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We consider quadratic forms of martingale differences and establish a central limit
theorem under mild and easily verifiable conditions+ By approximating Fourier
transforms of stationary processes by martingales, our central limit theorem is
applied to the smoothed periodogram estimate of spectral density functions+ Our
results go beyond earlier ones by allowing a variety of nonlinear time series and
by avoiding strong mixing and0or summability conditions on joint cumulants+

1. INTRODUCTION

Let ~Xk!k�Z be a real stationary process with mean 0 and finite covariances
g~k! � E ~X0 Xk!, k � Z+ Assume that the covariances are absolutely summa-
ble+ Then the spectrum or spectral density function

f ~l! �
1

2p (k�Z

g~k!cos~kl!, l � @0,2p# (1)

exists and is continuous and finite+A fundamental problem in time series analy-
sis is to estimate f+ Given the observations X1, + + + , Xn, let the periodogram

In~l! �
1

2pn
6Sn~l!62, where Sn~l!�(

t�1

n

Xt e tlM�1+ (2)

Here Sn~l! is the Fourier transform of the sample X1, + + + , Xn and M�1 is the
imaginary unit+ It is well known that In~l! is an asymptotic unbiased but incon-
sistent estimate of f ~l! ~see, e+g+, Anderson, 1971; Brillinger, 1975; Brockwell
and Davis, 1991; Hannan, 1970; Priestley, 1981!+ Denote by lj � lj, n � 2pj0n,
j � Z, the Fourier frequencies+ Under suitable conditions on the underlying
process ~Xk!, In~l j ! are asymptotically independent at different Fourier fre-
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quencies+ To obtain a consistent estimate of the spectral density at a given fre-
quency u � @0,p# , one can naturally smooth the periodograms over Fourier
frequencies near u+ Namely, the following weighted periodogram estimate can
be used:

Zfn~u! �
1

Km
(

k��m

m

K~k0m!In~lk�k0
!, (3)

where k0 � {nu0~2p!} , K is a nonnegative kernel function, and Km �

(k��m
m K~k0m!+ Here {x} denotes the integer part of the real number x, namely,
{x}� max$k � Z : k � x% + Generically ~3! is called the smoothed periodogram
spectral density estimate+ See Robinson ~1983! for a review of various
approaches to spectral density estimation+ The smoothing parameter m � mn is
chosen such that

mn
�1 � mn n�1 r 0+ (4)

Under appropriate conditions on ~Xk!, ~4! ensures that Zfn is a consistent esti-
mate of f+ As a significant merit, Zfn can be quickly computed via the fast Fou-
rier transforms+ On the other hand, however, it has been a notoriously difficult
problem to establish a central limit theorem of the estimate under the natural
bandwidth condition ~4!+ Such asymptotic results are certainly needed in the
related statistical inference in the frequency domain, such as hypothesis testing
and the construction of confidence intervals+ In previous results the process
~Xk! is assumed to have very special structures+ For example, Lomnicki and
Zaremba ~1959! and Hannan ~1970! deal with linear processes; Brillinger ~1969!
assumes that Xk has finite moment of all order and the joint cumulants of the
process are summable of any order; also see Dahlhaus ~1985!+ Rosenblatt ~1984!
considers strong mixing processes+ See also Bentkus and Rudzkis ~1982! for
Gaussian processes and Henry ~2001! for linear processes with martingale dif-
ference innovations+

An important problem in econometrics is to estimate the long-run variance,
which basically corresponds to the spectral density evaluated at zero frequency+
A closely related problem in the multivariate case is to study the so-called het-
eroskedasticity and autocorrelation consistent ~HAC! covariance matrix esti-
mate+Asymptotic results have been obtained by Andrews ~1991!, Hansen ~1992!,
de Jong and Davidson ~2000!, and Jansson ~2002! among others+ The HAC esti-
mation plays an important role in various econometrics problems, such as unit
root tests, robust hypothesis testing, and cointegration estimation+ For recent
developments see Phillips, Sun, and Jin ~2006a, 2006b!+

In this paper we obtain a central limit theorem of Zfn for a very general class
of stationary processes under conditions stronger than ~4! ~see expressions ~38!
and ~39! in Section 3+2!+ In particular, our results allow linear processes and
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nonlinear processes including threshold, bilinear, and exponential autoregres-
sive processes among others+ The imposed condition on ~Xk! is directly related
to the data-generating mechanism of the process and hence is easily verifiable+
Additionally, we do not need the summability conditions on joint cumulants
and0or strong mixing conditions+ Conditions of the latter two types do not seem
to be tractable in many applications+ We shall study asymptotic properties of
the quadratic form

Qn � (
t, t '�1

n

an~t, t ' !Xt Xt ' , (5)

where the weights an~t, t '!, 1 � t, t ' � n, n � 1,2, + + + , are ~deterministic! real
coefficients+ The form of Qn is very general+ An important special case of ~5! is
the smoothed periodogram spectral density estimate ~3!+ Elementary calcula-
tions show that ~3! is of the form ~5! with an~t, t '! � an~t � t '!, where

an~ j ! �
1

2pnKm
(

k��m

m

K~k0m!cos~ jlk�k0
!+ (6)

It would certainly be impossible to obtain limit theorems for Qn without impos-
ing suitable conditions on an~t, t '! and ~Xt !+ In Section 2 we assume that the
process ~Xt ! is a stationary martingale difference sequence+ Using the idea of
martingale approximation, we show in Section 3 that, for stationary processes
~Xt ! that may not necessarily be martingale differences, the smoothed peri-
odogram spectral density estimation ~3! can be approximated by the quadratic
form ~5! of martingale differences under mild conditions+

The asymptotic problem of Qn has a long history+ See Whittle ~1964!, de Wet
and Venter ~1973!, ten Vregelaar ~1990!, Varberg ~1966!, Mikosch ~1991!,
Basalykas ~1994!, and Götze and Tikhomirov ~1999!, and references cited
therein+ Results of this sort have many applications in statistics+ In all those
works Xk are assumed to be independent and identically distributed ~i+i+d+!, and0or
the weights an~t, t '! do not depend on n+ Both assumptions are violated in our
setting+ In particular, in our problem the independence assumption is too restric-
tive, and we have to resort to other powerful and more versatile methods+

In a series of recent papers ~see, e+g+,Wu and Mielniczuk, 2002;Wu, 2005a,
2005b; Wu and Woodroofe, 2004; Hsing and Wu, 2004!, we argue that the
method of martingale approximation is quite useful in a variety of asymptotic
problems+ In particular, Hsing and Wu ~2004! established an asymptotic theory
for the weighted U-statistics

Un � (
t, t '�1

n

a 6 t�t ' 6G~Xt , Xt ' ! (7)
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for a quite general class of stationary processes including linear processes and
many widely used nonlinear time series+ However, even though the bivariate
function G~u, v! in ~7! can be specifically chosen to be the product uv, the result
in Hsing and Wu ~2004! is not directly applicable to Qn+ The major difficulty is
that the weights an~t, t '! in ~5! depend on n+ The dependence of an~t, t '! on n
makes the asymptotic problem of Qn considerably more challenging+ Nonethe-
less the method of martingale approximation used in Hsing and Wu ~2004! sheds
new light on asymptotic properties of Qn+ In this paper we shall apply a mod-
ified version of the method in Hsing and Wu ~2004!+

Throughout the paper letn denote convergence in distribution and N~m,s2!
the Gaussian distribution with mean m and variance s 2 + The notation C stands
for a generic constant that may vary from line to line+ For a random variable j
write j � L p ~ p � 0! if 7j7p :� @E ~6j6 p!#10p � ` and 7j7 � 7j72+ Denote
the real part of a complex number a by �~a!+

Suitable structural assumptions on the process ~Xk! are certainly needed+ Here
we assume that ~Xk! is a stationary causal process of the form

Xk � g~+ + + ,«k�1,«k !, (8)

where «k, k � Z, are i+i+d+ random variables and g is a measurable function for
which Xk is a properly defined random variable+ The class of processes that ~8!
represents is huge; see Rosenblatt ~1971!, Kallianpur ~1981!, and Tong ~1990,
p+ 204!+

Let the shift process Fk � ~+ + + ,«k�1,«k!+ For j � L1 define the projection
operator

Pi j � E ~j6Fi !� E ~j6Fi�1!, i � Z+ (9)

The projection operator plays an important role in the study of Qn+ Clearly
Pij, i � Z, are martingale differences, and hence they are orthogonal in L2 if
j � L2 +

The rest of the paper is structured as follows+ Section 2 presents a central
limit theorem for Qn for martingale differences+ Applications to the smoothed
periodogram spectral density estimate ~3! are given in Section 3+ Some proofs
are collected in the Appendix+

2. QUADRATIC FORMS FOR MARTINGALE DIFFERENCES

In this section we assume that Xk, k � Z, are martingale differences, namely,
E ~Xk6Fk�1!� 0 almost surely+We are interested in the asymptotic distribution
of the quadratic form
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Tn � (
1�j�j '�n

an~ j, j ' !Xj Xj ' �(
t�2

n

Xt Zt�1, n , Zt�1, n �(
j�1

t�1

an~ j, t !Xj , (10)

where, for each n, the weights an~ j, j '!, 1 � j � j ' � n, are real numbers+ A
particularly interesting special case is that the bivariate function an~{,{! can be
written in the univariate way, namely, an~ j, j '! � an~ j � j '!+ For smoothed
periodogram spectral density estimates, we present in Section 3 a martingale
approximation scheme and show that ~3! can be reduced to the form ~10! even
though the process ~Xk! itself may not be a martingale difference sequence+
Martingale approximations of this type act as a bridge that connects general
stationary processes and martingales ~Wu and Woodroofe, 2004!+

Let

At, n � (
j�1

t�1

an
2~ j, t !, Bj, n � (

t�1�j

n

an
2~ j, t !, and sn

2 �(
t�2

n

At, n + (11)

Theorem 1, which follows, concerns the asymptotic distribution of Tn0sn under
easily verifiable and mild conditions on an~ j, j '!, 1 � j � j ' � n+

THEOREM 1+ Let the process Xk of (8) be a martingale difference sequence
and Xt � Lq for some q � 4. Assume

(i)

max
2�t�n

At, n � o~sn
2!; (12)

(ii) for any fixed J � N,

(
j�1

n�J

an
2~ j, j � J ! � o~sn

2!; (13)

(iii)

n (
t '�1

n�1

Bt ', n
2 � O~sn

4!; (14)

(iv)

(
k�1

n�1

(
t�1

k�1� (
j�1�k

n

an~k, j !an~t, j !�2

� o~sn
4! . (15)

Then we have the asymptotic normality

Tn

sn

n N~0, 7X074 !. (16)
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We now briefly discuss conditions ~12!–~15! of Theorem 1+ Condition ~12!
is basically the Lindeberg-type condition+ In the important special case an~t ', t !�
an~t

' � t !, we have At, n � An, n for 2 � t � n, and then ~12! indicates that An, n

does not dominate sn
2+ In this case, ~12! is equivalent to the following claim:

there exists a d � ~0,1! such that A{~1�d!n} , n � dAn, n for all sufficiently large n+
Condition ~13! means that the contribution of an~ j, j ' !Xj Xj ' to Tn is negligible
if j ' � j is small+ Note that sn

2 �(j�1
n�1 Bj, n ; by the Cauchy–Schwarz inequality,

n(t '�1
n�1 Bt ', n

2 � sn
4+ So ~14! indicates that the magnitudes of n(t '�1

n�1 Bt ', n
2 and sn

4

are comparable+
Condition ~15! is needed to exclude sequences an~{,{! that may lead to non-

Gaussian limiting distributions+ For example, if an~ j, j '! [ 1, then At, n � t � 1,
sn

2 � (t�2
n ~t � 1! � n~n � 1!02, and ~12!–~14! are fulfilled, whereas ~15! is

violated+ In this case, if Xk are i+i+d+ standard normal random variables, then
Tn0sn has the non-Gaussian asymptotic distribution ~W 2 � 1!��M2, where W is
the standard Gaussian random variable+ For a more general case for which ~15!
is violated, we let an~k, j ! � K @~k � j !0n# , where K is a kernel function with
support @�1,1# + This case is closely related to the spectral density estimation
without truncation where the bandwidth is equal to the sample size+ Kiefer and
Vogelsang ~2002! considered estimators of such type and obtained a non-
Gaussian limiting distribution+ See also Phillips et al+ ~2006a, 2006b! for more
discussion+ We are unclear as to what conditions on an~{,{! are needed such
that Tn0sn has a non-Gaussian limiting distribution+

With trigonometric identities, it is easy to verify ~12!–~15! for an~ j ! with
form ~6!; see Section 3+2+

Proof of Theorem 1+ Without loss of generality we assume 7X07 � 1+ Note
that Xt Zt�1, n, t � Z, are martingale differences with respect to the filter Ft ; we
shall apply the martingale central limit theorem ~MCLT! ~Chow and Teicher,
1988!+ By Lemma 1, which follows, 7Zt�1, n7q

2 � Cq
2 At, n7X07q

2+ By the Cauchy–
Schwarz inequality, the Lindeberg condition is satisfied because

(
t�2

n

7Xt Zt�1, n7q02
q02

� (
t�2

n

7Xt7q
q027Zt�1, n7q

q02

� 7X07q
q02 Cq

q027X07q
q02(

t�2

n

At, n
q04 � o~sn

q02!+

The last step is due to ~12! and q � 4+ Applying Lemmas 2 and 3, which are
given later in this section, with Wt � E ~Xt

2 6Ft�1!, it is easily seen that the
convergence of conditional variance

1

sn
2 (

t�2

n

Zt�1, n
2

E ~Xt
2 6Ft�1!r 7X074 (17)

in probability+ By the MCLT, ~16! holds+ �
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LEMMA 1+ Let D1, + + + ,Dn be a martingale difference sequence for which
Di � L p, p � 1. Let p ' � min~2, p! . Then

��(
i�1

n

Di��
p

p '

� Cp
p '(

i�1

n

7Di7p
p ' ,

where Cp � 18p3020~ p � 1!102.

Lemma 1 is a simple consequence of the Minkowski and the Burkholder
inequalities ~Chow and Teicher, 1988!+ The details of the proof are omitted+

LEMMA 2+ Assume that the process Wt � w~+ + + ,«t�1,«t ! � Lq02 for some
q � 4. Further assume that an~ j, j '! satisfies (12) and (13). Then

1

sn
2 (

t�2

n

@Wt � E ~W0 !#Zt�1, n
2 r 0 in L1. (18)

Proof+ Without loss of generality let E ~W0!� 0+ For integer I � 1 introduce
the truncated process Zt�1, n, I � E ~Zt�1, n6Ft�I !+ Then Zt�1, n, I � 0 if t � I and
Zt�1, n, I � (j�1

t�I an~ j, t !Xj + For 1 � t � n, by Lemma 1,

7Zt�1, n, I � Zt�1, n7q
2 � Cq

27X07q
2 (

j�max~1, t�I�1!

t�1

an
2~ j, t !+

Let Ln~I ! � (J�1
I �n~J !, where �n~J ! is the quantity on the left-hand side of

~13!+ Let

Vn~I ! � sn
�2(

t�2

n

Wt Zt�1, n, I
2 and Tn~I !� sn

�2(
t�2

n

E ~Wt 6Ft�I !Zt�1, n, I
2 +

By the Cauchy–Schwarz inequality, ~12!, and ~13!,

E6Vn~1!� Vn~I !6 � sn
�2(

t�2

n

E6Wt ~Zt�1, n
2 � Zt�1, n, I

2 !6

� sn
�2(

t�2

n

7Wt77Zt�1, n, I � Zt�1, n747Zt�1, n, I � Zt�1, n74

� O~sn
�2! (

t�2

n

7Zt�1, n, I � Zt�1, n74 At, n
102

� O~sn
�2!�(

t�2

n

7Zt�1, n, I � Zt�1, n74
2�102�(

t�2

n

At, n�102

� O~sn
�1!@Ln~I !#

102 r 0 (19)
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as n r `+ For 0 � j � I � 1 let

Un~ j ! � sn
�2(

t�2

n

~Pt�j Wt !Zt�1, n, I
2 +

Then Vn~I ! � Tn~I ! � (j�0
I�1 Un~ j !+ Note that the sequence ~Pt�j Wt !Zt�1, n, I

2 ,
t � 2, + + + , n, forms martingale differences+ By Lemma 1 and ~12!, because
7Pt�jWt7q02 � 27Wt7q02,

lim sup
nr`

7Un~ j !7q04
q04

� Cq04
q04 lim sup

nr`
sn

�q02(
t�2

n

7~Pt�j Wt !Zt�1, n, I
2 7q04

q04

� Cq04
q04 lim sup

nr`
sn

�q027W07q02
q04(

t�2

n

7Zt�1, n, I7q
q02

� lim sup
nr`

O~sn
�q02! (

t�2

n

At, n
q04 � 0+

Because 6Vn~1!6 � 6Vn~1! � Vn~I !6 � 6Vn~I ! � Tn~I !6 � 6Tn~I !6, by ~19!,

lim sup
nr`

E6Vn~1!6 � lim sup
nr`

7Vn~I !� Tn~I !7q04 � lim sup
nr`

E6Tn~I !6

� lim sup
nr`
(
j�0

I�1

7Un~ j !7q04

� lim sup
nr`

sn
�2(

t�2

n

7E ~Wt 6Ft�I !77Zt�1, n, I74
2

� 7E ~W0 6F�I !7Cq
27X07q

2 +

Therefore ~18! follows because 7E ~W06F�I !7 r 0 as I r `+ �

LEMMA 3+ Assume that ~Xk! defined in (8) is a martingale difference
sequence with X0 � L4. Then under (14) and (15), we have

1

sn
2 (

t�2

n

Zt�1, n
2 r 7X072 in L2. (20)

Proof+ For notational convenience we omit the subscript n in an
2~t ', t !, Bj, n,

and Zt�1, n+ Write uj � 7P0 Xj
27; then (j�0

` uj
2 � 7X0

2 � E ~X0
2!72 � `+ Recall

that Bt ' � (t�1�t '
n a2~t ', t !, 1 � t ' � n � 1, and let Jn � (t '�1

n�1 Bt '
2 + To show

~20!, we shall apply the martingale decomposition method+ By the orthogonal-
ity of Pk, k � + + + , n � 2, n � 1, and because Pk Zt�1

2 � 0 if 1 � t � k,

��(
t�2

n

Zt�1
2 � sn

27X072��
2

� (
k��`

0

��Pk(
t�2

n

Zt�1
2 ��

2

� (
k�1

n�1

��Pk (
t�1�k

n

Zt�1
2 ��

2

+ (21)
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Then it remains to show that both terms in the preceding display are of the
order o~sn

4!+ For the first one, let k be a nonpositive integer+ Because ~Xj ! are
martingale differences,

Pk Zt�1
2 � (

t '�1

t�1

a2~t ', t !Pk Xt '
2 ,

which by the triangle inequality implies

7Pk Zt�1
2 7 � (

t '�1

t�1

a2~t ', t !7Pk Xt '
2 7� (

t '�1

t�1

a2~t ', t !ut '�k + (22)

Hence by the Cauchy–Schwarz inequality and ~14!,

(
k��`

0 �(
t�2

n

7Pk Zt�1
2 7�2

� (
k��`

0 �(
t '�1

n�1

Bt ' ut '�k�2

� Jn (
k��`

0 �(
t '�1

n�1

ut '�k
2 �

� o~nJn !� o~sn
4!+ (23)

It is slightly more complicated to deal with the second term on the right-hand
side of ~21!+ Let 1 � k � n � 1; then Pk Zt�1

2 � 0 if t � k and

Pk Zt�1
2 � (

t '�k

t�1

a2~t ', t !Pk Xt '
2 � 2a~k, t !Xk (

t '�1

k�1

a~t ', t !Xt ' �: Ik~t !� IIk~t ! ~say!

(24)

if t � k+ By the Cauchy–Schwarz inequality, Lemma 1, and ~15!,

(
k�1

n�1

�� (
t�1�k

n

IIk~t !��
2

� 4 (
k�1

n�1

��Xk (
t�1

k�1

(
t '�1�k

n

a~k, t ' !a~t, t ' !Xt��
2

� 4 (
k�1

n�1

7Xk74
2��(

t�1

k�1

(
t '�1�k

n

a~k, t ' !a~t, t ' !Xt��
4

2

� 47X074
2 C4

2 (
k�1

n�1

(
t�1

k�1� (
t '�1�k

n

a~k, t ' !a~t, t ' !�2

� o~sn
4!+

For the term Ik~t !, we have

(
t�k�1

n

7Ik~t !7 � (
t�1�k

n

(
t '�k

t�1

a2~t ', t !ut '�k � (
t '�k

n�1

ut '�k Bt ' +
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Let � � {n104} + Then

1

2 (k�1

n�1�(
t '�k

n�1

ut '�k Bt '�2

� (
k�1

n�1��� (
t '�k��

n�1

ut '�k Bt '�2

� (
k�1

n�1��� (
t '�k

k���1

ut '�k Bt '�2

� (
k�n��

n�1 �(
t '�k

n�1

ut '�k Bt '�2

� (
k�1

n�1��� (
t '�k��

`

ut '�k
2 �� (

t '�k��

n�1

Bt '
2��Jn � (

j�0

��1

uj
2

� nJn(
j��

`

uj
2 �Jn � (

j�0

��1

uj
2 � o~nJn !+ (25)

By ~24!,

1

2 (k�1

n�1� (
t�1�k

n

7Pk Zt�1
2 7�2

� (
k�1

n�1�(
t '�k

n�1

ut '�k Bt '�2

� (
k�1

n�1

�� (
t�1�k

n

IIk~t !��
2

� o~sn
4!+ (26)

Combining ~23! and ~26!, we have ~20!+ �

3. SMOOTHED PERIODOGRAM ESTIMATES

The central limit theorem presented in Section 2 is only for martingale differ-
ences+ To obtain asymptotic distribution of the smoothed periodogram spectral
density estimate ~3! for processes with general forms, we shall approximate
Sn~u!�(t�1

n Xt e tuM�1 by martingales so that Theorem 1 is applicable+ Such a
martingale approximation scheme has been proposed in Wu ~2005a!+An explicit
construction of approximating martingales is given in Section 3+1+ Section 3+2
shows the asymptotic normality of the estimate Zfn~u! in ~3!+

3.1. A Martingale Approximation Scheme

LEMMA 4+ Assume that the process ~Xk! defined in (8) satisfies

(
k�0

`

k7P0 Xk7q � ` (27)

for some q � 2. Then for every u � R, the process

Yk~u! � (
t�0

`

E ~Xt�k 6Fk !exp~tuM�1! (28)
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exists and is in Lq. Let Dk~u! � PkYk~u! � Yk~u! � E @Yk~u!6Fk�1# and

Mn~u,l! � (
k�1

n

eM�1k~l�u!Dk~u! . (29)

Then there exists a constant C � 0, independent of n and l, such that

sup
u�R

7Sn~u� l!� Mn~u,l!7 � C~Mn 61 � e�M�1l 6� 1! . (30)

Proof+ Let pk � 7P0 Xk7q and t � 0+ Note that E ~Xt 6F0! � (j��`
0 Pj Xt + By

Lemma 1, we have 7E ~Xt 6F0 !7q
2 � Cq

2(j��`
0 pt�j

2 , which in conjunction with
~27! implies that

(
t�0

`

7E ~Xt 6F0 !7q � Cq(
t�0

` �(
k�t

`

pk
2�102

� Cq(
t�0

`

(
k�t

`

pk � Cq(
t�0

`

~t � 1!pt � `+

Hence Yk~u! � Lq , and additionally Xk � Yk~u! � E @Yk�1~u!6Fk #eM�1u+
For notational convenience write r � eM�1u, s � eM�1~u�l!, and Zk~u! �
E @Yk�1~u!6Fk# + Then

Sn~u� l!� Mn~u,l! � (
k�1

n

eM�1kl$Yk~u!r
k � r k�1 Zk~u!%� Mn~u,l!

� ~1 � e�M�1l ! (
k�1

n

s k Zk�1~u!� rZ0~u!� rs n Zn~u!+

(31)

Because Zk�1~u! � (j�1
` Pk�j Zk�1~u!, by the triangle inequality,

��(
k�1

n

s k Zk�1~u!�� � (
j�1

`

��(
k�1

n

s kPk�j Zk�1~u!��
� (

j�1

` �(
k�1

n

7Pk�j Zk�1~u!72�102

� (
j�1

`

Mn 7P1�j Z0~u!7

� Mn(
j�1

`

7P1�j Y1~u!7+
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Note that

(
j�1

`

7P1�j Y1~u!7 � (
j�1

`

(
t�1

`

7P1�j Xt7�(
l�1

`

lpl � `+

Then ~30! follows from ~31! with C � 2(l�0
` ~l � 1!pl + �

In Wu and Min ~2005! the condition ~27! implies that the process ~Xk! is Lq

weakly dependent with order 1+ It also implies (k�Z 6kg~k!6 � `; thus the spec-
tral density function is continuously differentiable; see Lemma A+1 in the com-
panion paper in this issue ~Shao and Wu, 2007b!+ Note that Dk~u! � Yk~u! �
E @Yk~u!6Fk�1# is a martingale difference sequence and it is related to the spec-
tral density in an interesting way+ By Wu ~2005a!, 7Dk~u!72 � 2pf ~u!+ The
latter identity gives a probabilistic representation of the spectral density+

3.2. Asymptotic Normality

Recall that lj � 2pj0n, j � Z, are Fourier frequencies+ Let n � 4 and m be
a positive integer with m � n02 � 1+ For a real sequence s � ~sj !j��m

m ,
let xm~s! � (j��m

m sj
2 , tm~s! � (j��m

m sj , Ãm~s! � (j��m
m 6sj 6, and vm~s! �

6s�m6 � (j�1�m
m 6sj � sj�16+ Crudely speaking the quantity vm measures the

oscillation of the sequence s+ For u � @0,p# let

Dn~u! � (
j��m

m

sj @I ~u� lj !� E $I ~u� lj !%# + (32)

Let ~«j
'!j�Z be an i+i+d+ copy of ~«j !j�Z + For k � 0 define

Xk
' � g~+ + + ,«�2 ,«�1,«0

' ,«1, + + + ,«k !+ (33)

Then Xk
' is a coupled version of Xk with «0 replaced by «0

' + Our weak depen-
dence condition ~cf+ expression ~34! in Theorem 2, which follows! is expressed
in terms of the distance between Xk and Xk

'+

THEOREM 2+ Assume that, for some q � 4,

(
k�1

`

k7Xk � Xk
' 7q � `. (34)

Further assume that m � o~n203! and the sequence ~sj !j��m
m satisfies

vm
2 ~s! log n � o~xm~s!! . (35)

(i) If u � 0 and sj � 0 for j � �m, + + + ,�1, then as n r `,

2pDn~0!

Mxm~s!
n N @0, 7D0~0!74 # , (36)

where D0~u! � (t�0
` P0 Xt exp~M�1tu! � L2 satisfies 7D0~u!72 �

2pf ~u! .
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(ii) If u � ~0,p! , then (36) holds with Dn~0! and D0~0! replaced by Dn~u!
and D0~u! , respectively.

Remark 1+ In case ~i!, sj are assumed to be 0 for �m � j � �1+ If
otherwise, noting that In~l! � In~�l!, we can let sj

' � sj � s�j , s�j
' � 0 for

j � 1, + + + ,m and s0
' � s0+ Then the central limit theorem ~36! is still applicable+

As in Wiener ~1958! and Priestley ~1988!, the causal process ~8! can be inter-
preted as a physical system with + + + ,«k�1,«k being the inputs, Xk the output,
and g a transform or a filter+ If g is a linear function, then ~Xk! is a linear
process+ Otherwise ~Xk! is a nonlinear process+ The condition ~34! has the fol-
lowing interesting interpretation+ Note that Xk

' is a coupled version of Xk by
replacing «0 in Xk by an i+i+d+ copy «0

' + If the function g~+ + + ,«k�1,«k! does not
depend on «0, then Xk � Xk

' � 0+ Hence the quantity 7Xk � Xk
' 7q measures the

contribution of «0 to Xk, in other words, the degree of dependence of Xk on «0+
In this sense ~34! means that the weighted cumulative contribution of «0 to all
future values Xk, k � 0, is finite, and hence ~34! ensures short-range depen-
dence+ See Wu ~2005b! for a more detailed discussion on the dependence of
stationary causal processes from the nonlinear system theory point of view+ Con-
ditions based on the quantity 7Xk � Xk

' 7q are often easily verifiable because
they are directly related to the data-generating mechanism of the process ~Xk!+

Our dependence condition ~34! is very different from the classical strong mix-
ing conditions, which may be too restrictive in certain applications ~Andrews,
1984!+ On the other hand, we avoid summability conditions on joint cumulants
that are commonly imposed in the large-sample spectral theory ~Brillinger, 1975;
Rosenblatt, 1984!+ The verification of the latter generally is not easy for pro-
cesses that are non-Gaussian and nonlinear+ In the companion paper in this
issue ~Shao and Wu, 2007b!, we find an easily verifiable sufficient condition
for the absolute summability of qth ~q � N, q � 2! joint cumulants, which is
(k�0
` k q�1 7Xk � Xk

' 7q � `; see Theorem 4+1 and Remark 4+1 therein+ Unfor-
tunately the latter sufficient condition appears to be overly strong+ It is an open
problem whether weaker versions such as (k�0

` 7Xk � Xk
' 7q � ` suffice+

Clearly ~34! implies ~27! by the identity P0 Xk � E @~Xk � Xk
'!6F0 # and the

Jensen inequality+ Theorem 2 has the following two immediate corollaries+ The
proofs are straightforward and hence the details are omitted+ The first corollary
gives a central limit theorem for Zfn~u!, and the second one has an application in
Shao and Wu ~2007b!+ The latter paper studies the local Whittle estimation of
long memory index for fractionally integrated nonlinear processes+

COROLLARY 1+ Assume that (34) holds for some q � 4. Further assume
that the kernel K is a nonnegative function with support @�1,1# , K has bounded
variation, and

1

m (i��m

m

K 2~i0m!r �
�1

1

K 2~u! du �: k and
1

m (i��m

m

K~i0m!r 1 (37)
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as m r `. Additionally assume that the m � mn satisfies

log n

m
�

m

n203 r 0. (38)

Then m102 @ Zfn~u! � E $ Zfn~u!%# n f ~u!N~0,k! .

Using the Cramér–Wold device, we can show that, for different frequencies
v1, + + + ,vJ � ~0,p!, m102 @ Zfn~vj ! � E $ Zfn~vj !%#0f ~vj !, 1 � j � J, are asymp-
totically i+i+d+ normal N~0,k!+ Because the proof of the latter claim is routine
and it involves very lengthy and tedious calculations, we omit the details+

We conjecture that the central limit theorem in Corollary 1 still holds if ~38!
is weakened to m�1 log n � n�1m r 0+ A key difficulty toward this result is
that our argument requires m � o~n203 ! to ensure a satisfactory martingale
approximation of Dn~u! by Ln~u!; see the proof of Theorem 2 in the Appendix+
If Corollary 1 is valid under m�1 log n � n�1mr 0, then we can allow m to be
a multiple of n405 that minimizes the mean squares error 7 Zfn~u! � f ~u!72 �
7 Zfn~u!� E $ Zfn~u!%72 � 6E $ Zfn~u!%� f ~u!62 because the bias E $ Zfn~u!%� f ~u! is
of the order ~m0n!2 under suitable conditions on K and f+

COROLLARY 2+ Let sj � 1 � log~ j0m! for 1 � j � m and sj � 0 for
�m � j � 0. Assume (34) for some q � 4 and

~ log n!3

m
�

m

n203 r 0. (39)

Then (36) holds.

Example 1 (Nonlinear time series)

Let «k, k � Z, be i+i+d+ random variables and define Xn recursively by

Xn � R~Xn�1,«n !, n � Z, (40)

where R is a measurable function+ Many popular nonlinear time series models,
such as threshold autoregressive ~TAR! models, bilinear autoregressive mod-
els, and autoregressive models with conditional heteroskedascity ~ARCH! are
of the form ~40!+ Let

L« � sup
x�x '

6R~x,«!� R~x ',«!6

6x � x ' 6
+

Assume that

E ~ log L«0
! � 0 and E @L«0

a � 6R~x0 ,«0 !6a # � ` (41)
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for some a � 0 and x0+ Then ~40! has a stationary distribution ~Diaconis and
Freedman, 1999;Wu and Shao, 2004!, and iterates of ~40! give rise to ~8!+Addi-
tionally, Wu and Woodroofe ~2000! show that ~41! implies that there exist
b � 0 and r � ~0,1! for which

7Xn � Xn
*7b � O~r n !, where Xn

*� G~+ + + ,«�1
' ,«0

' ,«1, + + + ,«n !+ (42)

The preceding property is called geometric-moment contraction ~GMC! in Hsing
and Wu ~2004!+ Furthermore, if Xk � Lq for some q � 4, then ~42! holds for
all b � ~0,q! ~cf+Wu and Min, 2005, Lem+ 2!+ It is easily seen that ~42! implies
7Xn � Xn

' 7b � O~r n!+ Hence ~34! holds+ Recently, Shao and Wu ~2007a!
showed that GMC holds for various generalized autoregressive conditional het-
eroskedasticity ~GARCH! models, including general asymmetric GARCH~r, s!
and nonlinear GARCH~1,1! models+ For the GMC property of an exponential
GARCH ~EGARCH! model, see Min ~2004!+

Example 2 (Nonlinear transforms of linear processes)

Let «k be i+i+d+ random variables with «k � Lq for some q � 4; let a0,a1, + + + be
a square summable real sequence and Ut � (j�0

` aj «t�j be a linear process+
Consider the process

Xt � 6Ut 6� E6Ut 6+

Let ~«k
' !k�Z be an i+i+d+ copy of ~«k!k�Z + Then 8 6Ut 6 � 6Ut

' 6 8 � 6at 6 6«0 � «0
' 6,

and consequently 7Xt � Xt
' 7q � 7 6Ut 6 � 6Ut

' 6 7q � 6at 6 7«0 � «0
' 7q + Under the

simple sufficient condition

(
j�0

`

j 6aj 6 � `, (43)

because 7«07q � `, ~34! holds+ It is easily seen that, for any Lipschitz contin-
uous function G, ~43! implies ~34! for Xt � G~Ut ! � E $G~Ut !% + The classical
central limit theorems on spectral density estimates are not applicable here
because they require strong mixing conditions and summability conditions on
joint cumulants+ As pointed out in Andrews ~1984!, the process Xt is not strong
mixing if «k are i+i+d+ with the distribution P~«k � 1! � P~«k � �1! � 1

2
_ and

aj � 2�j , j � N+ On the other hand, if G is a nonlinear function, it seems very
difficult to verify summability conditions on joint cumulants of Xt , because of
the nonlinear nature+ The central limit theorem in Hannan ~1970, Thm+ 5+11! is
only for linear processes and hence is not applicable to our Xt + The argument in
Hannan ~1970! does not work either because it depends heavily on the linearity
structure+
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APPENDIX

Proof of Theorem 2. Recall the definitions of xm~s!, tm~s!, Ãm~s!, and vm~s! in
Section 3+2+ For simplicity we abbreviate them as x, t, Ã, and v, respectively+ By
Lemma 4, condition ~34! implies that the martingale Mn~u,l! defined in ~29! exists in
Lq + Recall that Dk~u! � Yk~u! � E @Yk~u!6Fk�1# + Let

Ln~u! � (
j��m

m

sj @6Mn~u,lj !62 � E $6Mn~u,lj !62 %# + (A.1)

Let Rn~u,l!� Sn~u� l!� Mn~u,l!+ By ~30! of Lemma 4, for �m � j � m, 7Rn~u,lj!7�
O~Mnm0n � 1!+ Because m � o~n203! and (j��m

m 6sj 6 � ~2m � 1!102x102 ,

E6Dn~u!� Ln~u!6 � 2 (
j��m

m

6sj 6� E 6 6Mn~u,lj !62 � 6Sn~u� lj !62 6

� 2 (
j��m

m

6sj 6@27Mn~u,lj !77R~u,lj !7� 7R~u,lj !72 #

� (
j��m

m

6sj 6O@Mn ~Mnm0n � 1!� ~Mnm0n � 1!2 #

� O~m �Mn !Mmx � o~nx102 !+
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It then remains to show ~36! with D~u! replaced by Ln~u!+
~i! Let u � 0+ Then ~A+1! becomes

Ln~0! � 2 (
1�k�k '�n

an~k
' � k!Dk Dk ' � t (

k�1

n

~Dk
2 � 7D072 ! �: 2Tn � tVn ,

where

an~l ! � (
j��m

m

sj cos~llj !+

Note that P0 Dk
2 � E ~Dk

2 6F0 !� E ~Dk
2 6F0

'!� E @Dk
2 � ~Dk

'!2 6F0 # + The second term tVn

in Ln~0! is of order O~Mmx!Mn � o~nx102! because

��(
k�1

n

~Dk
2 � 7D072 !�� � Mn(

k�0

`

7P0 Dk
27� Mn(

k�0

`

7Dk
2 � ~Dk

'!2 7

� Mn(
k�0

`

7Dk � Dk
' 747Dk � Dk

' 74

� O~Mn ! (
k�0

`

(
t�0

`

7Xt�k � Xt�k
' 74 � O~Mn ! (A.2)

as a consequence of ~34!+ We now shall apply Theorem 1 to Tn by verifying conditions
~12!–~15!+ By Lemma 5, which is given later in this Appendix,

At, n � (
j�1

t�1

an
2~t � j !�(

j�1

n

an
2~ j ! �: An�1, n �

n

2
~x� s0

2!

and

sn
2 � (

t�2

n

At, n �(
j�1

n

~n � j !an
2~ j !�

n2

4
~x� s0

2!�
n

2
t2+

So ~12! follows because t2 � O~mx! and m � o~n203!+ Note that for any l, an
2~l ! �

O~mx! � o~n203x!, ~13! easily follows+ Because (t�1�t '
n an

2~t � t '! � An�1, n, we have
~14!+ It is slightly more complicated to verify ~15!+ To this end, for d � ~0,104! let

Gd � $~k, t ! � N � N : dn � k � ~1 � d!n, dn � t � ~1 � d!n, dn � k � t %

and cn~k, t ! � (j�1�k
n an~ j � k!an~ j � t !+ By the Cauchy–Schwarz inequality,

6cn~k, t !6 � An�1, n+ For l � 1, let hv � (j��m
v cos~llj !, v � �m, and h�m�1 � 0+ Then

supv��m6hv6 � 2061 � exp~M�1ll1!6 � O@10sin~ll102!# + Using the Abelian summa-
tion technique,

6an~l !6 � � (
j��m

m

sj ~hj � hj�1!� � O~n0l !�6s�m 6� (
j�1�m

m

6sj � sj�16�� O~vn0l !+
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Hence 6an~l !6 � O~v! uniformly over dn � l � ~1 � d!n+ By ~35!,

sup
k, t�Gd

6cn~k, t !6

nx
�

1

nx
max

dn�l�~1�d!n
6an~l !6max

dn�k
(

j�k�1

n

6an~ j � k!6

�
O~v!

nx (l�1

n�dn

vn0l �
O~v2 log n!

x
� o~1!

as n r `+ Therefore,

lim sup
nr`

1

sn
4 (

k�1

n�1

(
t�1

k�1

cn
2~k, t ! � lim sup

nr`

1

sn
4 (

k, t�G0�Gd

� lim sup
nr`

1

sn
4 (

k, t�Gd

� lim sup
nr`

1

sn
4

An�1, n
2 #~G0 � Gd!� 8d� 8d 2,

which completes the proof of ~15! because d � 0 can be made arbitrarily small+ Here
#~G0 � Gd! denotes the number of elements in the set G0 � Gd+
~ii! Outline of the proof in the case u � ~0,p!+ The proof for this case can be done in

an analogous way as in the case u � 0, and it does not involve additional methodolog-
ical difficulties+ However, it does involve quite lengthy manipulations+ Here we only
provide an outline of the arguments+ Let Dk~u! � Yk~u! � E @Yk~u!6Fk�1# � Ak �
M�1Bk , where both ~Ak! and ~Bk! are real, stationary martingale difference sequences
with Ak,Bk � Lq + Write

(
j��m

m

sj exp@M�1l~u� lj !# � an~l !�M�1bn~l !,

where an~l ! and bn~l ! are real numbers+ The quantity Ln~u! in ~A+1! can be rewritten as

Ln~u! � 2 (
1�k�k '�n

�$@an~k
' � k!�M�1bn~k

' � k!#Dk~u! PDk ' ~u!%� tVn

� 2 (
1�k�k '�n

$@an~k
' � k!Ak � bn~k

' � k!Bk #Ak '

� @an~k
' � k!Bk � bn~k

' � k!Ak #Bk ' %� tVn

� 2 (
k '�2

n

@Z1, n~k
' � 1!Ak ' � Z2, n~k

' � 1!Bk ' #� tVn ,

where Vn � (k�1
n 6Dk~u!62 � n7Dk~u!72 ,

Z1, n~k
' � 1! � (

k�1

k '�1

@an~k
' � k!Ak � bn~k

' � k!Bk # ,
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and

Z2, n~k
' � 1! � (

k�1

k '�1

@an~k
' � k!Bk � bn~k

' � k!Ak # +

Similar to ~A+2!, we have 7Vn7 � O~Mn !, and consequently 7tVn7 � O~6t6Mn ! �
o~nx102!+ Because Z1, n~k ' � 1!Ak ' � Z2, n~k ' � 1!Bk ' , 2 � k ' � n, form martingale
differences, we can again apply the martingale central limit theorem+ Following the proof
of Theorem 1, it is easily seen that the Lindeberg condition holds+ It remains to verify
the convergence of the sum of conditional variance

1

sn
2 (

k '�2

n

E $@Z1, n~k
' � 1!Ak ' � Z2, n~k

' � 1!Bk ' #
2 6Fk '�1%

�
1

sn
2 (

k '�2

n

$Z1, n
2 ~k ' � 1!E ~Ak '

2 6Fk '�1!� Z2, n
2 ~k ' � 1!E ~Bk '

2 6Fk '�1!

� 2Z1, n~k
' � 1!Z2, n~k

' � 1!E ~A0 B0 6F�1!%r 7D0~u!74 in L1+ (A.3)

By ~ii! of Lemma 5,

lim
nr`

1

sn
2 (

k '�2

n

(
k�1

k '�1

an
2~k ' � k! � 1 and lim

nr`

1

sn
2 (

k '�2

n

(
k�1

k '�1

bn
2~k ' � k!� 1+

Therefore, because

7Z1, n~k
' � 1!72 � (

k�1

k '�1

@an
2~k ' � k!7A072 � bn

2~k ' � k!7B072

� 2an~k
' � k!bn~k

' � k!E ~A0 B0 !# ,

7Z2, n~k
' � 1!72 � (

k�1

k '�1

@an
2~k ' � k!7B072 � bn

2~k ' � k!7A072

� 2an~k
' � k!bn~k

' � k!E ~A0 B0 !# ,

E @Z1, n~k
' � 1!Z2, n~k

' � 1!# � (
k�1

k '�1

$@an
2~k ' � k!� bn

2~k ' � k!#E ~A0 B0 !

� an~k
' � k!bn~k

' � k!~7A072 � 7B072 !%,

and 7D0~u!72 � 7A072 � 7B072 , we have

1

sn
2 (

k '�2

n

$7Z1, n~k
' � 1!72 7Ak ' 72 � 7Z2, n~k

' � 1!72 7Bk ' 72

� 2E @Z1, n~k
' � 1!Z2, n~k

' � 1!#E ~Ak ' Bk ' !%r 7D0~u!74+ (A.4)
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An analogue of Lemma 2 indicates that ~A+3! follows from

1

sn
2 (

k '�2

n

$Z1, n
2 ~k ' � 1!7A072 � Z2, n

2 ~k ' � 1!7B072

� 2Z1, n~k
' � 1!Z2, n~k

' � 1!E ~A0 B0 !%r 7D0~u!74 in L2+

The preceding convergence is a consequence of ~A+4! and a similar version of Lemma 3+
�

LEMMA 5+ Let m be a positive integer with m � n02 � 1; let sj ,�m � j � m, be
real numbers, tm~s! � (j��m

m sj , Ãm~s! � (j��m
m 6sj 6, and xm~s! � (j��m

m sj
2.

(i) Assume that sj � 0 for �m � j � �1. For l � Z let

an~l ! � (
j��m

m

sj cos~llj ! . (A.5)

Then

(
l�1

n

an
2~l ! �

n

2
@xm~s!� s0

2# (A.6)

and

(
l�1

n

lan
2~l ! �

n2

4
@xm~s!� s0

2#�
n

2
tm

2 ~s! . (A.7)

(ii) For a fixed u � ~0,p! and l � Z let

an~l ! � (
j��m

m

sj cos@l~lj � u!# and bn~l !� (
j��m

m

sj sin@l~lj � u!# . (A.8)

Assume that m � o~n! . Then

lim
nr`

(
l�1

n

an
2~l !

nxm~s!
� lim

nr`

(
l�1

n

bn
2~l !

nxm~s!
�

1

2
(A.9)

and

lim
nr`

(
l�1

n

lan
2~l !

n2xm~s!
� lim

nr`

(
l�1

n

lbn
2~l !

n2xm~s!
�

1

4
. (A.10)

Proof. ~i! For �m � j, j ' � m let

mn~ j, j ' ! � (
l�1

n

cos~llj !cos~llj ' ! and nn~ j, j ' !�(
l�1

n

l cos~llj !cos~llj ' !+

950 WEI BIAO WU AND XIAOFENG SHAO



Because l j � jl1 , basic trigonometric manipulations imply that mn~ j, j ' ! � n if
j � j ' � 0; mn~ j, j '! � 0 if j � j ' ; mn~ j, j '! � n02 if j � j ' � 0; nn~ j, j '! � n~n � 1!02
if j � j ' � 0; nn~ j, j '! � n02 if j � j ' ; and nn~ j, j '! � n~n � 2!04 if j � j ' � 0+ Using
these trigonometric identities, ~A+6! and ~A+7! easily follow+
~ii!We only prove ~A+9! because ~A+10! can be proved in a similar way+ As in ~i!, let

mn~ j, j ' ;u! � (
l�1

n

cos@l~lj � u!# cos@l~lj ' � u!#

�
1

2 (l�1

n

$cos@l~lj�j ' � 2u!#� cos~llj�j ' !%+

Let b � ~0,2p!+ Then

�(
l�1

n

cos~lb!� � �(
l�1

n

exp~M�1lb!�
�

2

61 � exp~M�1b!6
�

1

6sin~b02!6
+ (A.11)

If j � j ' , because for sufficiently large n, u02 � lj � u � u� ~p� u!02 uniformly over
j � �m, + + + ,m, ~A+11! implies that mn~ j, j;u! � n02 � O~1!+ On the other hand, if
j � j ' , we similarly have mn~ j, j ' ;u! � O~1! uniformly over j and j ' + Therefore,

(
l�1

n

an
2~l ! � (

j, j '��m

m

sj sj ' mn~ j, j ' ;u!

� (
j��m

m

sj
2mn~ j, j;u!� O~1! (

j�j '
6sj sj ' 6

�
n

2
xm~s!� (

j��m

m

O~sj
2!� O@Ãm

2 ~s!#

�
n

2
xm~s!@1 � o~1!#

because Ãm
2 ~s! � ~2m � 1!xm~s! � o@nxm~s!# + �
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