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Abstract: We develop a self-normalization (SN) based test to test the
structural stability of temporally dependent functional observations. Test-
ing for a change point in the mean of functional data has been studied
in Berkes, Gabrys, Horváth and Kokoszka [4], but their test was devel-
oped under the independence assumption. In many applications, functional
observations are expected to be dependent, especially when the data is
collected over time. Building on the SN-based change point test proposed
in Shao and Zhang [23] for a univariate time series, we extend the SN-
based test to the functional setup by testing the constant mean of the finite
dimensional eigenvectors after performing functional principal component
analysis. Asymptotic theories are derived under both the null and local
alternatives. Through theory and extensive simulations, our SN-based test
statistic proposed in the functional setting is shown to inherit some useful
properties in the univariate setup: the test is asymptotically distribution
free and its power is monotonic. Furthermore, we extend the SN-based test
to identify potential change points in the dependence structure of functional
observations. The method is then applied to central England temperature
series to detect the warming trend and to gridded temperature fields gen-
erated by global climate models to test for changes in spatial bias structure
over time.
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1. Introduction

Major advances in technology are enabling data collection at increasingly high
resolution. These advancements challenge state-of-the-art models and methods
in statistics. It has long been recognized that functional data analysis (FDA),
which deals with the analysis of curves and surfaces, is an effective tool for
analyzing large high resolution data sets. Systematic methods and theory have
been developed for FDA mainly under the independence assumption (Ramsay
and Silverman [19, 20], Ferraty and Vieu [11]), with relatively little attention
paid to the analysis of dependent functional data. However, for functional data
observed over time, the independence assumption is rarely satisfied in practice.
This paper aims to develop new tests to assess the structural stability of tempo-
rally dependent functional data. Our work is partially motivated by our ongo-
ing research on the development of high-resolution climate projections through
statistical downscaling, which by definition assumes a temporally stable rela-
tionship between observations and climate models. Climate change is one of the
most urgent problems facing the world this century. To study climate change,
scientists have relied primarily on climate projections from global/regional cli-
mate models, which are deterministic numerical models that involve systems of
differential equations and produce outputs at a prespecified grid. As numerical
model outputs are widely used in situations where real observations are not
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available, it is an important but still open question whether the properties of
numerical model outputs remain stable relative to real observations over time.

To assess the structural stability, we view functional observations as a re-
alization from a functional time series process, and test for a change point in
the mean and autocovariance of the functional time series. The detection of
one or multiple change points in the first or second order structure of a func-
tional time series is itself an important problem, as failure to account for such
change points could lead to invalid inference. There is a large literature and
long history on change point testing in scalar or vector time series (see Csörgő
and Horváth [9], Perron [18] and references therein), but research on change
point testing for functional data is very recent. Berkes et al. [4] proposed a
CUSUM-based (cumulative sum) approach to test the assumption of a common
functional mean for independent functional data. Berkes et al.’s test (BGHK,
hereafter) is invalid for functional time series since it does not take the temporal
dependence into account. Hörmann and Kokoszka [13] recognized the limitation
of the BGHK test and modified their test by introducing a consistent long run
variance (LRV) estimator. Hörmann and Kokoszka’s work has been extended
recently by Aston and Kirch [3] for weak dependent functional data with a wide
class of dependence structure and two types of alternatives, namely, at most one
change point and epidemic changes. However, there is a bandwidth parameter
involved in both Hörmann and Kokoszka’s test (HK, hereafter) and Aston and
Kirch’s test. Its selection is not addressed and the finite sample performance of
their test has not been examined. To avoid choosing the bandwidth parameter,
Shao and Zhang [23] proposed a self-normalization (SN, hereafter) based test
in the univariate time series setup, where an inconsistent normalization matrix
is introduced to accommodate the dependence. The idea of using inconsistent
normalization is not new, as it has been previously applied by Lobato [16] and
Shao [22] to the inference in univariate time series. In this article, we extend the
SN-based test in the univariate setup to test the structural stability of tempo-
rally dependent functional data. To our knowledge, this is the first attempt to
generalize the SN idea to inference problems for functional data.

The extension of the SN concept to the functional setup is nontrivial since
functional observations are collected on a space of infinite dimension and tra-
ditional methods developed for univariate/multivariate time series are not ap-
plicable in this case. To circumvent this difficulty, our method relies on the
functional principal component analysis (PCA) which projects the functional
data onto a space spanned by the first few principal components (PC’s). The
SN-based test statistic is constructed based on the principal component scores.
To accommodate the dependence, we introduce a normalization matrix which is
built by taking the single change point alternative into account. The normaliza-
tion matrix is inconsistent but proportional to the unknown LRV matrix, which
is canceled out in the limiting null distribution of the SN-based test. The pro-
posed test is thus asymptotically pivotal with critical values tabulated in Shao
and Zhang [23]. Compared to the methods in previous studies, the SN-based test
is asymptotically distribution-free and is shown to enjoy the monotonic power
property in the functional setup. In addition, the SN-based test can be easily
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extended to detect multiple change points in the mean function and to detect
a change point in the lag one autocovariance operator, the latter of which is
investigated in this paper.

To illustrate this method, the SN-based tests are used to examine the station-
arity of biases in simulated spatio-temporal temperature data over a subregion
of North America which consists of two sequences of functional surfaces (with
spatial resolution 87× 35) based on station observations and historical simula-
tions from global climate models. Since spatially distributed temperature fields
are usually viewed as smooth images by scientists, FDA is an appropriate tool
for analyzing and revealing key characteristics of such a large dataset. Statistical
analysis based on the SN-based test is shown to be helpful in addressing the
scientific question of whether the bias between observations and model output
remains stable over time.

The remainder of the paper is organized as follows: Section 2.1 describes
the testing procedure for detecting changes in the mean; Section 2.2 presents
an SN-based test for one change point in the autocovariance operator at lag
one; we investigate the theoretical properties of SN-based tests in section 3;
Section 4 and 5 are devoted to the finite sample performance of the SN-based
tests and application to two climate datasets (curves and surfaces); and Section 6
summarizes our conclusions. Proofs of the theoretical results are presented in
the supplemental materials.

2. Methodology

Mathematically, we consider functional observationsXi(t), t ∈ I, i = 1, 2, . . . , N
defined on some compact set I of the Euclidian space, where I could be one
dimensional (e.g. a curve) or multidimensional (e.g. a surface or manifold). For
simplicity, we consider the Hilbert space H of square integrable functions defined
on I = [0, 1] (and I2 = [0, 1]2). For any f, g ∈ H, the inner product between f
and g is defined as < f, g >=

∫

I
f(t)g(t)dt. We denote || · || as the corresponding

norm, i.e., ||f || =< f, f >1/2. Assuming the random elements all come from the
same probability space (Ω,A,P), we let Lp be the space of real valued random
variables with finite Lp norm, i.e., (E|X |p)1/p <∞.We further define Lp

H
as the

space of H-valued random variables X such that ep(X) := (E||X ||p)1/p < ∞.
We then let D[0, 1] be the space of functions on [0, 1] which are right-continuous
and have left limits, endowed with the Skorokhod topology (see Billingsley [5]).
Weak convergence in D[0, 1] or more generally in the R

d-valued function space
Dd[0, 1] is denoted by “⇒”, where d ∈ N. Finally “→d ” denotes convergence in
distribution.

2.1. Testing for a change point in the mean function

Given the functional observations {Xi(t)}Ni=1, we are interested in testing whether
the mean function remains constant over time, i.e.,

H0,1 : E[X1(t)] = E[X2(t)] = · · · = E[XN (t)], t ∈ I. (2.1)
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Under the null, we can write Xi(t) = µ1(t) + Yi(t) with E[Yi(t)] = 0, i =
1, 2, . . . , N . Under the alternative Ha,1, we assume there is a change point in
the mean function, i.e.,

Xi(t) =

{

µ1(t) + Yi(t) 1 ≤ i ≤ k∗;

µ2(t) + Yi(t) k∗ < i ≤ N,
(2.2)

where k∗ = ⌊Nλ⌋ is an unknown change point for some λ ∈ (0, 1), {Yi(t)} is
a zero-mean functional sequence, and µ1(t) 6= µ2(t) for some t. To describe
our methodology, we first introduce some useful notation commonly adopted in
the literature of functional data; see e.g. Berkes et al. [4]. For X(·) ∈ Lp

H
with

p ≥ 2, we define c(t, s) = cov{X(t), X(s)}, t, s ∈ I as the covariance func-
tion. By Mercer’s Lemma (Riesz and Sz-Nagy [21]), c(t, s) admits the spectral
decomposition,

c(t, s) =

∞
∑

j=1

λjφj(s)φj(t), (2.3)

where λj and φj are the eigenvalue and eigenfunction respectively. The eigen-
values are ordered so that λ1 ≥ λ2 ≥ · · · ≥ 0. Based on the Karhunen-Loève
expansion (Bosq [6]), we haveXi(t) = E[Xi(t)]+

∑∞
j=1 ηi,jφj(t), where {ηi,j} are

the principal components (scores) defined by ηi,j =
∫

I{Xi(t)−E[Xi(t)]}φj(t)dt.
A natural estimator of the covariance function c(t, s) is

ĉ(t, s) =
1

N

N
∑

i=1

{Xi(t)− X̄N(t)}{Xi(s)− X̄N (s)}, (2.4)

where X̄N (t) = 1
N

∑N
i=1Xi(t) is the sample mean function. The eigenfunctions

and corresponding eigenvalues of ĉ(t, s) are defined by
∫

I

ĉ(t, s)φ̂j(s)ds = λ̂j φ̂j(t). (2.5)

Then the empirical scores are given by

η̂i,j =

∫

I

{Xi(t)− X̄N (t)}φ̂j(t)dt, i = 1, 2, . . .N ; j = 1, 2, . . . ,K,

where K is the number of principal components we consider and is assumed to
be fixed throughout. Under the null, the score vector ηi = (ηi,1, ηi,2, . . . , ηi,K)′,
i = 1, 2, . . . , N has a constant mean, whereas the mean changes under the
alternative. If we let η̂i = (η̂i1, . . . , η̂iK)′ and SN,η̂(t1, t2) =

∑t2
i=t1

η̂i, for 1 ≤
t1 ≤ t2 ≤ N, we can then define the so-called CUSUM process as

TN,η̂(k,K) :=
1√
N

{

SN,η̂(1, k)−
k

N
SN,η̂(1, N)

}

, k = 1, 2, . . . , N. (2.6)

To test the assumption of a common functional mean for independent and iden-
tically distributed (iid) functional data, Berkes et al. [4] introduced a CUSUM-
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based test statistic which takes the following form

HN,η̂(K) :=
1

N2

K
∑

j=1

λ̂−1
j

N
∑

k=1

(

k
∑

i=1

η̂i,j −
k

N

N
∑

i=1

η̂i,j

)2

. (2.7)

It can be rewritten as

HN,η̂(K) =
1

N

N
∑

k=1

TN,η̂(k,K)′Σ̂−1
η TN,η̂(k,K), (2.8)

where Σ̂η = diag(λ̂1, λ̂2, . . . , λ̂K). As pointed out by Hörmann and Kokoszka
[13], the BGHK test is not applicable to functional time series because it does
not take the temporal dependence of ηi’s into account. In the dependent case,
one usually needs to estimate the LRV matrix (i.e., the spectral density func-
tion evaluated at zero frequency) of ηi consistently. The commonly-used lag
window type estimator can be used to obtain a consistent LRV estimator Σ̃η

(see Hörmann and Kokoszka [13]). A test statistic can then be constructed by
applying certain continuous functional G to the normalized CUSUM process
TN,η̂(⌊Nr⌋,K)′Σ̃−1

η TN,η̂(⌊Nr⌋,K), r ∈ [0, 1]. In the iid case, the LRV matrix
of ηi is simply given by Ση = diag(λ1, λ2, . . . , λK), which can be consistently
estimated by replacing each eigenvalue with its empirical estimate. From equa-
tion (2.8), it is easy to see that the BGHK test is basically a special case of
this procedure with G(f) =

∫

I |f(x)|dx. For temporally-dependent functional
data, the HK test statistic is asymptotically valid, but it involves a truncation
lag (bandwidth parameter) in the LRV estimator, the selection of which is not
addressed. In fact, the choice of the bandwidth is a difficult task in the detection
problem even in the univariate setup. The bandwidth that is a fixed function of
the sample size (e.g., N1/3, where N is the sample size) is not adaptive to the
magnitude of the dependence in the series, whereas the data-dependent band-
width could lead to nonmonotonic power (i.e., the power can decrease when
the alternative gets farther away from the null) as shown in previous studies
(Vogelsang [24]; Crainiceanu and Vogelsang [8]; Juhl and Xiao [15]). Recently,
Shao and Zhang [23] proposed a SN-based test in the univariate time series
setup, that is able to overcome the nonmonotonic power problem and has very
accurate size and respectable power properties. Here we pursue an extension of
the SN-based test to the functional setup.

To avoid choosing the bandwidth parameter, we define the following normal-
ization matrix which takes the alternative into account. Let

VN,η̂(k,K) :=
1

N2

[

k
∑

t=1

{

SN,η̂(1, t)−
t

k
SN,η̂(1, k)

}{

SN,η̂(1, t)−
t

k
SN,η̂(1, k)

}′

+
N
∑

t=k+1

{

SN,η̂(t, N)− N − t+ 1

N − k
SN,η̂(k + 1, N)

}

{

SN,η̂(t, N)− N − t+ 1

N − k
SN,η̂(k + 1, N)

}′
]

. (2.9)
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The SN-based statistic can thus be defined as

GN,η̂(K) = sup
k=1,2,...,N−1

{TN,η̂(k,K)′V −1
N,η̂(k,K)TN,η̂(k,K)}

= C(N−1/2SN,η̂(1, ⌊Nr⌋), r ∈ [0, 1]), (2.10)

where C is the implicitly defined continuous mapping that corresponds to
GN,η̂(K). Here the self-normalizer {VN,η̂(k,K)}Nk=1 plays two roles. On the
one hand, it is able to absorb the dependence without consistent estimation
of the LRV matrix. This means that the resulting limiting null distribution
is nuisance parameter-free. On the other hand, it is specially designed for the
change point testing problem, and it has been shown very effective in eliminat-
ing the nonmonotonic power problem in the univariate time series setting by
Shao and Zhang [23]. Though there is no theoretical justification of the mono-
tonic power property of the SN-based test even in the univariate setting, the
empirical power of the SN-based test is seen to be monotonic in our simulation
studies (see section 4.1). Let BK(t) be a K dimensional vector with each com-
ponent an independent standard Brownian motion. Under suitable assumptions
(see section 3), we are able to show that

GN,η̂(K) →d G(K) := sup
r∈[0,1]

{BK(r) − rBK(1)}′V−1
K (r){BK(r) − rBK(1)},

(2.11)

where VK(r) =
∫ r

0
W1,K(s, r)W1,K(s, r)′ds+

∫ 1

r
W2,K(s, r)W2,K(s, r)′ds with

W1,K(s, r) = BK(s) − BK(r)s/r for s ∈ [0, r] and W2,K(s, r) = [{BK(1) −
BK(s)} − (1 − s)/(1 − r){BK(1) − BK(r)}] for s ∈ [r, 1]. The critical values
of the nonstandard null distribution G(K) have been tabulated by Shao and
Zhang [23] for K = 1, 2, . . . , 10 via simulations.

2.2. Testing for a change point in the Lag-1 autocovariance operator

As an extension of the above SN-based test, we consider the problem of testing
the stability of the autocovariance operator at lag one, which partially describes
the dependence structure of temporally dependent functional data. Recently,
Horváth et al. [14] proposed a test for the constancy of the ARH(1) (functional
autoregressive model of order one) operator against a one change point alterna-
tive. As pointed out in their paper, since the constancy of the ARH(1) operator
implies the stability of the autocovariance operator at lag one, their test ef-
fectively checks whether the lag one autocovariance operator stays constancy
over time. Our test differs from theirs in two aspects. First, we do not assume
a parametric ARH(1) model in our theory and our test can be easily extended
to test for the constancy of lag k autocovariance operator for k = 1, 2, . . . ,m,
either separately or jointly. Second, our SN-based test is free of any bandwidth
parameter, which is required in Horváth et al.’s work.

Without loss of generality, we assume that the functional observations
{Xi(t)}Ni=1 have a constant mean zero and admit the Karhunen-Loève expan-
sion, Xi(t) =

∑∞
j=1 ηi,jφj(t), i = 1, 2, . . . , N . Let Ri(·) = E[< Xi, · > Xi+1] be
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the lag one autocovariance operator at time i. We are interested in testing the
null hypothesis that

H0,2 : R1 = · · · = RN−1

versus the alternative

Ha,2 : R1 = · · · = Rk̃∗ 6= Rk̃∗+1 = · · · = RN−1,

where the change point k̃∗ = ⌊Nλ̃⌋ with λ̃ ∈ (0, 1) and k̃∗ < N − 1 is un-
known. Following Horváth et al. [14], we focus on the action of the lag one
autocovariance operator Ri on the space spanned by {φ1(t), φ2(t), . . . , φK(t)},
and we test the constancy of {Riφj , j = 1, 2, . . . ,K}. Based on the represen-
tation that Riφj =

∑∞
l=1 < Riφj , φl > φl, the constancy of Ri implies the

stability of < Riφj , φl >, j, l = 1, 2, . . . ,K, which motivates us to test the
stability of the vector (< Riφ1, φ1 >, . . . , < Riφ1, φK >, . . . , < RiφK , φ1 >,

. . . , < RiφK , φK >) ∈ R
K2

, for i = 1, 2, . . . , N − 1. Under H0,2, we note that
< Riφj , φl >= E[< Xi, φj >< Xi+1, φl >] = E[ηi,jηi+1,l]. Defining ξi(j, l) =

ηi,jηi+1,l and its empirical counterpart by ξ̂i(j, l) = η̂i,j η̂i+1,l. We further define

the vector ξi = (ξi(1, 1), . . . , ξi(1,K), . . . , ξi(K, 1), . . . , ξi(K,K))′ ∈ R
K2

and its

sample counterpart ξ̂i = (ξ̂i(1, 1), . . . , ξ̂i(1,K), . . . , ξ̂i(K, 1), . . . , ξ̂i(K,K))′. We

aim to test the mean change of the vector ξi based on ξ̂i, i = 1, 2, . . . , N − 1.
We define the empirical partial sum process by SN,ξ̂(t1, t2) =

∑t2
i=t1

ξ̂i. Analo-

gous to TN,η̂(k,K) and VN,η̂(k,K), we define TN,ξ̂(k,K
2) and VN,ξ̂(k,K

2) with

SN,η̂(t1, t2) replaced by SN,ξ̂(t1, t2). The test statistic is then given by

GN,ξ̂(K
2) = sup

k=1,2,...,N−1
{TN,ξ̂(k,K

2)′V −1

N,ξ̂
(k,K2)TN,ξ̂(k,K

2)}. (2.12)

We will show that GN,ξ̂(K
2) has the limiting null distribution G(K2) in the

next section.

3. Theoretical results

In this section, we justify the asymptotic validity of the SN-based test statistic by
studying its asymptotic properties under both the null and local alternatives. To
this end, we adopt the dependence measure proposed in Hörmann and Kokoszka
[13], which is applicable to the temporally-dependent functional process.

Definition 3.1. Assume that {Xi} ∈ Lp
H

with p > 0 admits the following
representation

Xi = f(εi, εi−1, . . . ), i = 1, 2, . . . , (3.1)

where the εi’s are iid elements taking values in a measurable space S and f is

a measurable function f : S∞ → H. For each i ∈ N, let {ε(i)j }j∈Z be an inde-
pendent copy of {εj}j∈Z. The sequence {Xi} is said to be Lp-m-approximable
if

∞
∑

m=1

ep(Xm −X(m)
m ) <∞, (3.2)
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where

X
(m)
i = f(εi, εi−1, . . . , εi−m+1, ε

(i)
i−m, ε

(i)
i−m−1, . . . ). (3.3)

It can be verified that a functional linear process is Lp-m-approximable when
the operator coefficients satisfy certain summability conditions and the innova-
tion sequence is in Lp

H
(see Proposition 2.1 in Hörmann and Kokoszka [13]).

Definition 3.1 is also applicable to other nonlinear functional time series models
such as functional bilinear models and functional ARCH models (see Examples
2.3 and 2.4 in Hörmann and Kokoszka [13]). For the temporally dependent func-
tional data, the PC’s are temporally correlated. We denote by Ση,K the LRV
matrix of the first K PC’s, i.e,

Ση,K =

∞
∑

h=−∞

E[η0η
′
h],

with ηi = (ηi,1, ηi,2, . . . , ηi,K)′ ∈ R
K . Similarly we can define the LRV matrix

Σξ,K2 for {ξi}. To derive the asymptotic properties of the SN-based tests, we
make the following assumption.

Assumption 3.2. Assume that Yi(t) := Xi(t)−E[Xi(t)] ∈ Lp
H
are Lp-m−appro-

ximable mean zero random elements. The eigenvalues of c(t, s) satisfy that
λ1 > λ2 > · · · > λK > λK+1 > 0.

Theorem 3.3. Suppose that E[Xi(t)] ∈ L2
H

and Assumption 3.2 holds with
p = 4. Assume that Ση,K is positive definite. Then (2.11) holds under H0,1.

With a similar argument, we have the following result for GN,ξ̂(K
2) under

slightly stronger assumptions.

Theorem 3.4. Suppose that Assumption 3.2 holds with p = 8. Also assume
that E[Xi(t)] = 0 and Σξ,K2 is positive definite. Then under H0,2, we have

GN,ξ̂(K
2) →d G(K2). (3.4)

We now turn to the consistency of the proposed tests. As mentioned before,
we consider the one-time shift alternative that the mean function or the lag
one autocovariance operator remains constant before the change point and then
becomes another constant afterward. In the case of detecting the mean change,
we consider the alternative (2.2). Let

c̃(t, s) = c(t, s) + λ(1 − λ){µ1(t)− µ2(t)}{µ1(s)− µ2(s)}.

It is not hard to see that c̃(t, s) is a covariance operator since it is symmetric and
positive definite. Let γi and vi(t) be the corresponding eigenvalues and eigen-
functions satisfying that

∫

I
c̃(t, s)vi(s)ds = γivi(t) and γ1 > γ2 > · · · > γK > 0.

Set ∆(t) = µ1(t) − µ2(t) and ∆K = (< ∆, v1 >,< ∆, v2 >, . . . , < ∆, vK >)′ ∈
R

K . To ensure that ∆K 6= 0, we suppose ∆(t) /∈ span{v1(t), v2(t), . . . , vK(t)}⊥
which means that the difference of the two mean functions does not belong to
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the orthogonal complement of the space spanned by the first K eigenfunctions
of c̃. Note that if ∆K = 0, then

∫

I

c̃(t, s)vi(s)ds =

∫

I

c(t, s)vi(s)ds = γivi(t), i = 1, 2, . . . ,K,

which means γi and vi are also the eigenvalues and eigenfunctions of c(t, s). In
this case, the proposed test only has trivial power against the alternative. When
∆K 6= 0, the following proposition shows the consistency of the SN-based test.

Proposition 3.5. Consider the alternative (2.2) with λ ∈ (0, 1) fixed and ∆K 6=
0. Suppose that assumption 3.2 holds with p = 4, then we have GN,η̂(K) → ∞
in probability.

In what follows, we consider the local alternatives where the difference of the
mean functions depends on the sample size N. In this case, we shall use the

notation c̃(N)(t, s), v
(N)
i , ∆(N)(t) and ∆

(N)
K instead of c̃(t, s), vi, ∆(t) and ∆K .

Proposition 3.6. Consider the alternative (2.2) where λ ∈ (0, 1) is fixed, and

||∆(N)|| = O(|∆(N)
K |) with |∆(N)

K | = o(1) and lim infN→∞
N1/2|∆

(N)
K |

log logN > 0. Here

|∆(N)
K | denotes the Euclidean norm of ∆

(N)
K . Further suppose that assumption

3.2 holds with p = 4, then we have GN,η̂(K) → ∞ in probability.

Here we allow |∆(N)
K | to decay to zero at a rate (log logN)/N1/2 in order

to have nontrivial power. The condition ||∆(N)|| = O(|∆(N)
K |) implies that the

projection of the change on the first K PC’s takes a nonzero proportion. As a
by-product of our test, the change point can be naturally estimated by

k̂∗ = argmaxk=1,2,...,N−1{TN,η̂(k,K)′V −1
N,η̂(k,K)TN,η̂(k,K)}. (3.5)

WhenK = 1, we are able to show that the SN-based change point estimator is in
fact consistent. However, we encountered some technical difficulty when proving
the consistency result for K > 1. To study the power properties of the test
statistic GN,ξ̂(K

2), we may further assume that the functional sequence comes

from two stationary subsequences {X(1)
i (t)}k∗

i=−∞ and {X(2)
i (t)}∞i=k∗+1 under the

Ha,2. Following the arguments presented in the proofs of Proposition 3.5, we can
show (omitting the details) that GN,ξ̂(K

2) is consistent under the alternative

Ha,2 with λ̃ ∈ (0, 1) fixed.

4. Numerical studies

To demonstrate the merits of the SN-based test statistics in a finite sample, we
carried out several simulation studies to investigate the size and power properties
of the proposed tests: for a change in the mean function in Section 4.1, for a
change in the autocovariance operator at lag one in Section 4.2, and for a mean
change in the 2-d functional data (a surface) in Section 4.3. Throughout the
simulations, the number of Monte Carlo replications is set to be 1000.
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4.1. Detecting the mean change for curves

Here we investigate the finite sample properties of the SN-based test for de-
tecting the change of mean function. First, we consider independent functional
observations. We follow the simulation setup in Berkes et al.[4], where the mean
function µ1(t) was chosen to be zero under the null hypothesis and two different
cases of Yi(t) were considered, namely the trajectories of the standard Brown-
ian motion (BM) and Brownian Bridge (BB). Under the alternative (2.2), let
µ2(t) = t or µ2(t) = sin(t). The change point k∗ is set to be N/2. We generate
data on a grid of 103 equispaced points in [0, 1], and then convert discrete data
to functional observations by using B-splines with 20 basis functions. We also
tried 40 and 100 basis functions with sample size N = 50, 100 and K = 1, 2, 3,
and found that the number of basis functions does not affect our results much.
We compare the SN-based test (i.e., (2.10)) with the BGHK test; see (2.8).
The empirical size and size-adjusted power of both the SN-based test and the
BGHK test are summarized in Table 1. Size-adjusted power is computed us-
ing finite sample critical values based on the Monte Carlo simulation under the
null hypothesis. It can be seen that the empirical size of the SN-based test is
comparable with the BGHK test in all cases considered here. As the expense of
accounting for dependence, the SN-based test loses some power, but the power
loss is fairly moderate.

To further examine the effect of dependence on the tests, we generate a
functional sequence {Yi(t)}Ni=1 from the ARH(1) model which is defined as

Yi(t) =

∫

I

ψ(t, s)Yi−1(s)ds+ εi(t), t ∈ I, i = 1, 2, . . . , N,

where ψ(t, s) is the kernel function and {εi(t)} is a functional innovation se-
quence. To ensure that the ARH(1) model has a stationary solution, we assume

||ψ||2HS =

∫ 1

0

∫ 1

0

ψ2(t, s)dtds < 1,

where ||·||HS denotes the so-called Hilbert-Schmidt norm. Following the setup in
Gabrys and Kokoszka [12], we choose two kernel functions, the Gaussian kernel,

ψ(t, s) = C exp

(

t2 + s2

2

)

and the Wiener kernel,

ψ(t, s) = Cmin(t, s),

in our simulations. We consider the null hypothesis (2.1) and alternative hy-
pothesis (2.2) as in the independent case, except that {Yi(t)} is now generated
from the ARH(1) model. We compare the SN-based test with the BGHK test
and the HK test. To implement the latter test, we have to estimate the LRV ma-
trix of the first K scores consistently. Given a p-dimensional multivariate series
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Table 1

Empirical size (upper panel) and size-adjusted power (lower panel) in percentage for the
SN-based test (in row (i)) and the BGHK test (in row (ii)) for independent functional data
generated from BM or BB. The size-adjusted power is computed under the alternative (2.2)

with µ2(t) = t or µ2(t) = sin(t), and k∗ = N/2. The sample size N = 50, 100, and the
number of PCs K = 1, 2, 3. The number of Monte Carlo replications is 1000

K = 1 K = 2 K = 3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM (i) 10.7 5.7 0.7 9.6 3.7 0.7 10.8 5.2 1.4

(ii) 10.0 5.3 1.2 10.3 5.0 0.8 10.9 5.5 1.0
BB (i) 7.5 3.8 0.8 8.2 4.6 1.1 10.7 6.0 1.3

(ii) 10.6 5.4 0.8 10.9 5.1 1.1 10.5 5.2 1.2
N = 100

BM (i) 9.9 5.1 1.1 9.2 4.3 0.5 9.1 4.6 0.7
(ii) 10.4 5.4 0.5 10.3 4.5 0.6 9.5 3.8 0.6

BB (i) 10.0 5.1 1.3 8.4 3.5 0.7 9.9 4.7 0.7
(ii) 9.6 5.2 0.9 9.3 4.9 0.6 9.1 4.1 0.9

N = 50
BM, t (i) 77.6 64.5 44.9 71.7 58.4 39.4 67.4 51.7 23.8

(ii) 89.5 79.8 48.9 83.6 73.7 48.9 77.8 65.4 38.8
BB, t (i) 99.8 99.4 95.6 100 100 99.6 100 100 99.9

(ii) 100 100 99.7 100 100 100 100 100 100
BM, sin(t) (i) 70.0 57.7 38.9 62.1 48.3 29.1 56.0 41.4 17.0

(ii) 82.1 71.9 39.4 74.4 61.4 36.4 66.9 52.4 28.7
BB, sin(t) (i) 99.3 98.1 89.7 100 99.6 96.9 100 99.9 99.4

(ii) 99.9 99.7 97.6 100 100 100 100 100 100
N = 100
BM, t (i) 96.9 89.9 70.8 92.9 87.4 73.0 90.9 84.0 66.7

(ii) 99.3 98.4 95.5 99.1 97.9 94.0 98.5 96.8 91.2
BB, t (i) 100 99.9 99.6 100 100 100 100 100 100

(ii) 100 100 100 100 100 100 100 100 100
BM, sin(t) (i) 92.7 84.2 62.7 87.1 78.7 59.2 83.9 73.8 52.1

(ii) 98.4 95.8 89.6 96.3 93.5 86.6 95.2 90.9 78.0
BB, sin(t) (i) 99.9 99.7 98.8 100 100 100 100 100 100

(ii) 100 100 100 100 100 100 100 100 100

{ui = (ui1, . . . , uip)}Ni=1, the LRV matrix can be estimated nonparametrically
by

Ω̂ =
∑

|j|≤bN

K

(

j

bN

)

Γ̂j ,

where bN is the bandwidth, K(·) is the kernel function and Γ̂j is the sample
autocovariance function at lag j. Here we use the Bartlett kernel, i.e, k(x) = (1−
|x|)I{|x| ≤ 1}, with the data-dependent truncation lag bN = 1.1447{α̂(1)N}1/3,
where

α̂(1) =

{

p
∑

i=1

4σ̂4
i ρ̂

2
i

(1 − ρ̂i)6(1 + ρ̂i)2

}{

p
∑

i=1

σ̂4
i

(1 − ρ̂i)4

}−1

. (4.1)

Here ρ̂i is the least squares coefficient estimate by regression uki on u(k−1)i and
σ̂2
i is the estimate of the innovation variance. The plug-in bandwidth formula
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Table 2

Empirical size in percentage of the SN-based test (in row (i)), the BGHK test (in row (ii))
and the HK test (in row (iii)) for temporally dependent functional data generated from
ARH(1) process. The sample size N = 50, 100, and the number of PCs K = 1, 2, 3. The

number of Monte Carlo replications is 1000

K = 1 K = 2 K = 3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
Gaussian, BM (i) 15.2 10.3 3.9 15.2 8.4 2.4 14.5 8.0 2.2

(ii) 44.1 32.2 16.2 37.5 25.0 12.4 32.7 23.0 11.4
(iii) 17.7 9.2 0.6 11.1 3.2 0.3 4.9 1.1 0.0

Gaussian, BB (i) 17.3 10.6 3.1 14.0 7.1 2.5 14.5 8.2 2.3
(ii) 42.7 32.3 13.8 36.1 25.5 10.0 34.9 23.2 9.6
(iii) 19.8 8.8 0.2 11.1 2.6 0.0 6.3 1.5 0.0

Wiener, BM (i) 16.0 10.4 4.0 16.1 9.2 3.0 16.0 9.8 2.9
(ii) 46.4 33.6 16.6 40.2 26.9 12.6 36.6 25.0 10.2
(iii) 17.5 8.4 0.5 10.9 2.8 0.1 6.1 0.7 0.0

Wiener, BB (i) 17.0 10.4 2.9 13.3 7.3 2.2 15.4 9.7 2.2
(ii) 42.8 31.0 14.3 37.9 26.7 11.2 36.4 23.9 10.0
(iii) 19.0 8.9 0.2 11.2 3.3 0.0 6.5 1.8 0.0

N = 100
Gaussian, BM (i) 13.3 7.8 2.0 11.7 5.7 1.2 11.7 6.1 1.2

(ii) 51.2 35.9 16.4 39.7 27.9 11.6 34.9 24.1 9.7
(iii) 15.2 7.4 0.4 11.6 3.9 0.2 7.2 2.1 0.0

Gaussian, BB (i) 11.6 6.7 1.6 10.9 4.9 1.1 11.5 7.1 1.2
(ii) 46.7 33.0 13.9 35.9 25.1 10.2 36.4 25.8 11.4
(iii) 16.1 8.0 1.4 12.4 5.3 0.3 10.0 3.5 0.1

Wiener, BM (i) 13.7 7.8 2.1 11.7 5.8 1.3 12.9 7.1 1.3
(ii) 52.2 37.2 17.5 43.8 29.7 12.8 38.3 26.1 11.7
(iii) 15.3 7.4 0.5 11.6 4.1 0.2 7.5 2.6 0.0

Wiener, BB (i) 11.9 6.4 1.9 10.4 5.6 1.2 12.0 7.8 1.3
(ii) 45.1 32.0 13.5 38.5 27.5 12.8 37.9 27.3 11.9
(iii) 16.4 7.6 1.5 13.3 5.9 0.5 10.8 3.7 0.2

(4.1) is suggested by Andrew [2] and is shown to minimize the MSE of the LRV
estimator when the true model is the vector autoregressive model of order one.

We report the simulation results for N = 50, 100, K = 1, 2, 3, ||ψ||HS = 0.5
and BM and BB innovations in Table 2 and Table 3. Several other values of
||ψ||HS (e.g. 0.3,0.8) were also considered, but the results are not reported here
to save space. From Table 2, we see that the size distortion of the BGHK test is
severely large compared to the other two tests. This is due to the fact that it is
designed only for independent functional data and is invalid in the temporally-
dependent case. For the HK test, the size distortion is less severe but seems
sensitive to the choice of K. It tends to be oversized for small K but undersized
for large K. For the SN-based test, size distortion is apparent for N = 50, but
improves for N = 100. The size for the SN-based test seems quite robust to
the choice of K. Table 3 presents selected results of the size-corrected powers
from which several observations can be made. First, the BGHK test delivers
the highest power among the three tests, which is largely due to its severe
upward size distortion. Second, the power of the SN-based test is comparable
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Table 3

Size-adjusted power in percentage of the SN-based test (in row (i)), the BGHK test (in row
(ii)) and the HK test (in row (iii)) for temporally dependent functional data generated from

ARH(1) process. The size-adjusted power is computed under the alternative (2.2) with
µ2(t) = t or µ2(t) = sin(t), and k∗ = N/2. The sample size N = 50, 100, and the number of

PCs K = 1, 2, 3. The number of Monte Carlo replications is 1000

K = 1 K = 2 K = 3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
Gaussian, BM, t (i) 35.7 22.5 5.0 48.6 34.7 11.4 46.0 32.5 11.0

(ii) 44.0 25.0 11.8 46.2 28.2 11.8 42.7 25.6 11.4
(iii) 36.1 21.6 7.4 46.9 32.4 7.6 40.8 26.8 4.9

Gaussian, BB, t (i) 75.3 66.8 33.2 99.3 96.9 84.9 99.1 97.1 88.2
(ii) 89.9 83.0 69.4 99.8 99.7 97.6 100 99.9 98.1
(iii) 65.1 40.6 11.0 79.6 53.1 23.3 61.2 37.3 11.8

Gaussian, BM, sin(t) (i) 31.8 18.5 4.1 36.3 24.8 7.4 36.8 24.0 6.8
(ii) 38.3 20.7 8.9 36.7 21.3 7.7 32.8 20.1 7.5
(iii) 31.6 19.2 5.1 37.0 25.0 4.4 35.4 21.9 3.2

Gaussian, BB, sin(t) (i) 67.5 60.0 26.4 96.0 89.8 69.6 96.3 91.3 73.6
(ii) 83.5 76.7 57.2 99.0 96.5 91.3 99.6 98.3 88.6
(iii) 61.6 40.6 11.6 79.0 55.1 23.7 63.6 39.3 13.7

Wiener, BM, t (i) 34.3 20.0 4.7 35.5 25.1 7.8 34.2 19.9 7.5
(ii) 42.6 23.8 11.0 42.1 26.2 13.3 43.7 30.0 13.1
(iii) 32.6 21.4 6.0 33.8 21.4 6.0 29.3 15.6 5.2

Wiener, BB, t (i) 76.3 68.1 39.2 95.4 89.5 73.1 98.3 96.6 84.0
(ii) 89.4 83.0 71.6 99.4 98.8 94.9 100 99.6 98.0
(iii) 63.5 41.3 13.1 72.8 45.5 9.8 55.4 28.8 8.0

Wiener, BM, sin(t) (i) 30.1 17.7 3.7 29.7 21.1 5.0 27.8 16.3 5.4
(ii) 37.1 19.6 8.3 34.5 20.8 9.2 35.7 22.8 8.9
(iii) 29.4 18.5 4.7 28.3 16.8 2.7 23.5 11.7 3.8

Wiener, BB, sin(t) (i) 69.2 59.7 32.5 88.4 77.9 58.4 93.6 88.7 66.0
(ii) 83.8 76.6 59.9 96.6 92.5 84.1 99.0 98.1 88.5
(iii) 61.1 41.4 13.7 70.3 44.6 11.5 57.4 31.5 8.6

N = 100
Gaussian, BM, t (i) 53.5 39.2 19.1 76.8 64.6 37.1 76.3 64.4 36.9

(ii) 65.7 56.5 30.2 80.8 66.9 40.3 77.7 64.9 38.4
(iii) 61.1 47.5 23.1 81.7 68.1 40.0 77.4 64.4 29.9

Gaussian, BB, t (i) 94.4 89.9 71.0 100 100 99.6 99.9 99.9 99.7
(ii) 99.1 98.0 91.6 100 100 100 100 100 100
(iii) 96.6 86.3 42.2 99.8 96.0 59.7 97.4 85.9 25.6

Gaussian, BM, sin(t) (i) 46.6 33.6 15.0 61.5 47.7 22.8 63.7 50.4 26.4
(ii) 58.6 48.7 24.1 66.9 52.2 27.8 65.5 51.1 26.9
(iii) 54.9 40.9 18.3 66.4 52.4 26.5 65.5 51.6 20.9

Gaussian, BB, sin(t) (i) 91.4 84.9 62.5 100 99.8 96.4 100 99.7 97.7
(ii) 98.0 95.0 84.7 100 100 99.9 100 100 99.7
(iii) 93.6 83.0 43.3 99.8 95.5 63.6 97.4 89.2 31.0

Wiener, BM, t (i) 51.4 36.8 17.4 55.1 43.3 18.1 54.5 42.5 20.8
(ii) 63.6 53.4 29.8 69.9 57.9 35.4 70.3 59.0 33.1
(iii) 57.9 44.8 19.6 58.0 45.0 20.0 57.1 39.4 13.7

Wiener, BB, t (i) 95.1 89.7 70.5 100 99.7 95.8 100 99.9 99.9
(ii) 99.2 98.2 91.4 100 100 100 100 100 100
(iii) 96.6 87.6 38.1 99.0 87.7 44.9 95.4 80.5 22.7

Wiener, BM, sin(t) (i) 44.3 31.2 13.7 44.5 32.9 12.3 42.9 29.7 13.1
(ii) 56.9 45.2 24.4 58.3 45.1 26.0 57.7 45.7 22.8
(iii) 52.1 37.3 15.9 47.1 33.2 12.7 43.7 27.0 7.3

Wiener, BB, sin(t) (i) 92.2 85.1 60.2 99.6 97.2 89.1 99.7 98.9 94.9
(ii) 98.3 95.8 84.8 100 99.7 97.4 100 100 99.3
(iii) 93.9 84.2 40.7 97.8 86.1 47.3 95.9 84.0 27.2
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to that of the HK test for N = 50 and BM innovations. Furthermore the SN-
based test tends to have moderate power loss when sample size increases to
100. In the case of the BB innovations, the SN-based test is superior to the
HK test in power. Overall, the severe size distortion of the BGHK test under
weak dependence suggests its inability to accommodate dependence and thus is
not recommended in testing for a change point for dependent functional data.
The HK test is able to account for dependence but it is sensitive to the choice
of bandwidth bN and K. As shown below, the data-dependent bandwidth used
in the HK test could lead to nonmonotonic power. Compared to the other two
tests, the SN-based test tends to have more accurate size at the sacrifice of some
power, which is consistent with the “better size but less power” phenomenon
seen in the univariate setup (see Shao and Zhang [23]).

Furthermore, we examine the monotonic power property of the SN-based test
in the functional setup through simulations. In the univariate setting, the change
point test, which involves LRV estimation using the data-dependent bandwidth,
can exhibit nonmonotonic power (see e.g. Vogelsang [24]; Crainiceanu and Vo-
gelsang [8]; Altissimo and Corradi [1]). There are some recent studies aiming to
overcome the nonmonotonic power problem in the univariate time series setup
(see Juhl and Xiao [15]; Shao and Zhang [23]). To study the monotonic power
property, we focus on the change of mean function and consider the data gen-
erating process

Xi(t) = Yi(t) + δf(t)I{i > N/2}, i = 1, 2, . . . , N, (4.2)

where {Yi(t)} follows the ARH(1) model with Gaussian kernel, and BM or BB
innovations. The constant δ here is used to control the magnitude of change and
f(t) = t or sin(t). The size-adjusted power for K = 1 and N = 50 is plotted as a
function of δ in Figure 1. Qualitatively similar results were observed forN = 100,
but are not reported to conserve space. We compare the performance of the SN-
based test with the BGHK test and the HK test. Like the univariate case, the
SN-based test shows monotonic power in all situations even though it could lose
moderate power to the BGHK test. Not surprisingly, due to the upward bias
of the data-dependent bandwidth, the HK test exhibits nonmonotonic power,
with power going to zero for relatively large changes in the mean function. These
results indicate that the nonmonotonic power issue still exists in the functional
setting if one estimates the LRV matrix of scores nonparametrically using data-
dependent bandwidth. In contrast, the SN-based test inherits the monotonic
power property, that holds in the univariate case (Shao and Zhang [23]).

In the univariate setting, Crainiceanu and Vogelsang [8] and Juhl and Xiao
[15] have proposed different methods to overcome the nonmonotonic power prob-
lem in testing for a change point in mean. However, their methods both involve
bandwidth parameters and their finite sample performance is unsatisfactory
as seen from the numerical comparison in Shao and Zhang [23]. For example,
Crainiceanu and Vogelsang [8] proposed to estimate the long run variance using
residuals obtained under the one-break model but the size distortion is large
for time series with strong dependence (e.g., AR(1) model with AR(1) coeffi-
cient 0.8). Juhl and Xiao [15] used residuals from nonparametric regression to
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Fig 1. Size-adjusted power for detecting the mean change with different magnitude of change.
Sample size N = 50. Note: the quantity δ measures the magnitude of change; see equa-
tion (4.2).

estimate long run variance, but they did not completely eliminate the nonmono-
tonic power problem (section 4.1 of Shao and Zhang [23]). In a sense, the two
methods mentioned above were proposed to account for a possible change point
in the LRV estimator. But they did not perform well in finite sample, so we
expect that the extensions of these methods to functional setting will not work
well, although a serious investigation is beyond the scope of the paper.

4.2. Detecting the changes in the lag-1 autocovariance operator

In this subsection, we study the finite sample performance of the SN-based test
for detecting the change of the autocovariance operator at lag one. Under the
null, we generate functional observations from the mean zero ARH(1) model
with Gaussian kernel and ||ψ||HS = 0.3. Under the alternative, we consider the
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following data-generating process,
{

Yi(t) =
∫ 1

0 ψ1(t, s)Yi−1(s)ds+ εi(t), i = 1, 2, . . . , N/2;

Yi(t) =
∫ 1

0 ψ2(t, s)Yi−1(s)ds+ εi(t), i = N/2 + 1, N/2 + 2, . . . , N,
(4.3)

where ψ1(s, t) and ψ2(s, t) are both Gaussian kernels with ||ψ1||HS = 0.3 and
||ψ2||HS = 0.8. The SN-based test is compared with the tests proposed in
Horváth et al. [14] for detecting the stability of the ARH(1) model. Formally,
Horváth et al.’s tests can be written as

IN,ξ̂ =
1

N − 1

N−1
∑

k=1

TN,ξ̂(k,K
2)′Σ̃−1

ξ (k,K2)TN,ξ̂(k,K
2), (4.4)

where Σ̃ξ(k,K
2) is a consistent estimator of the LRV matrix of {ξi}. We define

D̂k as the nonparametric LRV matrix estimator computed from {ξ1, ξ2, . . . , ξk}
by using the Bartlett kernel with bandwidth given by (4.1). Similarly, we define
the LRV matrix estimator D̂∗

N−k based on {ξk+1, ξk+2, . . . , ξN−1}. Following
Horváth et al. [14], we consider two different ways of estimating the LRV matrix
here: 1) Σ̃ξ(k,K

2) = k
N−1D̂k + N−k−1

N−1 D̂∗
N−k; 2) Σ̃ξ(k,K

2) = D̂N for all 1 ≤
k ≤ N − 1, and we denote the resulting tests by HHK1 and HHK2. We present
the empirical size and size-corrected power for N = 50, 100, 200, K = 1, 2, 3
and BM and BB innovations in Table 4. It can be clearly seen that the size
distortion for HHK1 test is substantial, especially for N = 50 and K = 2, 3.
The HHK2 test performs relatively well but tends to be undersized when K
increases. Compared to HHK1 and HHK2 tests, the size performance of SN-
based test is quite satisfactory. For the size-adjusted power, we find that the
HHK1 test is the most powerful in all cases, presumably due to its upward size
distortion. The HHK2 test has reasonable power for K = 1 while the power
could drop dramatically as K increases for small sample size. The finding here
agrees generally with the results in Horváth et al. [14] which shows that the
HHK2 test is conservative for large K. The SN-based test delivers moderate
power and the power seems robust to K. Overall, the simulation results clearly
suggest a trade-off between the size distortion and power loss for the SN-based
test, which has been found to be the case in the univariate setup.

4.3. Detecting the mean change for 2-d functional observations

Here, we perform a simulation study to demonstrate the validity of the SN-based
test for detecting a mean function change in 2-d functional data. For simplicity,
we focus on a rectangular region though our test can be applied to functional
data on a region of irregular shape. Under the null, we generate 2-d functional
observations {Yi(s1, s2)}Ni=1 in the following two ways:

1. Yi(s1, s2) = X
(1)
i (s1)X

(2)
i (s2), where {X(1)

i } and {X(2)
i } are mutually in-

dependent and contain possibly dependent continuous random processes

respectively. Here we choose {X(j)
i (s)}, j = 1, 2 to be BM, BB and ARH(1)

process with Gaussian kernel with ||ψ||HS = 0.5 and BM innovations.
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Table 4

Empirical size (upper panel) and size-adjusted power (lower panel) in percentage of the
SN-based test (in row (i)) and the tests in Horváth et al. (2010) (in row (ii) for case 1 and
(iii) for case 2 ) for detecting the change point in the lag one autocovariance operator. The
size-adjusted power is computed under the alternative (4.3). The sample size N = 50, 100,

and the number of PCs K = 1, 2, 3. The number of Monte Carlo replications is 1000

K = 1 K = 2 K = 3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50

BM (i) 11.0 5.8 1.6 8.6 3.8 1.3 10.8 5.7 2.0
(ii) 16.4 9.5 2.2 33.6 21.8 7.8 68.9 58.2 36.5

(iii) 10.6 3.0 0.3 4.5 1.4 0.0 2.4 0.5 0.1

BB (i) 8.5 4.1 0.8 8.4 4.4 0.7 10.5 5.6 1.1
(ii) 15.8 9.3 2.2 32.2 21.6 7.6 68.9 59.6 37.8

(iii) 9.4 3.8 0.4 4.5 1.3 0.1 2.2 0.7 0.1
N = 100

BM (i) 9.2 5.4 1.4 8.5 4.4 1.0 7.3 3.9 0.7

(ii) 14.1 7.1 1.5 16.9 10.6 2.5 36.4 27.1 11.3
(iii) 10.0 3.8 0.7 6.4 2.7 0.5 3.1 1.3 0.1

BB (i) 9.4 5.0 0.8 8.2 3.0 0.6 8.9 4.0 1.1
(ii) 14.0 7.1 1.6 20.4 12.1 2.7 38.7 27.6 11.2

(iii) 10.7 5.1 0.7 8.9 2.7 0.5 3.5 0.7 0.0

N = 200
BM (i) 8.9 4.3 1.1 10.3 5.4 1.1 8.5 3.7 1.1

(ii) 11.4 6.2 1.4 15.3 7.8 1.2 21.1 12.7 3.6
(iii) 9.4 5.6 1.0 9.1 3.4 0.2 4.4 1.7 0.2

BB (i) 10.0 5.4 1.3 8.6 4.5 0.9 9.8 6.0 0.9

(ii) 12.3 5.2 1.3 14.7 7.5 1.4 21.1 12.1 0.4
(iii) 10.4 3.9 0.7 8.3 3.0 0.7 6.3 2.1 0.1

N = 50
BM (i) 27.3 17.2 5.2 22.5 14.5 6.4 22.1 14.1 4.8

(ii) 37.8 26.6 12.5 36.7 26.0 12.5 45.7 34.0 20.1
(iii) 27.0 15.6 2.6 11.8 5.4 1.2 5.9 2.8 1.2

BB (i) 33.4 21.7 10.0 23.2 14.1 7.0 24.4 17.2 8.6

(ii) 37.2 27.6 13.3 32.1 24.2 13.0 39.5 31.2 17.2
(iii) 32.9 17.6 2.1 11.0 5.4 1.8 8.2 3.3 1.0

N = 100
BM (i) 46.6 29.0 9.8 35.6 22.1 8.5 34.2 21.9 12.1

(ii) 60.0 47.8 23.6 56.7 44.2 26.2 65.9 54.6 36.9

(iii) 50.1 32.8 5.3 20.5 7.9 1.1 4.1 2.2 0.2
BB (i) 44.7 30.7 12.9 32.9 24.6 12.6 28.9 20.4 7.0

(ii) 55.5 42.2 20.8 46.8 36.9 18.6 57.6 48.1 32.0
(iii) 45.5 26.2 6.7 14.2 5.3 1.5 4.5 1.8 0.6

N = 200

BM (i) 70.2 57.8 26.8 54.0 38.0 17.2 54.6 40.8 15.6
(ii) 87.9 74.8 46.4 78.9 69.0 47.2 85.6 79.3 65.3

(iii) 80.5 54.7 21.5 39.8 23.9 5.8 11.7 3.7 0.3
BB (i) 65.0 47.9 20.9 45.9 30.1 12.4 49.6 32.5 16.8

(ii) 83.3 72.2 45.5 69.4 58.1 29.8 81.8 71.8 53.6

(iii) 74.2 63.3 29.8 37.2 19.1 4.8 12.7 4.5 1.2
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2. The sequence {Yi(s, t)} follows the ARH2(1) model defined on [0, 1]2, that
is,

Yi+1(s1, s2) =

∫ 1

0

∫ 1

0

ψ(s1, s2, u1, u2)Yi(u1, u2)du1du2 + εi+1(s1, s2),

where ψ(s1, s2, u1, u2) = C exp{(s21 + s22 + u21 + u22)/2} and εi(s1, s2) =

X
(1)
i (s1)X

(2)
i (s2) is the tensor product of independent BM or BB.

We suppose the data is collected on a grid of 20 × 20 equally spaced points
on [0, 1]2. The discrete observations are smoothed by the thin plate spline (see
Wahba [25]). In order to obtain the eigenvalues and eigenfunctions, the 2-d
functional data is discretized to a fine grid of 30 × 30 equally spaced points.
The data matrix corresponding to each observation is then concatenated into a
single long vector. Hence the functional eigenanalysis problem for 2-d functional
data is converted to an approximately equivalent matrix eigenanalysis task as in
the one dimensional case (see Ramsay and Silverman [20] for more details). To
illustrate the power properties of the SN-based test, we consider the following
alternatives:

1. Yi(s1, s2) = {X(1)
i (s1)+ f(s1)}{X(2)

i (s2)+ f(s2)} with f(s) = s or f(s) =
sin(s).

2. Yi(s1, s2) = Zi(s1, s2) + g(s1, s2), where Zi(s1, s2) is the aforementioned
ARH2(1) process, and g(s1, s2) = s1s2 or g(s1, s2) = sin(s1) sin(s2).

The change point k∗ is set to be N/2. The selected simulation results are sum-
marized in Table 5. For the data generated by tensor product, the SN-based test
is conservative when N = 50 and the size becomes closer to the nominal level as
N increases to 100. For the ARH2(1) process, the SN-based test is oversized, the
size distortion diminishes and the power appreciates as sample size increases. It
is also interesting to note that the special covariance structure of BB tends to
give us more power, as we have seen before. In conclusion, the SN-based test
delivers satisfactory size and reasonable power in the 2-d setting.

5. Applications

In this section, we consider two empirical datasets, namely, the single-point
time series of central England temperature record and a spatio-temporal grid-
ded dataset consisting of the bias between observed and model-simulated annual
average temperature covering a subregion of North America (latitude: 34.25◦N–
51.25◦N; longitude: 77.25◦W–120.25◦W) obtained from a coupled atmosphere-
ocean general circulation model (AOGCM) and interpolated station observa-
tions.

5.1. Analysis of central England temperatures

We first apply the SN-based test to detect the change point in the functional
mean of the central England temperature record that has been previously stud-
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Table 5

(a) Empirical size (upper panel) and size-adjusted power (lower panel) in percentage of the
SN-based test for detecting the mean change of 2-d functional observations generated by
tensor product. (b) Empirical size (upper panel) and size-adjusted power (lower panel) in

percentage of the SN-based test for detecting the mean change of 2-d functional observations
generated from the ARH2(1) process. The sample size N = 50, 100, and the number of PCs

K = 1, 2, 3. The number of Monte Carlo replications is 1000. The notation (BM + t)2

denotes (BM + t) × (BM + t). Note: The Brownian motion is approximated by the partial
sum of 1000 iid standard normal variables in (a) and it is approximated by the partial sum

of 60 iid standard normal variables in (b)

K = 1 K = 2 K = 3

(a) 10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM× BM 6.8 3.6 0.7 6.4 2.8 0.5 8.6 3.2 0.6
BB× BB 8.4 4.4 0.9 7.2 3.3 0.0 8.1 3.5 0.2

ARH(1) ×ARH(1) 10.2 4.4 0.4 9.1 4.0 0.7 10.8 5.4 0.8
N = 100
BM× BM 10.2 4.9 1.0 9.0 3.8 1.0 9.9 4.9 1.3
BB× BB 7.6 3.7 1.0 7.3 3.5 0.5 9.4 4.4 0.3

ARH(1) ×ARH(1) 9.6 5.0 0.8 8.0 3.9 1.0 10.1 4.3 0.9

N = 50
(BM + t)2 62.4 47.0 20.7 53.3 38.6 16.4 45.8 33.5 14.0
(BB + t)2 99.8 99.1 95.5 100 99.7 98.8 99.8 99.8 99.7

(BM+ sin(t))2 52.2 37.8 14.8 42.8 25.9 11.3 32.8 22.9 7.7
(BB + sin(t)2 99.2 97.1 89.0 99.0 98.7 96.3 99.9 99.8 98.0
(ARH(1) + t)2 31.1 22.1 10.1 34.0 25.1 9.2 30.6 20.8 8.2

(ARH(1) + sin(t))2 26.0 17.4 7.2 26.1 17.1 6.2 23.1 14.0 4.5
N = 100
(BM + t)2 77.6 67.8 41.6 72.7 60.5 32.1 69.0 53.0 25.0
(BB + t)2 100 100 99.6 100 100 99.9 100 100 100

(BM+ sin(t))2 67.9 55.4 28.5 55.8 45.2 20.5 51.8 36.5 14.2
(BB + sin(t))2 100 99.9 98.6 100 100 99.9 100 100 100
(ARH(1) + t)2 43.7 31.1 15.3 47.4 36.3 13.4 47.1 36.2 16.6

(ARH(1) + sin(t))2 35.5 25.2 10.5 37.1 24.2 8.4 33.4 23.6 8.7

K = 1 K = 2 K = 3

(b) 10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 50
BM× BM 14.8 9.5 2.9 14.4 8.4 2.2 14.0 7.8 2.6
BB× BB 13.1 7.0 1.5 10.6 5.6 0.8 13.0 6.7 1.4
N = 100
BM× BM 10.4 5.9 1.4 10.0 3.8 0.6 9.9 4.3 0.9
BB× BB 12.7 6.7 1.4 9.7 4.7 0.9 11.4 5.5 0.7

N = 50
BM× BM, t 31.6 21.5 7.3 43.6 32.4 12.2 50.7 36.1 12.4
BB× BB, t 99.9 99.7 98.6 100 100 100 100 100 100

BM× BM, sin(t) 25.3 16.4 5.1 29.7 20.1 5.6 33.2 20.8 5.5
BB× BB,sin(t) 99.0 98.1 94.0 100 100 100 100 100 100

N = 100
BM× BM, t 58.0 41.6 21.1 73.5 64.9 45.0 81.6 72.8 47.9
BB× BB, t 100 100 99.7 100 100 100 100 100 100

BM× BM,sin(t) 46.4 30.6 12.8 53.3 42.6 24.1 57.8 47.9 24.6
BB× BB,sin(t) 99.9 99.7 97.7 100 100 100 100 100 100



Testing the structural stability of dependent functional data 1785

Table 6

Segmentation procedure of the central England temperature data into periods with constant
mean function. Note: in each iteration, K is the smallest positive integer such that∑K

i=1
λ̂i/

∑
12

i=1
λ̂i > 0.8

Iteration Segment K GN,η̂(K) p-value Estimated change-point k̂∗

1 1780–2007 8 559.4 (0.001, 0.005) 1927
2 1780–1927 8 173.1 (0.1, 1) —
3 1928–2007 8 323.9 (0.025, 0.05) 1993
4 1928–1993 7 49.2 (0.1, 1) —
5 1994–2007 5 153.0 (0.05, 0.1) —

ied in Berkes et al.[4]. This data set represents the longest continuous thermometer-
based temperature record on earth, consisting of 228 years (1780-2007) of av-
erage daily temperatures in central England (see Parker et al. [17]). Following
Berkes et al. [4], we view the data as 228 curves with 365 measurements on in-
dividual curve. The discrete observations were registered as functional data by
using 12 B-spline basis functions. To compute GN,η̂(K), we choose the smallest

K such that
∑K

i=1 λ̂i/
∑12

i=1 λ̂i > 0.8 following Berkes et al. [4]. If the test in-

dicates any change point, then it is estimated by k̂∗ (see (3.5)). The procedure
is repeated until each segment has a constant mean function. The results are
summarized in Table 6. The two change points, 1927 and 1993, detected by the
SN-based test are fairly close to the change points, 1925 and 1992, identified in
Berkes et al. [4]. The SN-based test suggests the mean function is stable over the
period from 1780 to 1927, whereas Berkes et al.’s test detected two more change
points, 1807 and 1849. However, the change at 1849 is not as obvious relative
to the changes at 1925 and 1992 according to Figure 2 in Berkes et al. [4]. Of
course, since it is not known whether there is a change point at 1849, either
our SN-based test fails to reject due to its relatively lower power or Berkes et
al.’s test falsely rejects due to its large upward size distortion. Nevertheless, our
results suggest that the evidence for supporting the one change point in 1849 is
weak. Figure 2 plots the mean function in each partition segments suggested by
the SN-based test. It clearly shows the warming trend of the central England
temperature. As mentioned in Berkes et al. [4], although it is not realistic to
believe that the change happens abruptly in one year, in practice this modeling
assumption is useful in identifying a potential trend of change.

5.2. Analysis of the bias between gridded observations and GCM

simulations

Next, we apply the SN-based test to a gridded spatio-temporal temperature data
set covering a subregion of North America. The data set comes from two separate
sources: gridded observations generated from interpolation of station records
(HadCRU), and gridded simulations generated by an AOGCM (NOAA GFDL
CM2.1). Both datasets provide daily average temperature for the same 19-year
period, 1980-1998 (see Delworth et al. [10] and Brohan et al. [7]). Each surface is
viewed as a 2-d functional datum. We aim to test whether the bias or difference
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Fig 2. Average daily temperature functions in the three estimated partition segments.

between station observations and the model outputs is stable over the examined
period (1980-1998). The data is first transformed to the same resolution (87×35)
by bilinear interpolations. The bias is then computed by taking the difference of
the two surfaces for each year and is converted to functional data through the
thin plate spline. Figure 3 presents the first six PCs of the bias, which summarize
the major patterns of the variability. The first PC which explains 60.4% of the
total variation clearly dominates other types of variations. Although the first
PC is negative over the whole region, it places more weight at the center of the
domain than at the boundary. This indicates that a great amount of variability
over a year will be found by the relatively heavy weights over the central region,
which is relatively far from the ocean, with less contribution from the border
area, which is close to the ocean. This is consistent with the physical reality
that temperature variability is much higher over land than over ocean, and is
much more sensitive to the land surface parameterization scheme used by the
global model. Applying the SN-based test to test the mean change, we tabulate
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Fig 3. The first six principal components of the bias between observations and model output.
The number in the title of each figure stands for the percentage of variation explained by the
corresponding principal component.
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Table 7

Test statistics and their p-values for the spatio-temporal temperature data covering a
subregion of North America. Panel (a) shows the results of the tests based on the first K

PCs; Panel (b) shows the results of the tests based on individual PC

(a) K GN,η̂(K) p-value Estimated change-point k̂∗

1 25.2 (0.1, 1) —
2 34.4 (0.1, 1) —
3 160.5 (0.005, 0.01) 1990
4 182.7 (0.01, 0.025) 1991
5 218.2 (0.025, 0.05) 1991
6 221.9 (0.025, 0.05) 1991

(b) PC GN,η̂ p-value Estimated change-point k̂∗

PC1 25.2 (0.1, 1) —
PC2 10.0 (0.1, 1) —
PC3 93.7 (0.001, 0.005) 1990
PC4 3.1 (0.1, 1) —
PC5 2.5 (0.1, 1) —
PC6 3.6 (0.1, 1) —

the results of the tests based on the first K PCs in Panel (a) of Table 7 and the
results of the tests based on individual PCs in Panel (b) of Table 7. From Panel
(a), we notice that when K = 1 or 2, the SN-based test does not detect any
significant change points at the usual 5% significance level. WhenK = 3, the SN-
based test with a p-value in the range (0.005, 0.01) suggests that there is a change
point at 1990. The results in Panel (b) are consistent with the finding from Panel
(a) in that the test based on the third PC indicates a significant change point
at 1990 but the tests based on other PCs do not detect any significant change
points. The change in the bias is shown in Figure 4 by comparing the difference
of the average biases in two periods (1980-1990; 1991-1998). It can be seen from
Figure 4 that the bias tends to increase in the northern region while it decreases
in the southern area. It is also worth nothing that the pattern of the change of
the bias seems to be similar to that of the third PC as plotted in Figure 3.

6. Discussion and conclusion

In this article, SN-based tests have been developed to detect a change point
in the functional mean and the lag-1 autocovariance operator of temporally
dependent functional observations. The test statistic is constructed based on
the estimated finite dimensional scores and the estimation effect turns out to
be asymptotically negligible due to the special form of the SN-based statistic.
The limiting null distribution of the SN-based statistic is nonstandard and its
critical values have been tabulated by Shao and Zhang [23]. Compared to the
existing tests developed for independent/dependent functional data, the SN-
based test has some appealing features: 1) it is easy to implement and does
not involve any bandwidth parameter; 2) it is shown to enjoy the monotonic
power properties in the functional context; 3) our test, developed for temporally-
dependent functional data, inherits the “better size but less power” property
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Fig 4. Average biases in two periods (1980-1990; 1991-1998) and the change in the bias.

of the SN-based test in the univariate setup. The finite sample performance is
quite good and stable with respect to K. It can be readily applied to temporally-
dependent functional curves and functional surfaces.

Our test statistic currently detects only one change point, but it can be
further extended to the multiple change point alternative in a straightforward
manner; see Shao and Zhang [23] section 2.3 for a discussion in the univariate
setting. Furthermore, the SN-based test still requires a user-chosen parameter
K which also appears in related work by Berkes et al. [4] and Hörmann and

Kokoszka [13]. In practice, K can be chosen by K = inf{J :
∑J

i=1 λ̂i/
∑m

i=1 λ̂i >
α}, where m is the number of basis functions in smoothing and α is a pre-
specified number, say 85%. If the goal is to infer the low frequency behavior
of the functional data, this ac-hoc method of choosing K should be practically
useful and informative. On the other hand, if some high frequency behavior of
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the functional data is also of interest, then it is wise to let K dependent on the
sample size N , which requires a modification of our asymptotic theory. This is
beyond the scope of this article and will be investigated in the future.

7. Supplemental materials

We first introduce some useful notation. For 1 ≤ t1 ≤ t2 ≤ N and A =
(a1, a2, . . . , aN ) ∈ R

K×N , let SN (t1, t2, A) = SN,A(t1, t2) =
∑t2

i=t1
ai with

ai = (ai1, ai2, . . . , aiK)′ ∈ R
K . Let β̂ij =

∫

I Yi(t)φ̂j(t)dt, β̂i = (β̂i1, . . . , β̂iK)′

and β̂ = (β̂1, β̂2, . . . , β̂N ) ∈ R
K×N . Define η = (η1, η2, . . . , ηN ) ∈ R

K×N and
its sample counterpart η̂ = (η̂1, η̂2, . . . , η̂N ) ∈ R

K×N . Similarly, we can define

ξ ∈ R
K2×(N−1) and its empirical counterparts ξ̂ by replacing ξi with ξ̂i; see

section 2.2. Let | · | be the Euclidian norm of a vector and || · ||M the matrix
norm ||A||M = sup|x|≤1 |Ax| for a matrix A. Denote C a generic constant which
could be different from line to line.

Proof of Theorem 3.3. Define

GN,η(K) = C(N−1/2SN (1, ⌊Nr⌋, η), r ∈ [0, 1]).

Set ĉi = sign(< φi, φ̂i >) and Ĉ = diag(ĉ1, ĉ2, . . . , ĉK). Following the arguments
in Theorem 5.1 of Hörmann and Kokoszka [13], we can derive that {ηi} is L2-
m-approximable. Hence by Theorem A.2 of Hörmann and Kokoszka [13], we
have

N−1/2SN (1, ⌊Nr⌋, η) ⇒ Σ
1/2
η,KBK(r).

Applying the continuous mapping theorem, we have that GN,η(K) →d G(K).

Note that η̂i,j = β̂ij − (1/N)
∑N

i=1 β̂ij , for j = 1, 2, . . . ,K. Under the H0,1, it
is easy to see that both TN,η̂(k,K) and VN,η̂(k,K) remain the same if η̂i is

replaced by β̂i. Because of the quadratic form of GN,η̂(K) and the simple fact

that Ĉ2 = IK , the statistic GN,η̂(K) does not change if η̂i is replaced by Ĉβ̂i.
Based on the result that

sup
r∈[0,1]

1√
N

∣

∣

∣
SN (1, ⌊Nr⌋, η)− SN (1, ⌊Nr⌋, Ĉβ̂)

∣

∣

∣
= op(1),

which was stated in the proof of Theorem 5.1 of Hörmann and Kokoszka [13]
(see equation A.9 therein), it is straightforward to see that the difference be-
tween GN,η̂(K) and GN,η(K) is asymptotically negligible. Therefore the proof
is complete.

Proof of Theorem 3.4. Recall that ξi = (ηi,1ηi+1,1, . . . , ηi,1ηi+1,K , . . . , ηi,Kηi+1,1,

. . . , ηi,Kηi+1,K)′. Define η
(m)
i,j =

∫

I
X

(m)
i (t)φj(t)dt, where X

(m)
i is the m-de-

pendent approximation of Xi (see Definition 3.1), and let ξ
(m)
i be the counter-

part of ξi by replacing ηi,j with η
(m)
i,j in ξi. Let γ(t, s) = E[X1(t)X2(s)] be the
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lag-1 autocovariance function. We first see that

E|ξ1 − ξ
(m)
1 |2 = E

K
∑

j=1

K
∑

l=1

(η1,jη2,l − η
(m)
1,j η

(m)
2,l )2

≤ 2

[

E

{

K
∑

j=1

K
∑

l=1

(η1,j − η
(m)
1,j )2η22,l

}

+E

{

K
∑

j=1

K
∑

l=1

(η2,l − η
(m)
2,l )2(η

(m)
1,j )2

}]

= 2(I1 + I2),

Note that E(η42,l) = E
{∫

I
X2(t)φl(t)dt

}4 ≤ E{
∫

I
X2

2 (t)dt}2 = E||X2||4 < ∞,
where we have used the orthonormal property of φl(t). By the Cauchy-Schwarz
inequality, we have

I1 ≤






E







K
∑

j=1

(η1,j − η
(m)
1,j )2







2






1/2






E

(

K
∑

l=1

η22,l

)2






1/2

≤ C







K
∑

j=1

E(η1,j − η
(m)
1,j )4







1/2
(

K
∑

l=1

Eη42,l

)1/2

≤ C







K
∑

j=1

E(η1,j − η
(m)
1,j )4







1/2

= C





K
∑

j=1

E

{
∫

I

(X1(t)−X
(m)
1 (t))φj(t)dt

}4




1/2

= C
(

E||X1 −X
(m)
1 ||4

)1/2

Similarly we get I2 ≤ C(E||X1−X(m)
1 ||4)1/2. It follows that (E|ξ1−ξ(m)

1 |2)1/2 ≤
Ce4(X1 −X

(m)
1 ), which yields

∞
∑

m=1

(

E|ξ1 − ξ
(m)
1 |2

)1/2

≤ C

∞
∑

m=1

e4(X1 −X
(m)
1 ) <∞.

Again using Theorem A.2 of Hörmann and Kokoszka [13], we know that

N−1/2{SN(1, ⌊Nr⌋, ξ)− ⌊Nr⌋E[ξ1]} ⇒ Σ
1/2
ξ,K2BK2(r). Let

GN,ξ(K
2) = C(N−1/2SN(1, ⌊Nr⌋, ξ), r ∈ [0, 1]).

By the continuous mapping theorem we have that GN,ξ(K
2) →d G(K2). Be-

cause of the form of GN,ξ̂(K
2), it is sufficient to show that

sup
r∈[0,1]

1√
N

∣

∣

∣

∣

SN (1, ⌊Nr⌋, ξ)− SN (1, ⌊Nr⌋, Ĉξ ξ̂)

−
{

ESN(1, ⌊Nr⌋, ξ)−ESN (1, ⌊Nr⌋, Ĉξ ξ̂)
}

∣

∣

∣

∣

= op(1),
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where Ĉξ = diag(ĉ1ĉ1, . . . , ĉ1ĉK , ĉ2ĉ1, . . . , ĉK ĉK). The claim follows provided
that for any 1 ≤ j, l ≤ K,

Ij,l =
1√
N

sup
r∈[0,1]

∣

∣

∣

∣

∣

∣

⌊Nr⌋
∑

i=1

{ηi,jηi+1,l−E(ηi,jηi+1,l)− ĉj ĉlη̂i,j η̂i+1,l+E(ĉj ĉlη̂i,j η̂i+1,l)}

∣

∣

∣

∣

∣

∣

=
1√
N

sup
r∈[0,1]

∣

∣

∣

∣

∣

∣

∫

I

∫

I

⌊Nr⌋
∑

i=1

{Xi(t)Xi+1(s)− γ(t, s)}ûj,l(t, s)dtds

∣

∣

∣

∣

∣

∣

= op(1),

where ûj,l(t, s) = φj(t)φl(s)− ĉj ĉlφ̂j(t)φ̂l(s). Observing that ||ûj,l||2 ≤ 2{||φj −
ĉj φ̂j ||2 + ||φl − ĉlφ̂l||2} and using the fact that ||φj − ĉj φ̂j || = Op(N

−1/2) (see
Theorem 3.2 in Hörmann and Kokoszka [13]), we derive ||ûj,l|| = Op(N

−1/2).
Since

Ij,l ≤
||ûj,l||√
N

sup
r∈[0,1]







∫

I

∫

I







⌊Nr⌋
∑

i=1

(Xi(t)Xi+1(s)− γ(t, s))







2

dtds







1/2

,

the conclusion follows from Lemma 7.1.

Lemma 7.1. Assume that Xi ∈ L8
H

and {Xi} is L8-m-approximable. Then
under H0,2, we have

1

N2
sup

r∈[0,1]







∫

I

∫

I







⌊Nr⌋
∑

i=1

(Xi(t)Xi+1(s)− γ(t, s))







2

dtds






= op(1).

Proof of Lemma 7.1. Let Zi(t, s) = Xi(t)Xi+1(s) − γ(t, s). We first show that
the process {Zi(t, s)} is L4-m-approximable in the Hilbert space of integrable
functions defined on [0, 1]2. Note that

E||Z1 − Z
(m)
1 ||4 = E

{
∫

I

∫

I

(X1(t)X2(s)−X
(m)
1 (t)X

(m)
2 (s))2dtds

}2

≤ CE
{

||X1||2||X2 −X
(m)
2 ||2 + ||X(m)

2 ||2||X1 −X
(m)
1 ||2

}2

≤ C

{

(E||X1||8)1/2(E||X2 −X
(m)
2 ||8)1/2

+ (E||X2||8)1/2(E||X1 −X
(m)
1 ||8)1/2

}

.

Thus we get e4(Z1 − Z
(m)
1 ) ≤ C{e8(X1 − X

(m)
1 ) + e8(X2 − X

(m)
2 )}, which,

along with the assumption that {Xi} is L8-m-approximable, implies {Zi} is
L4-m-approximable. The rest of the proof essentially follows the argument in
the proof of Theorem 5.1 in Hörmann and Kokoszka [13]. We omit the details
here.
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Proof of Proposition 3.5. Define ∆̂K = (< ∆, φ̂1 >,< ∆, φ̂2 >, . . . , < ∆, φ̂K >
)′. Let αij =

∫

I
Yi(t)vj(t)dt, αi = (αi1, . . . , αiK)′ and α = (α1, α2, . . . , αN ). Fol-

lowing lemma A.1 in Berkes et al. [4], we have that under the local alternatives,

ĉ(t, s)=
1

N

N
∑

i=1

{Yi(t)− ȲN (t)}{Yi(s)− ȲN (s)}+ k∗(N − k∗)

N2
∆(t)∆(s)+ rN (t, s),

where

rN (t, s) =

(

N − k∗

N2

) k∗

∑

i=1

[

{Yi(t)− ȲN (t)}∆(t) + {Yi(s)− ȲN (s)}∆(s)
]

+
k∗

N2

N
∑

i=k∗+1

[

{Yi(t)− ȲN (t)}∆(t) + {Yi(s)− ȲN (s)}∆(s)
]

,

is the remainder term. It can be shown that ||rN (t, s)||2 =
∫

I

∫

I r
2
N (t, s)dtds =

op(1) by using the ergodic theorem for Lp-m-approximable process Yi(t) (note
that Yi(t) admits the ergodic representation Yi(t) = f(εi(t), εi−1(t), . . . )). It

follows that ||ĉ(t, s)− c̃(t, s)|| = op(1). By Lemma 4.3 in Bosq [6], we get ||ĉiφ̂i−
vi|| = op(1) for all 1 ≤ i ≤ K. Using this fact and similar arguments in the
proof of Theorem 5.1 in Hörmann and Kokoszka [13], we get the following two
results:

N−1/2SN (1, ⌊Nr⌋, α) satisfies the functional central limit theorem; (7.1)

sup
r∈[0,1]

1√
N

∣

∣

∣
SN (1, ⌊Nr⌋, Ĉβ̂)− SN (1, ⌊Nr⌋, α)

∣

∣

∣
= op(log logN), (7.2)

which imply that

sup
r∈[0,1]

1√
N

∣

∣

∣
SN (1, ⌊Nr⌋, Ĉβ̂)

∣

∣

∣
= op(log logN). (7.3)

Simple calculation shows that

TN,η̂(k
∗,K) =

1√
N

(

k∗

∑

i=1

β̂i −
k∗

N

N
∑

i=1

β̂i

)

+
k∗(N − k∗)

N3/2
∆̂K .

Notice that |Ĉ∆̂K −∆K | = op(1) provided that |ĉiφ̂i − vi| = op(1). By (7.3),
we get

|ĈTN,η̂(k
∗,K)| =

∣

∣

∣

∣

∣

1√
N

(

k∗

∑

i=1

β̂i −
k∗

N

N
∑

i=1

β̂i

)

+
k∗(N − k∗)

N3/2
(Ĉ∆̂K −∆K)

+
k∗(N − k∗)

N3/2
∆K

∣

∣

∣

∣

∣

= Op(N
1/2). (7.4)
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On the other hand, it is not hard to see that

∥

∥

∥

∥

∥

1

N2

k∗

∑

t=1

{

ĈSN,η̂(1, t)−
t

k∗
ĈSN,η̂(1, k

∗)

}

×
{

ĈSN,η̂(1, t)−
t

k∗
ĈSN,η̂(1, k

∗)

}′
∥

∥

∥

∥

∥

M

=

∥

∥

∥

∥

∥

1

N2

k∗

∑

t=1

{

SN (1, t, Ĉβ̂)− t

k∗
SN (1, k∗, Ĉβ̂)

}

×
{

SN (1, t, Ĉβ̂)− t

k∗
SN (1, k∗, Ĉβ̂)

}′
∥

∥

∥

∥

∥

M

≤ K

N2

k∗

∑

t=1

∣

∣

∣

∣

{

SN (1, t, Ĉβ̂)− t

k∗
SN (1, k∗, Ĉβ̂)

}∣

∣

∣

∣

2

= op((log logN)2). (7.5)

Here we used the inequality that ||ab′||M ≤ Kmax1≤i,j≤K{aibj} ≤ K|a||b|
for a, b ∈ R

K . Similarly, we can prove the same result for the second term
in ĈVN,η̂(k

∗,K)Ĉ′ (see (2.9)). Therefore we have ||ĈVN,η̂(k
∗,K)Ĉ′||=

op((log logN)2). Along with the fact that ||ĈTN,η̂(k
∗,K)|| = Op(N

1/2), we get

GN,η̂(K) ≥ TN,η̂(k
∗,K)′V −1

N,η̂(k
∗,K)TN,η̂(k

∗,K)

≥ |TN,η̂(k
∗,K)|2/||VN,η̂(k

∗,K)||M ,

where the right hand side diverges to infinity as N → +∞. Note the second
inequality comes from the fact that a′A−1a ≥ |a|2/||A||M for a vector a ∈ R

K

and an invertible matrix A ∈ R
K×K .

Proof of Proposition 3.6. Note that ||c̃(N)(t, s) − c(t, s)|| = o(1) under the as-
sumption that ||∆(N)|| = o(1). Following the arguments in proof of Proposi-

tion 3.5, we can show that ||ĉ(t, s)−c(t, s)|| = op(1) and hence ||ĉiφ̂i−φi|| = op(1)
for all 1 ≤ i ≤ K. Using similar arguments in the proof of Theorem 5.1 in
Hörmann and Kokoszka [13], we get

sup
r∈[0,1]

1√
N

∣

∣

∣
SN (1, ⌊Nr⌋, Ĉβ̂)

∣

∣

∣

≤ sup
r∈[0,1]

1√
N

∣

∣

∣
SN (1, ⌊Nr⌋, Ĉβ̂)− SN (1, ⌊Nr⌋, η)

∣

∣

∣

+ sup
r∈[0,1]

1√
N

|SN (1, ⌊Nr⌋, η)| = op(log logN).

Note that |Ĉ∆̂
(N)
K − ∆

(N)
K | = op(|∆(N)

K |) provided that ||∆(N)|| = O(|∆(N)
K |)

and ||ĉiφ̂i − v
(N)
i || ≤ ||ĉiφ̂i − φi||+ ||φi − v

(N)
i || = op(1). Under the assumption

that lim infN→∞
N1/2|∆

(N)
K |

log logN > 0, we have |ĈTN,η̂(k
∗,K)| = Op(N

1/2|∆(N)
K |)
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and ||ĈVN,η̂(k
∗,K)Ĉ′||M = op((log logN)2) (see (7.4) and (7.5)). Therefore we

get

GN,η̂(K) ≥ |TN,η̂(k
∗,K)|2/||VN,η̂(k

∗,K)||M ,

where the right hand side diverges to infinity as N → +∞.
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[9] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point
Analysis. New York: Wiley. MR2743035

[10] Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J.,

Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W. et al.

(2006). GFDL’s CM2 global coupled climate models—Part 1: Formulation
and simulation characteristics. Journal of Climate, 19, 643-674.

[11] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data anal-
ysis. New York: Springer. MR2229687

[12] Gabrys, R. and Kokoszka, R. (2007). Portmanteau test of indepen-
dence for functional observations. Journal of the American Statistical As-
sociation, 102, 1338-1348. MR2412554
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