the
causal representation
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et =G.. . . , "t−1, "t/, .3/

where "t , t ∈Z, are independent and identically distributed (IID) random variables. The repre-
sentation (3) can be viewed as a physical system with ."t/ being the inputs, .et/ being the outputs
and G being the transform that represents the underlying data-generating mechanism. It covers
a wide range of linear and non-linear time series models that are encountered in practice; see,
for example, Priestley (1980) and Wu (2005, 2007a) for more discussions and examples.

2.1. Dependence measures and regularity conditions
Define the shift process Ft = .. . . , "t−1, "t/. Let ."′

t/t∈Z be an IID copy of ."t/t∈Z. For t � 0, let
the coupled process FÅ

t = .F−1, "′
0, "1, . . . , "t/. Further let ‖·‖q := E[|·|q]1=q and ‖·‖ :=‖·‖2 and

denote X∈Lq if ‖X‖q <∞. Define physical dependence measures for the stationary time series
H.Ft/∈Lq as

δH.k, q/=‖H.Fk/−H.FÅ
k /‖q: .4/

Adopting the idea of coupling, δH.k, q/ measures the dependence of H.Fk/ on the input "0. The
above dependence measures are closely related to the data-generating mechanism and therefore
are easy to work with. Wu (2005) contains detailed calculations of δH.k, p/ for stationary linear
processes and a very general class of stationary non-linear processes used in practice. In what
follows, we provide a list of technical conditions that are needed in establishing our main results.

Condition 1. Assume that ρ has derivative ψ. E[ψ.e1/]=0 and ‖ψ.e1/‖> 0.

Condition 2. ϕ.s/ :=E[ψ.e1 + s/]= sϕ′.0/+O.s2/ as s→0. Assume that ϕ′.0/> 0.

Condition 3. m.s/ :=‖ψ.e1 + s/−ψ.e1/‖=O.|s|λ/ as s→0 for some λ> 0.

Condition 4. Uniformly on [r, 1] for some 0<r<1, Σ�sn�=.sn/=Σ.s/+O.1=
√

n/, where Σt =
Σt

j=1 xjxT
j . Assume that, for sufficiently large n, there exists L<∞, such that

|Σ�s1n� −Σ�s2n�|�L.�s2n�−�s1n�/

holds for all r � s1 <s2 �1, and the smallest eigenvalue of Σ.·/ is bounded away from 0 on [r, 1].

Condition 5. max�rn��t�n|Σt
j=1ψ.ej −xT

j β̂t/xj|=OP.max1�t�n|xt|/, where r is the same as
the r in condition 4.

Condition 6. Σn−1
j=1 |xj −xj+1|+ |xn|=O.n1=4−δ/ for some δ> 0.

Condition 7. Define ψk.s;F0/=E[ψ.ek + s/|F0]. Assume that there is an "0 > 0, such that

Lt := sup
|s1|,|s2|�"0,s1 �=s2

|ψ1.s1;Ft/−ψ1.s2;Ft/|
|s1 − s2|

∈L1:

Condition 8. Suppose that ψ1.·, Ft/ ∈ Cp. For some "0 > 0 and l = 0, 1, . . . , p, we have
sup|"|�"0

‖ψ.l/
1 .";Ft/‖4 <∞ and

∞∑
t=0

sup
|"|�"0

‖E[ψ.l/
1 .";Ft/|F0]−E[ψ.l/

1 .";FÅ
t /|FÅ

0 ]‖4 <∞:

Condition 9. Σ∞
k=1kδψ◦G.k, 4/<∞.



4 Z. Zhou and X. Shao

Condition 10. σ2∞ :=Σ∞
t=−∞ cov{ψ.e0/,ψ.et/}> 0.

A few remarks on the regularity conditions are in order. Conditions 1–3, 5, 7 and 8 are adopted
from Wu (2007a), and they are required to guarantee the asymptotic normality and Bahadur
representations of the M-estimates. We refer to Wu (2007a) for more details. In particular, the
term on the left-hand side of condition 5 is always 0 if ψ.·/ is a continuous function. Addition-
ally, condition 5 is always satisfied in the case of quantile regression by the arguments in lemma
7 of Zhou and Wu (2009).

The Lipschitz-type condition on Σ�sn� in condition 4 is to guarantee the tightness of β̂�sn�. See
lemma 6 in Section 6 for more details. Additionally, condition 4 implies that Σ.·/ is a continuous
function on [r, 1]. Condition 6 controls the total variation of the sequence .xt/ and is needed
to establish the uniform Gaussian approximation of the M-processes .Σt

i=1ψ.ei/xi/
n
t=�rn�. See

lemma 5 in Appendix A. Proposition 1 below shows that conditions 4 and 6 are satisfied by
a very general class of fixed designs. However, note that condition 6 excludes some of the
orthogonal designs (e.g. xt = .1, .−1/t/′) and the random design when .xt/ is a realization of
a p-dimensional stationary process. In the latter case the results of Lee (2006), which dealt
with the random-regressor case, can be used. As pointed out by a referee, the fixed regressor
assumption is a limitation in many applications, which we acknowledge. However, it should be
noted that our set-up allows complicated deterministic trend functions that are not included in
Lee’s framework; see example 1 below. From this point of view, our work is a complement to
Lee’s.

Note thatψ.et/=ψ{G.Ft/}. Therefore condition 9 asserts that the stationary process {ψ.et/}
is short range dependent. Condition 9 guarantees that σ∞ in condition 10 is well defined
and is finite. A sufficient condition for condition 9 is δψ◦G.k, 4/=O{k−2 log.−1−"k/} for some
" > 0. Condition 10 is mild and it asserts that the long-run variance of the process {ψ.et/} is
positive.

2.1.1. Example 1 (piecewise smooth design)
Consider the design

xt,n = fj.t=n/1.sj < t=n� sj+1/, .5/

where 0 = s0 < s1 < . . .< sm < sm+1 = 1 are fixed points and m=O.n1=4−δ/ for some δ> 0. The
functions fj : [sj, sj+1] → Rp are assumed to be uniformly Lipschitz continuous in the sense
that their Lipschitz constants are bounded. Clearly xt is a piecewise smooth function with m
change points, where m can grow with n. In the case that m= 0, then f0.x/ is a Lipschitz con-
tinuous function on [0, 1]. The latter type of design covers many useful cases in practice such as
polynomial trend, periodic trend and exponential trend, among others.

Proposition 1. Assume design (5). If Σ.r/ is non-singular, then design (5) satisfies conditions
4 and 6.

Theorem 1. Under conditions 1–10, we have

.β̂n −β/
√

n⇒N{0,σ2
∞Σ−1.1/=ϕ′.0/2}: .6/

By condition 4, Σ.1/ can be consistently estimated by Σn=n. Hence theorem 1 implies that
(asymptotically) valid inference of β on the basis of the above central limit theorem boils down
to consistent estimation of the quantities σ2∞ andϕ′.0/. It is worth mentioning that theorem 1 in
Wu (2007a) established a very general central limit theorem for β̂n. However, the latter central
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limit theorem contains an infinite number of nuisance parameters, i.e. cov{ψ.e0/,ψ.et/} for all
t, and its use is not straightforward for inference. In contrast, our theorem 1 implies that, in
many interesting cases, theorem 1 in Wu (2007a) can be simplified into result (6) and thus the
number of nuisance parameters can be reduced to 2.

Theorem 2. Under conditions 1–10, we have for all r ∈ .0, 1/ the following uniform Bahadur
representation:

sup
r�s�1

∣∣ϕ′.0/sΣ.s/β̂�sn�
√

n−
�sn�∑
j=1

ψ.ej/xj=
√

n
∣∣= oP.1/: .7/

Furthermore, we have

n.β̂n −β/TW−1
n .β̂n −β/⇒UT.1/

{∫ 1

s=r

.U.s/− sU.1//.U.s/− sU.1//T ds

}−1

U.1/,

where Wn =Σn
t=�rn� t2.β̂t − β̂n/.β̂t − β̂n/T=n2 and U.·/ is a zero-mean Gaussian process with

covariance cov{U.s1/, U.s2/}=Σ{max.s1, s2/}−1:

In practice, people are often interested in making inference on βA := Aβ, where A is a full
rank q×p matrix with q�p. For instance, one may want to construct a confidence interval for
a single regression coefficient βi, which corresponds to A= 1i,p, where 1i,p represents the row
vector of length p with the ith entry being 1 and the other entries being 0.

Proposition 2. Define β̂t,A =Aβ̂t for t =1, 2, . . . , n. Then, under conditions 1–10, we have

n.β̂n,A −βA/TW−1
n,A.β̂n,A −βA/

⇒UT.1/AT

{
A

∫ 1

s=r

.U.s/− sU.1//.U.s/− sU.1//T dsAT

}−1

AU.1/, .8/

where Wn,A =Σn
t=�rn�t2.β̂t,A − β̂n,A/.β̂t,A − β̂n,A/T=n2.

Proposition 2 follows trivially from the proof of theorem 2. The limiting distributions that are
stated in theorem 2 and proposition 2 are unknown and they depend on the design matrix in a
non-trivial manner. Below we present a simulation-based method to approximate the limiting
distribution.

Step 1: generate standard normal random variables Vm1, Vm2, . . . , Vmn. Let Ûm,s,A =
AΣ̂

−1
.s/Σ�sn�

j=1 Vmjxj=
√

n. Calculate

Dm = Û
T
m,1,A

{∫ 1

s=r

.Ûm,s,A − sÛm,1,A/.Ûm,s,A − sÛm,1,A/T ds

}−1

Ûm,1,A:

Step 2: repeat step 1 for m=1, 2, . . . , B=1000 (say) and obtain D1, . . . , DB.
Step 3: denote by Qm,α the αth quantile of D1, . . . , DB. Then a 100α% confidence region for
βA can be constructed as

{βA : n.β̂n,A −βA/TW−1
n,A.β̂n,A −βA/�Qm,α}:

Under our condition 4, Σ.s/ can be well estimated by Σ̂.s/ :=Σ�sn�=.�sn�/ uniformly in s ∈
[r, 1]. Thus it is straightforward to show that each Dm converges in distribution to
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UT.1/AT

{
A

∫ 1

s=r

.U.s/− sU.1//.U.s/− sU.1//T dsAT

}−1

AU.1/

in result (8). Hence by proposition (2) the above approximation is consistent. In our inference
procedure, the only user-chosen parameter is r, which stands for the trimming proportion in the
normalization matrix Wn (or Wn,A). It is different from the smoothing parameter, such as the
truncation lag in the long-run variance estimator, the block size in the block bootstrap methods
or the subsampling width in the subsampling approach, as its effect is accounted for in the
limiting distribution and its approximation. The effect of r on the coverage and length of the
interval will be examined in our simulation studies.

Remark 1. As described in Shao (2010), the SN method is a special case of the so-called
fixed b approach (Kiefer and Vogelsang, 2005) in the mean case. In the fixed b asymptot-
ics, the ratio of bandwidth (or truncation lag) and sample size, denoted as b, is held fixed as
the sample size n → ∞. The resulting limiting distribution turns out to be a better approxi-
mation to the sampling distribution of the Studentized statistic than the limiting distribution
that is obtained under conventional asymptotics (or so-called small b asymptotics), where b→∞
as n→∞. See Jansson (2004) and Sun et al. (2008) for theoretical justifications. Recently, in the
context of quantile regression inference, Goh and Knight (2009) proposed to approximate the
sampling distribution of the Wald-type test statistic with a fixed m limiting distribution, where
m is a smoothing parameter involved in the conditional density estimate for the Wald-type test
statistic. The fixed m limiting distribution depends on the distribution of the conditioning vari-
ables and is non-standard, but it can be consistently approximated by resampling. The idea that
was presented in Goh and Knight (2009) is similar in spirit to the fixed b asymptotics, where
the effect from the smoothing parameter appears in the limiting distribution. It is, however,
developed for independent samples and seems not applicable to dependent situations, as the
simple IID bootstrap procedure may not be able to approximate the fixed m limiting distribution
in the presence of dependence consistently.

Remark 2. There is a literature on inference for regression models with dependent errors. For
time series linear regression models with random regressors, bootstrap-based inference has been
investigated by Fitzenberger (1997), Hidalgo (2003), Goncalves and White (2005) and Romano
and Wolf (2006), among others. All the methods except Hidalgo (2003) involve a smoothing
parameter, such as the block size in the moving block bootstrap and the subsampling width in
the subsampling method. Hidalgo introduced a wild bootstrap method in the frequency domain
that seems to work only for the least squares method in the time series regression setting. It is
worth noting that Kiefer et al. (2000) developed an SN-like approach (fixed b, with b = 1 and
Bartlett kernel) for inference in time series regression models, but their method does not seem
applicable when the regressors are fixed. Also their framework takes advantage of the analytical
form of the ordinary least squares (OLS) estimate and does not allow for quantile regression.
Additionally, Lee (2006) introduced an SN approach for time series linear regression in the
context of M-estimation but his work seems to focus on the random-regressor case. For linear
regression with fixed regressors, Sherman (1997) generalized the subsampling method to the
regression set-up and showed that the subsampling estimator can be calibrated to yield second-
order-correct inference by using the extrapolation method that was introduced by Hall and Jing
(1996).

Remark 3. As pointed out by a referee, inference for regression slopes when the error is de-
pendent is widely studied in the econometrics literature and empirical researchers in economics
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routinely use inference methods that allow dependence. In particular, work has been done to
make the test asymptotically valid regardless of whether the error et is weakly dependent (e.g.
an auto-regressive AR(1) model with AR(1) coefficient less than 1) or a unit root process. See
Vogelsang (1998), Bunzel and Vogelsang (2005), Harvey et al. (2007) and Perron and Yabu
(2009) among others for this line of research. By contrast, our SN-based test allows for weak
dependence in the error but is not robust to strong persistence or dependence in the error, such
as the existence of a unit root. However, all the aforementioned work seems focused on least
squares estimation, whereas we allow quantile regression in our framework.

3. Simulation studies

In this section we shall conduct two simulation studies to investigate the accuracy and sensitiv-
ity of our proposed method in finite samples and compare those with the performance of the
block-bootstrap-based methods. For this, we consider the simple regression model

Yt =β0 +β1
t

n
+ et , t =1, 2, . . . , n, .9/

and et are assumed to follow the AR(1) model
et =aet−1 + "t , .10/

where "t are assumed to be IID standard normal and to have t.2/ error with |a|< 1.

3.1. Sensitivity with respect to r
In this subsection we are interested in investigating the finite sample performance of our pro-
posed method with respect to the choice of r. Model (9) was used with errors satisfying model
(10). We let a=0:1, 0:5, 0:8 represent weak, medium and strong dependence respectively. Addi-
tionally, OLS, where ρ.·/= .·/2 and median regression (MR), where ρ.·/=|·|, were performed
to estimate the unknown coefficients. 2000 replications were conducted with sample size n=100
and n = 200. At nominal level 95%, we report the empirical coverage probability and average
length of the confidence interval of β1 with various choices of r. Tables 1 and 2 summarize the
results for standard normal and t.2/ innovations respectively.

As seen from Tables 1 and 2, the coverage probabilities are not very sensitive with respect to
r as long as r is not too small (in most cases) or too large. In fact, if r is too small, then the first
several recursive estimates are based on very few samples and those estimates are not stable.
In contrast, when r is too large, such as r = 0:5, the coverage is apparently inferior to that for
small r, although the interval is usually shorter. Intuitively, we lose some efficiency if we trim
too much. For all the combinations of a and n, the coverage is fairly stable over a broad range
of r, and that range depends on a (i.e. the magnitude of dependence in the errors) and the inno-
vation type (N.0, 1/ or t.2/). When the dependence becomes stronger, the range slightly drifts
towards large values. In the case of standard normal innovations, the coverages appear quite
satisfactory for a=0:1 when r ∈ [0:01, 0:1], for a=0:5 when r ∈ [0:05, 0:1], and for a=0:8 when
r ∈ [0:08, 0:3]. When the innovations are t.2/ distributed, the optimal coverages for the OLS
method occur when r ∈ [0:08, 0:3] for all as, whereas, for the MR method, the optimal ranges all
include r =0:1, 0:2 and they drift a little towards large values as a becomes larger. A comparison
between OLS and MR shows that the interval that is delivered by the OLS method is shorter or
longer with similar coverages when the innovations are respectively N.0, 1/ or t.2/ distributed,
thus confirming the advantage of MR, or quantile regression in general, for heavy-tailed error
processes. Not surprisingly, the simulation results show that the performance of our proposed
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Table 1. Simulated coverage probabilities and average lengths of the self-normalized
confidence interval of β1 for both OLS and MR at 95% nominal level with standard normal
innovations†

r OLS MR OLS MR

Coverage Length Coverage Length Coverage Length Coverage Length

a=0.1, n=100 a=0.1, n=200
0.01 0.945 1.67 0.934 1.89 0.939 1.18 0.927 1.39
0.02 0.952 1.74 0.945 2.01 0.935 1.16 0.927 1.39
0.04 0.944 1.68 0.941 1.99 0.934 1.19 0.932 1.44
0.05 0.942 1.67 0.941 2.01 0.931 1.20 0.933 1.45
0.08 0.939 1.70 0.945 2.06 0.923 1.17 0.927 1.43
0.1 0.937 1.72 0.943 2.09 0.926 1.18 0.923 1.44
0.2 0.907 1.58 0.915 1.95 0.933 1.24 0.924 1.51
0.3 0.898 1.55 0.902 1.92 0.899 1.11 0.902 1.37
0.5 0.864 1.47 0.864 1.83 0.864 1.04 0.858 1.28

a=0.5, n=100 a=0.5, n=200
0.01 0.890 2.43 0.883 2.62 0.908 1.83 0.905 1.99
0.02 0.911 2.65 0.911 2.87 0.913 1.88 0.910 2.06
0.04 0.912 2.69 0.912 2.95 0.927 1.99 0.923 2.20
0.05 0.913 2.73 0.917 2.99 0.929 2.02 0.921 2.23
0.08 0.924 2.87 0.924 3.15 0.924 2.01 0.916 2.22
0.1 0.930 2.92 0.927 3.22 0.920 2.03 0.916 2.24
0.2 0.903 2.76 0.904 3.06 0.920 2.16 0.925 2.39
0.3 0.889 2.71 0.884 3.01 0.892 1.96 0.898 2.18
0.5 0.852 2.52 0.848 2.82 0.858 1.82 0.861 2.04

a=0.8, n=100 a=0.8, n=200
0.01 0.776 4.29 0.769 4.49 0.826 3.57 0.819 3.75
0.02 0.815 4.77 0.807 5.00 0.847 3.76 0.840 3.96
0.04 0.830 5.01 0.823 5.26 0.875 4.16 0.868 4.39
0.05 0.840 5.13 0.833 5.40 0.885 4.29 0.879 4.52
0.08 0.859 5.59 0.856 5.89 0.891 4.40 0.890 4.65
0.1 0.872 5.82 0.869 6.12 0.893 4.51 0.892 4.77
0.2 0.865 5.86 0.861 6.19 0.902 5.00 0.907 5.30
0.3 0.855 5.93 0.854 6.29 0.869 4.61 0.868 4.90
0.5 0.816 5.63 0.823 6.03 0.841 4.35 0.843 4.66

†The AR(1) coefficient a is 0.1, 0.5 and 0.8 and r ranges from 0.01 to 0.5.

method deteriorates uniformly as the dependence becomes stronger and improves uniformly as
n grows larger.

3.2. Comparison with block bootstrap and normal approximation
In this subsection we shall compare the finite sample coverages of the SN-based approach with
the standard normal approximation approach and the bootstrap approach. We consider the
same simulation designs as those in Section 3.1, i.e. we generate the data from model (9), where
the errors are linear processes with IID N.0, 1/ or t.2/ innovations. We apply the OLS and MR
methods to the N.0, 1/ and t.2/ cases respectively. We then construct a confidence interval for
β1 by using the following three methods.

(a) Residual moving block bootstrap without Studentizing: we approximate the sampling
distribution of .β̂1n −β1/

√
n by .β̂

Å
1n − β̂1n/

√
n, where β̂

Å
1n is the estimate of β1 based on

the bootstrap sample .xt , yÅ
t /n

t=1 obtained in the following fashion. Let êt = Yt − xT
t β̂n,
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Table 2. Simulated coverage probabilities and average lengths of the self-normalized
confidence interval of β1 for both OLS and MR at 95% nominal level with t.2/ innova-
tions†

r OLS MR OLS MR

Coverage Length Coverage Length Coverage Length Coverage Length

a=0.1, n=100 a=0.1, n=200
0.01 0.891 3.93 0.939 2.79 0.911 3.16 0.943 1.96
0.02 0.908 4.11 0.943 2.76 0.913 3.21 0.944 1.85
0.04 0.906 4.12 0.936 2.59 0.923 3.37 0.948 1.84
0.05 0.910 4.13 0.936 2.57 0.931 3.50 0.944 1.88
0.08 0.918 4.29 0.939 2.56 0.930 3.44 0.934 1.80
0.1 0.930 4.51 0.944 2.64 0.928 3.44 0.929 1.78
0.2 0.927 4.54 0.932 2.58 0.929 3.46 0.920 1.74
0.3 0.914 4.54 0.917 2.54 0.931 3.74 0.925 1.86
0.5 0.863 3.93 0.862 2.17 0.882 3.33 0.885 1.63

a=0.5, n=100 a=0.5, n=200
0.01 0.852 5.90 0.885 4.42 0.890 4.89 0.915 3.50
0.02 0.874 6.39 0.907 4.73 0.904 5.13 0.920 3.59
0.04 0.885 6.67 0.913 4.85 0.916 5.50 0.926 3.71
0.05 0.889 6.78 0.913 4.88 0.923 5.73 0.935 3.80
0.08 0.897 7.12 0.917 4.97 0.921 5.72 0.932 3.67
0.1 0.912 7.52 0.922 5.16 0.920 5.74 0.932 3.65
0.2 0.914 7.76 0.919 5.10 0.914 5.84 0.920 3.59
0.3 0.904 7.90 0.906 5.06 0.924 6.29 0.928 3.84
0.5 0.845 6.83 0.859 4.31 0.873 5.58 0.886 3.40

a=0.8, n=100 a=0.8, n=200
0.01 0.757 11.39 0.778 9.68 0.817 10.22 0.852 8.24
0.02 0.792 12.52 0.812 10.62 0.833 10.79 0.866 8.70
0.04 0.810 13.39 0.830 11.34 0.871 11.97 0.894 9.58
0.05 0.818 13.74 0.836 11.63 0.881 12.33 0.901 9.80
0.08 0.835 14.88 0.861 12.52 0.888 12.70 0.907 9.87
0.1 0.859 16.00 0.878 13.39 0.892 13.06 0.908 10.02
0.2 0.873 17.42 0.887 14.15 0.910 14.62 0.915 10.72
0.3 0.871 17.80 0.882 14.17 0.880 13.57 0.879 9.76
0.5 0.823 15.38 0.830 12.02 0.829 12.50 0.846 8.93

†The AR(1) coefficient a is 0.1, 0.5 and 0.8 and r ranges from 0.01 to 0.5.

t =1, . . . , n, be the residuals. Then yÅ
t =xT

t β̂n +eÅ
t , t =1, . . . , n, where .eÅ

t /n
t=1 is a moving

block bootstrap sample from the residuals .et/
n
t=1.

(b) Normal approximation: we obtain a consistent estimator for var.β̂1n/ by using the mov-
ing block bootstrap estimator varÅ.β̂

Å
1n/. In practice, we calculate the bootstrap estim-

ator β̂
Å
1n 500 times and use its sample variance as an estimate. We then approximate

.β̂1n −β1/
√

n=
√

varÅ.β̂
Å
1n/ by the standard normal distribution.

(c) The third method is the SN-based approximation with r =0:05.

In Figs 1 and 2, we plot the empirical coverage probabilities and median lengths of the
intervals based on 1000 replications for block sizes b = 1, 3, 5, 7, 9, 11, 13, 15, 20. The methods
‘MBB–Nostud’, ‘N.0, 1/’ and ‘SN’ in Figs 1 and 2 correspond to schemes (a)–(c) that were
described above. From Fig. 1, it can be seen that all methods lead to undercoverage. The cov-
erages for the residual moving block bootstrap without Studentizing are comparable with the
normal approximation but are noticeably inferior to the SN-based method. As the correla-
tion grows stronger, the coverages for all methods deteriorate. In contrast, the intervals for the



10 Z. Zhou and X. Shao

5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Block Size

M
ea

n 
C

ov
er

ag
e 

5 10 15 20

1.
4

1.
6

1.
8

2.
0

2.
2

Block Size

M
ed

ia
n 

Le
ng

th

5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Block Size

M
ea

n 
C

ov
er

ag
e 

5 10 15 20

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

Block Size

M
ed

ia
n 

Le
ng

th

5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Block Size

M
ea

n 
C

ov
er

ag
e 

5 10 15 20

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Block Size

M
ed

ia
n 

Le
ng

th

(a) (d)

(b) (e)

(c) (f)

Fig. 1. (a)–(c) Empirical coverage probabilities and (d)–(f) median of interval widths based on the OLS estim-
ator (the sample size n D 50 and the number of replications is 1000; �, MBB–Nostud method; 1, normal
N (0,1); +, SN method): (a), (d) ρD0.1I (b), (e) ρD0.5I (c), (f) ρD0.8
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Fig. 2. (a)–(c) Empirical coverage probabilities and (d)–(f) median of interval widths based on the median
regression estimator (the sample size n D 50 and the number of replications is 1000; �, MBB–Nostud; 1,
normal N (0,1); +, SN method): (a), (d) ρD0.1I (b), (e) ρD0.5I (c), (f) ρD0.8
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normal approximation and residual moving block bootstrap without Studentizing are of similar
widths and are shorter than the SN-based intervals. Fig. 2 shows a similar pattern. Overall, the
SN-based method delivers more accurate coverages than the normal approximation and the
residual block bootstrap without Studentizing at the expense of a wider interval. This finding
is consistent with that in Shao (2010) in the stationary time series set-up.

4. Empirical illustrations

In this section, we illustrate the usefulness of our SN-based method by applying it to two real
data sets. The first is the lutenizing hormone data provided in Diggle (1990) and the time series
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Fig. 3. (a) Plot of hormone level over time and the fitted linear trend based on the least squares method
and (b) plot of the logarithm of net barter terms of trade and the fitted linear trend based on the least squares
method
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Table 3. Confidence intervals for β1 based on the least squares and MR estimates of model (11) and the
SN method for the hormone level data†

Method α%=r Intervals for the following values of β1:

0.05 0.10 0.15 0.2 0.25

Least squares 90 [0.21, 1.05] [0.18, 1.08] [0.20, 1.06] [0.20, 1.06] [0.19, 1.08]
95 [0.14, 1.14] [0.06, 1.21] [0.06, 1.20] [0.07, 1.19] [0.09, 1.17]

QR(0.5) 90 [−0.04, 1.00] [−0.09, 1.05] [−0.14, 1.10] [−0.19, 1.15] [−0.22, 1.18]
95 [−0.16, 1.12] [−0.24, 1.20] [−0.30, 1.26] [−0.36, 1.32] [−0.39, 1.35]

QR(0.75) 90 [0.60, 1.24] [0.57, 1.28] [0.57, 1.28] [0.54, 1.30] [0.55, 1.30]
95 [0.53, 1.32] [0.48, 1.37] [0.48, 1.37] [0.45, 1.39] [0.45, 1.39]

QR(0.25) 90 [−0.33, 0.86] [−0.40, 0.93] [−0.44, 0.97] [−0.47, 1.01] [−0.50, 1.03]
95 [−0.47, 1.00] [−0.56, 1.09] [−0.62, 1.16] [−0.65, 1.19] [−0.69, 1.23]

†QR.α/ stands for quantile regression at the αth quantile.

are hormone levels measured on a single woman every 10 min for 8 h; Fig. 3(a). As mentioned in
Sherman (1997), a problem of interest is to assess whether the hormone level changes over time
for this individual. Sherman (1997) fitted least square regression to the model Yt =α0 +α1t +et ,
where Yt stands for the observed hormone level at time t, and et is a stationary error sequence. He
applied the subsampling-based method to construct a confidence interval for α1. Again, there
is a practical issue with the choice of the subsampling width, which seems not well addressed in
Sherman (1997).

To remedy the problem, we consider the linear model

Yt =β0 +β1
t

n
+ et , t =1, . . . , n=48, .11/

with the fixed time covariates t=n. It is not difficult to see that our assumption on the fixed
regressors is satisfied. The least squares estimate for β1 is 0:63. An inspection of the auto-
correlation plot (which is not shown) of the residuals from the least squares fit suggests that
there is a significant auto-correlation at lag 1. So the standard error that is provided in the output
of the lm command in R (http://stat.ethz.ch/R-manual/R-patched/library/
stats/html/lm.html) is misleading, as independent error is assumed. Table 3 shows the 90%
and 95% SN-based confidence intervals for β1 when r = 0:05, . . . , 0:25 and OLS and quantile
regression with α=0:25, 0:5, 0:75 are used. It appears that all the OLS-based intervals exclude
zero, suggesting that β1 �=0 at the 5% level of significance. Also the intervals seem quite stable
for r =0:1, 0:15, 0:2, 0:25. Therefore, our results based on least squares regression indicate that
there is a positive linear trend over time. In contrast, all the MR-based intervals include zero
for all rs; thus the trend is not significant at the 10% level. This difference is presumably due
to the inefficiency of the MR estimate when the distribution of et is close to normal, which
seems to be so as seen from the normal Q–Q-plot in Fig. 4(a). Furthermore, the intervals for
quantile regression with α=0:25 and α=0:75 indicate that the upward trend is significant for
upper quantiles but not for lower quantiles. This new finding nicely illustrates the usefulness
of quantile regression and the associated SN-based inference. Note that most of the existing
inference methods for trend with dependent errors are based on least squares estimation. The
proposed SN-based approach can be readily used if the trend of the conditional quantile is of
interest and it provides a convenient tool for practitioners.

We further apply our SN-based inference method to the logarithm of the annual net barter
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Fig. 4. (a) Normal quantile–quantile plot of the residuals from the least squares fit to the model (11) for
hormone level and (b) auto-correlation plot of the residuals from the least squares fit to the logarithm of net
barter terms of trade
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Table 4. Confidence intervals for β1 based on the least squares and quantile regression estimates of model
(11) and the SN method for the net barter terms of trade data†

Method α%/r Intervals for the following values of β1:

0.05 0.10 0.15 0.2 0.25

Least squares 90 [−0.81, −0.43] [−0.83, −0.41] [−0.84, −0.40] [−0.84, −0.40] [−0.83, −0.41]
95 [−0.86, −0.38] [−0.89, −0.35] [−0.90, −0.34] [−0.89, −0.35] [−0.89, −0.35]
99 [−0.95, −0.29] [−0.97, −0.27] [−1.00, −0.24] [−0.98, −0.26] [−0.97, −0.26]

QR(0.5) 90 [−0.85, −0.48] [−0.87, −0.46] [−0.88, −0.45] [−0.86, −0.47] [−0.83, −0.50]
95 [−0.91, −0.43] [−0.93, −0.40] [−0.94, −0.40] [−0.91, −0.42] [−0.88, −0.46]
99 [−0.99, −0.34] [−1.01, −0.32] [−1.03, −0.30] [−0.99, −0.34] [−0.94, −0.39]

QR(0.75) 90 [−0.88, −0.40] [−0.90, −0.37] [−0.93, −0.35] [−0.92, −0.35] [−0.87, −0.40]
95 [−0.94, −0.33] [−0.98, −0.29] [−1.00, −0.27] [−0.99, −0.28] [−0.93, −0.34]
99 [−1.05, −0.22] [−1.09, −0.19] [−1.13, −0.15] [−1.11, −0.16] [−1.03, −0.25]

QR(0.25) 90 [−0.78, −0.38] [−0.80, −0.36] [−0.82, −0.34] [−0.83, −0.34] [−0.82, −0.34]
95 [−0.84, −0.33] [−0.87, −0.30] [−0.88, −0.28] [−0.88, −0.28] [−0.89, −0.28]
99 [−0.93, −0.23] [−0.96, −0.21] [−0.99, −0.18] [−0.98, −0.18] [−0.98, −0.18]

†QR.α/ stands for quantile regression at the αth quantile.

terms of trade series (see Fig. 3(b)), constructed by Grilli and Yang (1988) and Lutz (1999), and
analysed in Bunzel and Vogelsang (2005) and Harvey et al. (2007). The goal of this analysis
is to check the so-called Prebisch–Singer hypothesis, which asserts that the net barter terms of
trade should be falling over time. As seen from Table 4, which has the same format as Table 3,
all the intervals fall on the left-hand side of zero, thus convincingly showing that the negative
trend is significant at the 1% level. The auto-correlation plot of the least squares residual (see
Fig. 4(b)) suggests that the error is stationary in the sense that no unit root exists, since the
correlation decays exponentially for the first few lags and becomes non-significant from zero at
large lags. Our conclusion is in accordance with those reached by Bunzel and Vogelsang (2005)
and Harvey et al. (2007).

5. Discussion

In this paper, we propose an extension of Shao’s SN approach to the regression setting.
Our model allows for fixed regressors with various types of design but excludes the random-
design case, which was studied by Lee (2006). A uniform Bahadur representation for recursive
M-estimators is obtained under some verifiable technical conditions. Simulation results suggest
that the SN-based approach delivers better coverage at the expense of a wider interval, com-
pared with the block bootstrap and normal approximation approaches. It is worth noting that,
in our extension of the SN method to the regression problem, we need to introduce a user-chosen
number r ∈ .0, 1/; see theorem 2 and proposition 2. In practice, the choice of r is similar to the
choice of bandwidth(s) as required in the above-mentioned traditional approaches, and differ-
ent choices of r (bandwidths) may lead to different inference results. However, in theory the
choice of r is reflected in the limiting distribution of the SN statistic and associated simulation-
based approximation, whereas the choice of bandwidths is typically not captured by the usual
standard normal limiting distribution (i.e. two different bandwidths are used by two users with
N.0, 1/ as the same reference distribution). In our limited Monte Carlo experiments, we find
that the choice of r =0:1 performs reasonably well for both MR and OLS methods and for any
combination of error type (with varying degree of dependence) in the linear model and sample
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size. The optimal data-driven choice of r, which presumably depends on the design matrix and
the error dependence, seems to be a very challenging topic and is left for future research.
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Appendix A

Without loss of generality, throughout this section we assume that the true parameter β=0.

A.1. Proof of proposition 1
Note that Σ�sn� =Σ�sn�

j=1 xT
j xj . Let js be the largest j, such that sj <s. Then

Σ�sn� =
sj∑

k=1
n.sk − sk−1/

∫ sk

sk−1

fT
k−1.x/ fk−1.x/dx+n.s− sj/

∫ s

sj

fT
j .x/ fj.x/dx+O.m/:

Therefore Σ�sn�=sn=Σ.s/+O.1=
√

n/, where

Σ.s/=
sj∑

k=1
.sk − sk−1/

∫ sk

sk−1

fT
k−1.x/ fk−1.x/dx=s+ .s− sj/

∫ s

sj

fT
j .x/ fj .x/dx=s:

Note that max0�i�msupsi�t�si+1
|fT

i .x/ fi.x/|�L. Therefore

|Σ�tn� −Σ�sn�|�L.�tn�−�sn�/:

Observe that, for any t � r, .Σ�tn� −Σ�rn�/=n is positive semidefinite. Hence it is easy to see that, if Σ.r/
is non-singular, then Σ.·/ is bounded away from 0 on [r, 1].

We now prove condition 6. By the Lipschitz continuity of fj.·/, if sj−1 < t=n < .t +1/=n� sj for some j,
then |xt −xt+1|=O.1=n/. Otherwise |xt −xt+1|=O.1/. However, there are at most m jumps in the sequence
{xi}. Hence

n−1∑
t=1

|xt −xt+1|+|xn|�C

{
.n−m/

1
n

+m+1
}

=O.n1=4−δ/: �

Consider the transformed model

Yt = zT
t,nθn + et , zt,n =Σ−1=2

n xt , θn =Σ1=2
n β: .12/

Observe that θ̂t :=Σ1=2
n β̂t is a minimizer of Σt

j=1 ρ.ej −z′
j,nθ/ and that, by definition, zt,n = .zt,1,n, zt,2,n, . . . ,

zt,p,n/T satisfies Σn
t=1 zt,nzT

t,n = Idp, the p×p identity matrix. For q>0 let ζn.q/=Σn
t=1 |zt,n|q. Then ζn.2/=p.

Define

Ωt .θ/=
t∑

j=1
ψ.ej − zT

j,nθ/zj,n,

and Kt.θ/=Ωt .θ/−E[Ωt .θ/].
Write Kt.θ/=Mt.θ/+Nt.θ/, where
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Mt.θ/=
t∑

j=1
{ψ.ej − zT

j,nθ/−E[ψ.ej − zT
j,nθ/|Fj−1]}zj,n,

Nt.θ/=
t∑

j=1
{E[ψ.ej − zT

j,nθ/|Fj−1]−E[ψ.ej − zT
j,nθ/]}zj,n:

Lemma 1. Under conditions 4 and 6, we have for sufficiently large n

rn =O.n−1=4−δ/,

n−1=2 =O.rn/,

where rn =max1�t�n|zt,n| and δ> 0. Additionally, ζn.2+q/=O.rq
n/ for all q�0.

Proof. Note that Σn
t=1 |zt,n|2 =p. Therefore |rn|�n−1=2√p. In contrast, note that |xn|+Σn−1

t=k |xt −xt+1|�
|xk|. Therefore condition 6 implies that max1�t�n|xt |=O.n1=4−δ/ for some δ> 0. Additionally, condition
4 implies that Σ−1

n =O.n/. Therefore

rn = max
1�t�n

|zt,n|= max
1�t�n

|Σ−1=2
n xt |=O.n−1=4−δ/:

By the fact that

ζn.2+q/=
n∑

t=1
|zt,n|q � rq

n

n∑
t=1

|zt,n|2 =prq
n,

we have ζn.2+q/=O.rq
n/.

Lemma 2. Assume condition 7. Let .δn/ be a sequence of deterministic positive numbers such that

δn →∞,
δnrn = δn max

i�n
|zi,n|→0: .13/

Then we have

max
1�t�n

sup
|θ|�δn

|Mt.θ/−Mt.0/|=OP log.n/{√
τn.δn/+n−3}, .14/

where τn.δ/=Σn
t=1 |zt,n|2{m2.|zt,n|δ/+m2.−|zt,n|δ/}.

By the same martingale exponential inequality and chaining techniques as were used in lemma 4 of Wu
(2007a), lemma 2 can be proved. The details are omitted.

Lemma 3. Assume conditions 8 and 13. Then

‖ max
1�t�n

sup
|θ|�δn

|Nt.θ/−Nt.0/|‖4 =O{n1=4δn

√
ζn.4/}:

Proof. Let I = {α1,α2, . . . ,αq} ⊂ {1, 2, . . . , p} be a non-empty set and 1 � α1 < . . .< αq. For u =
.u1, . . . , up/, let uI = .u111∈I , . . . , up1p∈I /. Define∫ θI

0

@qNt.uI /

@uI

duI =
∫ θα1

0
. . .
∫ θαq

0

@qNt.uI /

@uα1 . . . @uαq

duα1 . . . duαq :

Note that ∣∣∣∣@qNt.uI /

@uI

duI

∣∣∣∣=
∣∣∣ t∑

j=1
{ψ.q/

1 .−zj,nuI ;Fj−1/−ϕ.q/.−zT
j,nuI /}wj

∣∣∣, .15/

where wj = zj,nzj,α1 . . . zj,αq . Let |u|�pδn and k ∈N. Since maxj�n |zj,nu|�prnδn, we have by Burkholder’s
inequality ∥∥∥{ t∑

j=1
Pj−k ψ

.q/

1 .−zj,nuI ;Fj−1/wj}
∥∥∥2

4
�C

∥∥∥ t∑
j=1

|Pj−kψ
.q/

1 .−zj,nuI ;Fj−1/wj|2
∥∥∥
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�C
t∑

j=1
‖Pj−k ψ

.q/

1 .−zj,nuI ;Fj−1/‖2
4|wj|2

=P0ψ
.q/

1 .−zj,nuI ;Fk−1/‖2
4

t∑
j=1

|wj|2:

Note that Σt
j=1 |wj|2 �Σn

j=1 |wj|2 � ζn.2+2q/ and

t∑
j=1

{ψ.q/

1 .−zj,nuI ;Fj−1/−ϕ.q/.−zT
j,nuI /}wj =

∞∑
k=1

t∑
j=1

Pj−k ψ
.q/

1 .−zj,nuI ;Fj−1/wj:

By lemma 1 of Wu (2007a) and condition 8, we have∥∥∥∥@qNi.uI /

@uI

∥∥∥∥
4

�C
√
ζn.2+2q/ uniformly over |u|�pδn: .16/

Since

∥∥∥∥max1�t�n

∣∣∣∣@qNt.uI /

@uI

∣∣∣∣
∥∥∥∥

4

4

�
n∑

t=1

∥∥∥∥@qNt.uI /

@uI

∥∥∥∥
4

4

,

we have by expression (16) that∥∥∥∥ max
1�t�n

∣∣∣∣@qNt.uI /

@uI

∣∣∣∣
∥∥∥∥

4

�Cn1=4√ζn.2+2q/ uniformly over |u|�pδn: .17/

Consequently, ∥∥∥∥ max
1�t�n

sup
|θ|�δn

∫ θI

0

∣∣∣∣@qNt.uI /

@uI

∣∣∣∣duI

∥∥∥∥
4

�
∫ δn

−δn
. . .
∫ δn

−δn

∥∥∥∥ max
1�t�n

∣∣∣∣@qNt.uI /

@uI

∣∣∣∣
∥∥∥∥

4

duI

�Cn1=4δq
n

√
ζn.2+2q/:

By expression (13), δq
n

√
ζn.2+2q/=O{δn

√
ζn.4/}. So the lemma follows from the identity

Nt.θ/−Nt.0/= ∑
I⊆{1, 2, :::, p}

∫ θI

0

@|I|Nt.uI /

@uI

duI :

Corollary 1. Under expression (13) and conditions 7 and 8, we have

max
1�t�n

sup
|θ|�δn

|Kt.θ/−Kt.0/|=OP{δλn log.n/
√
ζn.2+2λ/+n1=4δn

√
ζn.4/},

since Kt.θ/=Mt.θ/+Nt.θ/. Corollary 1 follows from lemmas 2 and 3 and condition 3.

Lemma 4. Assume conditions 4, 6 and 9. Then, on a richer probability space, there exist IID Gaussian
random variables V1, V2, . . . , Vn such that

max
1�t�n

∣∣∣∣ t∑
j=1

zj,nψ.ej/−σ∞
t∑

j=1
zj,nVj

∣∣∣∣=o.1/, almost surely,

where σ2
∞ =Σi∈Z cov{ψ.e0/,ψ.ei/}.

Proof. Let Se.t/=Σt
j=1ψ.ej/. By theorem 3 of Wu (2007b), on a richer probability space, there exist IID

Gaussian random variables V1, V2, . . . , Vn, such that

max
1�t�n

|Se.t/−σ∞ Sv.t/|=O{n1=4 log.n/} almost surely .18/

where Sv.t/=Σt
j=1 Vj . Let Ṽ t =ψ.et/−σ∞Vt and SṼ .t/=Σt

j=1 Ṽ j . Then



Inference for Linear Models 19

max
1�t�n

∣∣∣∣ t∑
j=1

zj,nψ.ej/−σ∞
t∑

j=1
zj,nVj

∣∣∣∣= max
1�t�n

∣∣∣∣ t∑
j=1

zj,nṼ j

∣∣∣∣
= max

1�t�n

∣∣∣∣ t−1∑
j=1

SṼ .j/.zj,n − zj+1,n/+SṼ .t/zt,n

∣∣∣∣
� max

1�t�n
|SṼ .t/| max

1�t�n

(
t−1∑
j=1

|zj,n − zj+1,n|+ |zt,n|
)

=O{n1=4 log.n/n1=4−δ=n1=2} almost surely
=o.1/ almost surely:

The lemma follows.

Lemma 5. Under the conditions of lemmas 2–4, we have

max
�rn��t�n

|θ̂t |=OP{log.n/}:

Recall that θ̂t =Σ1=2
n β̂t .

Proof. Define

Λt .θ/=
t∑

j=1
{ρ.ej −θTzj,n/−ρ.ej/},

Ξt .θ/=Λt .θ/+
t∑

j=1
θTzj,nψ.ej/ :=Λt .θ/+θTΨt : .19/

Note that Ξt .θ/=−θT
∫ 1

0 {Ωt .sθ/−Ωt .0/}ds. Let δn satisfy condition (13). Corollary 1 then implies that

max
1�t�n

sup
|θ|�δn

|Ξt .θ/−E[Ξt .θ/]|=Op{δλ+1
n log.n/

√
ζn.2+2λ/+n1=4δ2

n

√
ζn.4/}

=OP{rλnδ
λ+1
n log.n/+n1=4rnδ

2
n}: .20/

By condition 4 and arguments similar to those used in proposition 7 in Wu (2007a), we have

max
�rn��t�n

sup
|θ|�δn

∣∣∣∣E[Ξt .θ/]− ϕ′.0/

2
θT Σ−1=2.1/Σ

( t

n

)
Σ−1=2.1/θ

∣∣∣∣=o.δ2
n/: .21/

In contrast, lemma 4 and condition 4 imply that

max
1�t�n

|Ψt |=OP{log.n/}: .22/

For a sequence cn →∞, let c̃n = min.cn, r−1=3
n / and δ̃n = c̃n log.n/. Then it is straightforward to check

that this δ̃n satisfies expression (13). Therefore we have by expressions (20)–(22) and lemma 1 that

P{ max
�rn��t�n

sup
|θ|=δ̃n

Λt .θ/�0}→0: .23/

Note that Λt .θ/ is convex in θ and Λt .0/ = 0. Hence, for any θ such that |θ| > δ̃n, we have Λt .θ/ �
.|θ|=δ̃n/Λt .δ̃nθ=|θ|/. Therefore expression (23) implies that

P{ max
�rn��t�n

sup
|θ|�δ̃n

Λt .θ/�0}→0:

Therefore the lemma follows from the definition of θ̂t and the fact that .cn/ can approach ∞ arbitrarily
slowly.
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Proposition 3. Under the conditions of lemmas 2–5, we have

sup
r�s�1

∣∣∣∣ϕ′.0/snΣ.s/β̂�sn� −
�sn�∑
j=1

ψ.ej/xj

∣∣∣∣=oP.
√

n/:

Proof. Note that Kt.0/=Σt
j=1ψ.ej/zj,n. By condition 5,

max
�rn��t�n

∣∣∣∣Kt.θ̂t /+
t∑

j=1
ϕ.−zT

j,nθ̂t /zj,n

∣∣∣∣=OP.rn/:

Since zT
j,nθ̂t =oP.1/ uniformly on [rn, n], we have by condition 2 that

ϕ.−zT
j,nθ̂t /=−ϕ′.0/zT

j,nθ̂t +O{.zT
j,nθ̂t /

2},

uniformly on t ∈ [rn, n]. By expression (12), condition 4, lemma 5 and corollary 1, we have

sup
r�s�1

∣∣∣∣ϕ′.0/snΣ.s/β̂�sn� −
�sn�∑
j=1

ψ.ej/xj

∣∣∣∣=Op[{rλn log.n/λ+1 +n1=4rn log.n/}√
n]:

By lemma 1, rλn log.n/λ+1 +n1=4rn log.n/=o.1/. Therefore lemma 5 follows.

Lemma 6. Recall that V1, V2, . . . , Vn was defined in lemma 4. Then, under condition 4, we have

{Ψ̃�sn�}r�s�1 ⇒{Υs}r�s�1,

where Ψ̃t = Σt
j=1 Vjxj=

√
n and {Υs} is a mean 0 Gaussian process with covariance cov.Υs1 , Υs2 / =

Σ{min.s1, s2/}.

Proof. The finite dimensional convergence is straightforward. We now prove tightness. For r � s1 <s2 <
s3 �1, if �ns3�−�ns1��2, we have

E[|Ψ̃�s1n� − Ψ̃�s2n�|2|Ψ̃�s2n� − Ψ̃�s3n�|2]= |tr.Σ�s1n�/− tr.Σ�s2n�/||tr.Σ�s2n�/− tr.Σ�s3n�/|
n2

� |tr.Σ�s3n�/− tr.Σ�s1n�/|2
n2

�L2.�ns3�−�ns1�/2=n2

� .2L/2.s3 − s1/
2:

However, if �ns3�−�ns1�equals 1 or 0, then |Ψ̃�s1n� − Ψ̃�s2n�|2|Ψ̃�s2n� − Ψ̃�s3n�|2 =0. Hence, by theorem 13.5
in Billingsley (1999), lemma 6 follows.

A.2. Proof of theorem 2
Equation (7) follows from proposition 3. Furthermore, proposition 3 and lemma 4 imply that

sup
r�s�1

∣∣∣∣ϕ′.0/sΣ.s/β̂�sn�
√

n−σ∞
�sn�∑
j=1

Vjxj=
√

n

∣∣∣∣=oP.1/: .24/

Theorem 2 follows easily from lemma 6 and the continuous mapping theorem.

A.3. Proof of theorem 1
Letting s=1 in equation (24), we have

ϕ′.0/Σ.1/.β̂n −β/
√

n=σ∞
n∑

j=1
Vjxj=

√
n+oP.1/:

By the fact that the Vjs are IID standard Gaussian, theorem 1 follows.
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