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A LIMIT THEOREM FOR QUADRATIC
FORMS AND ITS APPLICATIONS

WEI Biao Wu
University of Chicago
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University of Illlinois at Urbana-Champaign

We consider quadratic forms of martingale differences and establish a central limit
theorem under mild and easily verifiable conditions. By approximating Fourier
transforms of stationary processes by martingales, our central limit theorem is
applied to the smoothed periodogram estimate of spectral density functions. Our
results go beyond earlier ones by allowing a variety of nonlinear time series and
by avoiding strong mixing and/or summability conditions on joint cumulants.

1. INTRODUCTION

Let (X;)rez be a real stationary process with mean O and finite covariances
v(k) = E(XyXy), k € Z. Assume that the covariances are absolutely summa-
ble. Then the spectrum or spectral density function

L > y(k)cos(kd), A €[0,27] 1)

f) =
27 fez

exists and is continuous and finite. A fundamental problem in time series analy-

sis is to estimate f. Given the observations Xy, ..., X,,, let the periodogram

1 n
L,(A) = Py IS, (A)]%  where S,(A) = > X, eV L )
=1

Here S,()) is the Fourier transform of the sample X,..., X, and \/—_1 is the
imaginary unit. It is well known that 7,,(A) is an asymptotic unbiased but incon-
sistent estimate of f(\) (see, e.g., Anderson, 1971; Brillinger, 1975; Brockwell
and Davis, 1991; Hannan, 1970; Priestley, 1981). Denote by A; = A; , = 27j/n,
Jj € Z, the Fourier frequencies. Under suitable conditions on the underlying
process (X;), I,(A;) are asymptotically independent at different Fourier fre-
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quencies. To obtain a consistent estimate of the spectral density at a given fre-
quency 6 € [0,77], one can naturally smooth the periodograms over Fourier
frequencies near #. Namely, the following weighted periodogram estimate can
be used:

N 1 m
12(0) = = > K(k/m)L,(Ag,), A3)
m k=—m

where k, = |[n6/(27)|, K is a nonnegative kernel function, and K, =
>, K(k/m). Here | x| denotes the integer part of the real number x, namely,
x| = max{k € Z:k =< x}. Generically (3) is called the smoothed periodogram
spectral density estimate. See Robinson (1983) for a review of various
approaches to spectral density estimation. The smoothing parameter m = m,, is
chosen such that

m, '+ m,n"" = 0. @)

Under appropriate conditions on (X;), (4) ensures that f, is a consistent esti-
mate of f. As a significant merit, f,, can be quickly computed via the fast Fou-
rier transforms. On the other hand, however, it has been a notoriously difficult
problem to establish a central limit theorem of the estimate under the natural
bandwidth condition (4). Such asymptotic results are certainly needed in the
related statistical inference in the frequency domain, such as hypothesis testing
and the construction of confidence intervals. In previous results the process
(X;) is assumed to have very special structures. For example, Lomnicki and
Zaremba (1959) and Hannan (1970) deal with linear processes; Brillinger (1969)
assumes that X, has finite moment of all order and the joint cumulants of the
process are summable of any order; also see Dahlhaus (1985). Rosenblatt (1984)
considers strong mixing processes. See also Bentkus and Rudzkis (1982) for
Gaussian processes and Henry (2001) for linear processes with martingale dif-
ference innovations.

An important problem in econometrics is to estimate the long-run variance,
which basically corresponds to the spectral density evaluated at zero frequency.
A closely related problem in the multivariate case is to study the so-called het-
eroskedasticity and autocorrelation consistent (HAC) covariance matrix esti-
mate. Asymptotic results have been obtained by Andrews (1991), Hansen (1992),
de Jong and Davidson (2000), and Jansson (2002) among others. The HAC esti-
mation plays an important role in various econometrics problems, such as unit
root tests, robust hypothesis testing, and cointegration estimation. For recent
developments see Phillips, Sun, and Jin (2006a, 2006b).

In this paper we obtain a central limit theorem of £, for a very general class
of stationary processes under conditions stronger than (4) (see expressions (38)
and (39) in Section 3.2). In particular, our results allow linear processes and
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nonlinear processes including threshold, bilinear, and exponential autoregres-
sive processes among others. The imposed condition on (X;) is directly related
to the data-generating mechanism of the process and hence is easily verifiable.
Additionally, we do not need the summability conditions on joint cumulants
and/or strong mixing conditions. Conditions of the latter two types do not seem
to be tractable in many applications. We shall study asymptotic properties of
the quadratic form

n

Q,= > a,(t,1)X,X,, (5)

nt'=1

where the weights a,,(t,t'), 1 = t,t' =n, n =1,2,..., are (deterministic) real
coefficients. The form of Q,, is very general. An important special case of (5) is
the smoothed periodogram spectral density estimate (3). Elementary calcula-
tions show that (3) is of the form (5) with a,(t,t') = a,(r — t'), where

> K (k/m)cos( jAiig,)- (6)
2mnkK,, 1 =",

a,(j) =
It would certainly be impossible to obtain limit theorems for Q,, without impos-
ing suitable conditions on a,(z,¢") and (X,). In Section 2 we assume that the
process (X,) is a stationary martingale difference sequence. Using the idea of
martingale approximation, we show in Section 3 that, for stationary processes
(X,) that may not necessarily be martingale differences, the smoothed peri-
odogram spectral density estimation (3) can be approximated by the quadratic
form (5) of martingale differences under mild conditions.

The asymptotic problem of Q, has a long history. See Whittle (1964), de Wet
and Venter (1973), ten Vregelaar (1990), Varberg (1966), Mikosch (1991),
Basalykas (1994), and Gotze and Tikhomirov (1999), and references cited
therein. Results of this sort have many applications in statistics. In all those
works X, are assumed to be independent and identically distributed (i.i.d.), and/or
the weights a,(z,¢') do not depend on n. Both assumptions are violated in our
setting. In particular, in our problem the independence assumption is too restric-
tive, and we have to resort to other powerful and more versatile methods.

In a series of recent papers (see, e.g., Wu and Mielniczuk, 2002; Wu, 2005a,
2005b; Wu and Woodroofe, 2004; Hsing and Wu, 2004), we argue that the
method of martingale approximation is quite useful in a variety of asymptotic
problems. In particular, Hsing and Wu (2004) established an asymptotic theory
for the weighted U-statistics

U,= X a,G(X,X,) (7)

nt'=1
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for a quite general class of stationary processes including linear processes and
many widely used nonlinear time series. However, even though the bivariate
function G (u,v) in (7) can be specifically chosen to be the product uv, the result
in Hsing and Wu (2004) is not directly applicable to Q,. The major difficulty is
that the weights a,(z,¢") in (5) depend on n. The dependence of a,(z,¢') on n
makes the asymptotic problem of O, considerably more challenging. Nonethe-
less the method of martingale approximation used in Hsing and Wu (2004) sheds
new light on asymptotic properties of Q,. In this paper we shall apply a mod-
ified version of the method in Hsing and Wu (2004).

Throughout the paper let = denote convergence in distribution and N(u, o?)
the Gaussian distribution with mean wu and variance o 2. The notation C stands
for a generic constant that may vary from line to line. For a random variable &
write £ € L7 (p > 0) if |¢]], := [E(|€]”)]"” < oo and [£] = |¢]. Denote
the real part of a complex number a by R(a).

Suitable structural assumptions on the process (X) are certainly needed. Here
we assume that (X)) is a stationary causal process of the form

Xk:g('--’skfl’sk% (8)

where €,k € 7, are i.i.d. random variables and g is a measurable function for
which X, is a properly defined random variable. The class of processes that (8)
represents is huge; see Rosenblatt (1971), Kallianpur (1981), and Tong (1990,
p. 204).

Let the shift process 7 = (...,&,_1,&;). For &€ € L! define the projection
operator

P& =E(E|FR) —E(EF-), (€L )

The projection operator plays an important role in the study of Q,. Clearly
P&, i € Z, are martingale differences, and hence they are orthogonal in £? if
e L2

The rest of the paper is structured as follows. Section 2 presents a central
limit theorem for Q, for martingale differences. Applications to the smoothed
periodogram spectral density estimate (3) are given in Section 3. Some proofs
are collected in the Appendix.

2. QUADRATIC FORMS FOR MARTINGALE DIFFERENCES

In this section we assume that X;,k € Z, are martingale differences, namely,
E(X;| Fi—1) = 0 almost surely. We are interested in the asymptotic distribution
of the quadratic form
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t—1

Tn = Z an(jhi,)Xij' = 2 Xtthl,n’ Zt*l,n = 2 an(j7t)Xj7 (10)

1=j<j'=n =2 Jj=1

where, for each n, the weights a,(j,j'), | =j < j' = n, are real numbers. A
particularly interesting special case is that the bivariate function a,,(-,-) can be
written in the univariate way, namely, a,(j,j') = a,(j — j'). For smoothed
periodogram spectral density estimates, we present in Section 3 a martingale
approximation scheme and show that (3) can be reduced to the form (10) even
though the process (X;) itself may not be a martingale difference sequence.
Martingale approximations of this type act as a bridge that connects general
stationary processes and martingales (Wu and Woodroofe, 2004).
Let

—1 n n

Ay=2a (i), B,= 2 ajn, ad o’=XA4,,. (A1
j=1 t=1+j =2

Theorem 1, which follows, concerns the asymptotic distribution of 7,,/c,, under

easily verifiable and mild conditions on a,(j,j'), | =j <j' = n.

THEOREM 1. Let the process X, of (8) be a martingale difference sequence
and X, € L1 for some g > 4. Assume

(i)

max A, , = o(o,;); (12)

2=t=n

(ii) for any fixed J € N,

n—J

> arjj+J)=o0(a)); (13)
j=1
(iii)
n—1
n E Btz,’n =0(c}); 14)
t'=1
(iv)
n—1k—1 n 2
S| 3 ki) -otw as)
k=1i=1Lj=1+x

Then we have the asymptotic normality

T,
o= N, [ Xo[*). (16)

n
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We now briefly discuss conditions (12)—(15) of Theorem 1. Condition (12)
is basically the Lindeberg-type condition. In the important special case a,,(t’, 1) =
a,(t' — 1), wehave A, , = A, , for 2 =t = n, and then (12) indicates that 4, ,
does not dominate 0',,2. In this case, (12) is equivalent to the following claim:
there exists a 6 € (0,1) such that A(;_s),)., > 64, , for all sufficiently large n.
Condition (13) means that the contribution of a,(j,j")X; X, to T, is negligible
if j/ — j is small. Note that o i 11 B, ,; by the Cauchy— Schwarz 1nequa11ty,
n>n_, B . =0 So (14) indicates that the magnitudes of n 3" _| tz and o}
are comparable "

Condition (15) is needed to exclude sequences a,(-,-) that may lead to non-
Gaussian limiting distributions. For example, if a,(j,j’) =1, then A, ,, =1 — 1,
o2 =2 ,(t—1)=n(n—1)/2, and (12)—(14) are fulfilled, whereas (15) is
violated. In this case, if X; are i.i.d. standard normal random variables, then
T, /o, has the non-Gaussian asymptotic distribution (W? — 1) / \/5, where W is
the standard Gaussian random variable. For a more general case for which (15)
is violated, we let a,(k,j) = K[(k — j)/n], where K is a kernel function with
support [—1,1]. This case is closely related to the spectral density estimation
without truncation where the bandwidth is equal to the sample size. Kiefer and
Vogelsang (2002) considered estimators of such type and obtained a non-
Gaussian limiting distribution. See also Phillips et al. (2006a, 2006b) for more
discussion. We are unclear as to what conditions on a,(-,-) are needed such
that 7, /o, has a non-Gaussian limiting distribution.

With trigonometric identities, it is easy to verify (12)—(15) for a,(j) with
form (6); see Section 3.2.

Proof of Theorem 1. Without loss of generality we assume | X,| = 1. Note
that X,Z,_, ,, t € Z, are martingale differences with respect to the filter F;; we
shall apply the martingale central limit theorem (MCLT) (Chow and Teicher,
1988). By Lemma 1, which follows, |Z,_, |2 = C;A, [ X,. By the Cauchy—
Schwarz inequality, the Lindeberg condition is satisfied because

n

2
DX, 25 = Z 1 X 1212Z,- 1%

=2

= 1 Xol22 C21 X112 EA‘”“ =o(a?).
=2

The last step is due to (12) and ¢ > 4. Applying Lemmas 2 and 3, which are
given later in this section, with W, = E(X?|F,_,), it is easily seen that the
convergence of conditional variance

1 n
O_—E P REXCIFS) = 1 X1 17)

in probability. By the MCLT, (16) holds. u
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LEMMA 1. Let D,,...,D, be a martingale difference sequence for which
D; € L?, p> 1. Let p' = min(2,p). Then

P’

>D
i=1

n
=c/ YDz,
i=1

where C, = 18p3/?/(p — 1)"/%.

Lemma 1 is a simple consequence of the Minkowski and the Burkholder
inequalities (Chow and Teicher, 1988). The details of the proof are omitted.

LEMMA 2. Assume that the process W, = w(...,&_,&,) € LY? for some
q > 4. Further assume that a,( j,j') satisfies (12) and (13). Then

1 n
—22 (W, - E(W,)]Z2,,—>0 inL" 8)
g, =2

Proof. Without loss of generality let E(W,) = 0. For integer / = 1 introduce
the truncated process Zicvw1=E(Z-y | F=p). Then Z,_, , ;= 0if t = I and
Ziwr = 2i21a,(j,0)X;. For | =t =n, by Lemma 1,

t—1

||Zt—1,n,l_Zz—1,nH,215 qu”Xo”; 2 ay(j,1).

Jj=max(l,r—1+1)

Let L,(I) = X'_,€,(J), where €,(J) is the quantity on the left-hand side of
(13). Let

(1)_0-*22WZII,,, and (I)—0'22E(W|-7:t DZE e
=2

By the Cauchy-Schwarz inequality, (12), and (13),

E[V,(1) - V(I)|<0-722E|W(Ztln th—l,n,l)‘

n
= U'n,_2 2 W, Hthl,n,I - Zt*l,n||4||ztfl,n,1 + Zt*l,n||4

=2

n
= O(o-niz) 2 ||Zt*l,n,1 - Zt*l,n||4Atl,/n2
=2

n 1/2 n 1/2
= O(Un2)<2 ”Zt—l,n,l - Zr—l,n|i> <2At,n)
=2

= 0(o, DIL,(D]'* =0 (19)
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asn—oo.ForO=j=71-—1let
Un(‘])zo-nizg( W)Zt 1,n,1*
=2

Then V,(I) — T,(I) = ]{;(l, U,(j). Note that the sequence (P,_ W)Z, LD
t = 2,...,n, forms martingale differences. By Lemma 1 and (12) because
1P—;Wlly2 = 2[Wily/2s

Mmmw%sﬁmwoWMWWﬂmwi

n—oo n—oo

/a /4
;/4 limsup o, —q/2 HWO |Z/2 2 HZz 1n, IHq/2

n—oo

= limsup O(o, ¥?) EDA"/4 0.

n—o0 t=2

Because |V, (1)| = [V, (1) = V,(D)| + [V,(I) = T,(D[ + |T,(D)], by (19),

limsup E[V, (1| = limsup[V, (1) = T,(D)|/s + limsup E|T, (1)

n—oo n—oo n—oo
1—1

< limsup X, |U,(j)],4

n—oo j:O

+limsup o, > X |[E(W,| F-DIZ, -y, 13

n—oo =2

= [EWol F-DICZ 1 X115

Therefore (18) follows because |E(Wy|F_,)| — 0 as I — co. |

LEMMA 3. Assume that (X;) defined in (8) is a martingale difference
sequence with X, € L*. Then under (14) and (15), we have

—ZZM+MWiM% (20)
0',, =2

Proof. For notational convenience we omit the subscript n in ai(t’, 1), B; ,,
and Z,_, ,. Write 6, = [Py X7[; then 272,67 = | X5 — E(X7)|* < 0. Recall
that B, = 3", a*(t’,1), 1 =1 =n—1, and let E, = 2/._| B’ To show
(20), we shall apply the martingale decomposition method. By the orthogonal-
ity of P, k =...,n — 2,n — 1, and because Pka_l =0ifl =r=k,

PkEZ

r=1+k

2 0

-3

k=—o0

2 n—1

2y

1~ o Xol?

7Dk E Zt2—1
=2

k=
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Then it remains to show that both terms in the preceding display are of the
order o(a,'). For the first one, let k be a nonpositive integer. Because (X;) are

martingale differences,
t—1
PZr, = 2 az(l,,l‘)kaz
t'=1
which by the triangle inequality implies

—1 —1

1Pz2 | = 2 a1, )| Py ,2 = > a*(t,1)0, .

t'=1 t'=1

Hence by the Cauchy—Schwarz inequality and (14),

» [inwu]zs » [2 B,feffkr

k=—oo | t=2 k=—o0 | ;'=1
0 n—1
— 2
=E 2|26,
t'=1

=o0(ng,) =o(a}).

(22)

(23)

It is slightly more complicated to deal with the second term on the right-hand

side of (21). Let | =k <n — 1; then P, Z>, =0 if t < k and

t—1 k—1

Pz = > a?(t, )P X) + 2alk, )X, > alt', )X, = I(t) + I (1) (say)

t'=k t'=1

if £ > k. By the Cauchy—Schwarz inequality, Lemma 1, and (15),

n—1 n n—1 n 2
Y DIWAG) —42 XkE S alk,t))alt, )X,
k=1|| t=1+k =1 ;' =14k
n—1 n 2
=4 [Xd3 Z > alkt)aln )X,
k=1 =1 =14k 4

n

n—1k—1 2
=4|x,05¢3 > 2[ > a(/m’)a(r,t')] =o(a;).
k=11=1] k

For the term I,(r), we have

S o= S S a6 =S 6 B

t=k+1 t=1+k ' =p t'=k

(24)
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Let ¢ = |n'*]. Then

1 n—1 - n—1-—4¢ n—1 2
E 2 < 2 0y By > = ( Ht’kBt’>
k=1

t'= t'=k+¢
n—1—¢€ [k+€—1 2 n—1
+ ( HI'*kBt ) + 2 (E 0t 7kB )
k=1 =k k=n—4€ \ ;' =k

IA
S
L
|
~
//
Ms
N
~ N
~
~ —
//
N
o
IS
S~ —
+
S5
MT
D
(S}

k=1 \¢'=k+¢ t'=k+¢ Jj=0
oo -1
=nE, > 07 +E,{ > 07 =0(ng,) (25)
=t j=0
y (24),
1 — 2
. 2 [ 2 |7)kZz21”:|
2 k= =1+k
— — n—1 n 2
2 ( > 0By ) Sl 2 m@| =ola)). (26)
=1\, = k=11 =14k
Combining (23) and (26), we have (20). u

3. SMOOTHED PERIODOGRAM ESTIMATES

The central limit theorem presented in Section 2 is only for martingale differ-
ences. To obtain asymptotic distribution of the smoothed periodogram spectral
density estimate (3) for processes with general forms, we shall approximate
S.(0)=2>", Xte"‘)\/__l by martingales so that Theorem 1 is applicable. Such a
martingale approximation scheme has been proposed in Wu (2005a). An explicit
construction of approximating martingales is given in Section 3.1. Section 3.2
shows the asymptotic normality of the estimate £,(6) in (3).

3.1. A Martingale Approximation Scheme

LEMMA 4. Assume that the process (X,) defined in (8) satisfies

3 kP, < @)
for some q = 2. Then for every 0 € R, the process

Y,(0) = §E(X,+k|ﬁ)exp(r0\/—_1> (28)
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exists and is in L9. Let Di(0) = PY(0) = Y, (0) — E[Y,(0)| F_1] and
M,(6,A) = > e N-TKA+0 D (), (29)
k=1

Then there exists a constant C > 0, independent of n and A, such that
sup[[5,(6 + A) — M, (6, )] = C(Vn|1 —e VA +1). (30)
0ER

Proof. Let p;, = [Py X;|, and ¢ = 0. Note that E(X,|F,) = E?_,OOPX By
Lemma 1, we have [E(X,|7)|; = C; 2,7—00 pr;, which in conjunction with

(27) implies that
1/2
0 \k=r

2 =C, X (t+1)p, < 0.
k=t =0

e}

SIEX IR, =C

=0

VE
HMS

-
I

|/\
\\Mg

Hence Y,(#) € L9, and additionally X, = Y (0) — E[Ykﬂ(@)\]-'k]e\/’_”’.
For notational convenience write r = eV 10 5 = ¢N-10+) and 7,(0) =
E[Y:1(8)|F]. Then

S0+ N) — M,(0,0) = S e T (0)r% — r1Z,(6)) — M, (6, 1)

=(1—e V"1 2 sKZ,_(0) + rZy(0) — rs"Z,(6).

(1)

Because Z;_1(0) = 272, Py_; Z,—,(0), by the triangle inequality,

E skPk—j Z,,(0) H

“Z—1(0) H =>
k=1 j=1

o0 1/2
52[ > P - 1(0)”2}
= ;\/—”Pl Zo(0)]

\In Z |Py Y, (0)].
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Note that

2 ”7)1—jY1(‘9)” = 2 2 le—sz” = Z Ip; < oo

j=1 j=1i=1 =1

Then (30) follows from (31) with C =22>7,( + 1)p,. u

In Wu and Min (2005) the condition (27) implies that the process (X) is £4
weakly dependent with order 1. It also implies 27| ky (k)| < oo; thus the spec-
tral density function is continuously differentiable; see Lemma A.1 in the com-
panion paper in this issue (Shao and Wu, 2007b). Note that D;(0) = Y,(6) —
E[Y,(0)| Fi—1]is a martingale difference sequence and it is related to the spec-
tral density in an interesting way. By Wu (2005a), | D.(0)|* = 27mf(6). The
latter identity gives a probabilistic representation of the spectral density.

3.2. Asymptotic Normality

Recall that A; = 27j/n, j € Z, are Fourier frequencies. Let n > 4 and m be
a positive integer with m < n/2 — 1. For a real sequence s = (s;)/__,,
let x,(s) = Z/L_, 57, 7(s) = 2/ s, wy(s) = 27,15, and w,,(s) =
ls_n| + 27118, — s;—1|. Crudely speaking the quantity w,, measures the
oscillation of the sequence s. For § € [0, 7] let

A0) = X s[1(0+A) —E{I(6 + A)}. (32)
j=—m
Let (g]),ez be an i.i.d. copy of (g;);ez. For k = 0 define

X/L:g(""872’871’8(,)’81’--~’8k)' (33)

Then X/ is a coupled version of X, with g, replaced by &). Our weak depen-
dence condition (cf. expression (34) in Theorem 2, which follows) is expressed
in terms of the distance between X, and Xj.

THEOREM 2. Assume that, for some q > 4,

> kX — Xil, < oo (34)
k=1
Further assume that m = o(n*/?) and the sequence (s;)iL_,, satisfies
wy,(s)logn = 0(x,,(s)). (35)
(i) If 0 =0and s; = 0 for j = —m,...,—1, then as n — oo,
27A,,(0) .
Xn($)

where Dy(0) = X7, PoX, exp(N—110) € L? satisfies |Dy(0)|> =
27f(0).
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(ii) If 6 € (0,77), then (36) holds with A,(0) and Dy(0) replaced by A, (0)
and Dy(0), respectively.

Remark 1. In case (i), s; are assumed to be 0 for —m = j = —1. If
otherwise, noting that 7,(A) = I,(—A), we can let s; = s; + s, s*, = 0 for
Jj=1,...,mand s, = s,. Then the central limit theorem (36) is still applicable.

As in Wiener (1958) and Priestley (1988), the causal process (8) can be inter-
preted as a physical system with ..., &y, g being the inputs, X, the output,
and g a transform or a filter. If g is a linear function, then (X}) is a linear
process. Otherwise (X;) is a nonlinear process. The condition (34) has the fol-
lowing interesting interpretation. Note that X; is a coupled version of X; by
replacing g, in X, by an i.i.d. copy g. If the function g(...,&,_;,&;) does not
depend on &, then X, — X; = 0. Hence the quantity | X, — X;||, measures the
contribution of g, to X, in other words, the degree of dependence of X on &.
In this sense (34) means that the weighted cumulative contribution of &, to all
future values X;, kK > 0, is finite, and hence (34) ensures short-range depen-
dence. See Wu (2005b) for a more detailed discussion on the dependence of
stationary causal processes from the nonlinear system theory point of view. Con-
ditions based on the quantity | X, — X[, are often easily verifiable because
they are directly related to the data-generating mechanism of the process (Xj).

Our dependence condition (34) is very different from the classical strong mix-
ing conditions, which may be too restrictive in certain applications (Andrews,
1984). On the other hand, we avoid summability conditions on joint cumulants
that are commonly imposed in the large-sample spectral theory (Brillinger, 1975;
Rosenblatt, 1984). The verification of the latter generally is not easy for pro-
cesses that are non-Gaussian and nonlinear. In the companion paper in this
issue (Shao and Wu, 2007b), we find an easily verifiable sufficient condition
for the absolute summability of gth (¢ € N, g = 2) joint cumulants, which is
2ok X, — X; |, < oo; see Theorem 4.1 and Remark 4.1 therein. Unfor-
tunately the latter sufficient condition appears to be overly strong. It is an open
problem whether weaker versions such as 2%, [ X, — X;], < oo suffice.

Clearly (34) implies (27) by the identity PyX; = E[(X, — X/)| F,] and the
Jensen inequality. Theorem 2 has the following two immediate corollaries. The
proofs are straightforward and hence the details are omitted. The first corollary
gives a central limit theorem for ﬂ(0), and the second one has an application in
Shao and Wu (2007b). The latter paper studies the local Whittle estimation of
long memory index for fractionally integrated nonlinear processes.

COROLLARY 1. Assume that (34) holds for some q > 4. Further assume
that the kernel K is a nonnegative function with support [—1,1], K has bounded
variation, and

1 m 1 1 m
— > K2(i/m) - K2>(u)du=:« and — 2, K(i/m)—1 37)
_ m

i=—m i=—m
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as m — oo. Additionally assume that the m = m,, satisfies

logn m
+ —< —0. (38)

2/3

m

Then m"?[ £,(0) — E{ £,(0)] = F(O)N(0, ).

Using the Cramér—Wold device, we can show that, for different frequencies
Wiy ennr, Wy € (0’77-)7 l/z[ﬁl( ) - E{f;l( )}]/f( ) l = .] = J aré asymp-
totically i.i.d. normal N(0, ). Because the proof of the latter claim is routine
and it involves very lengthy and tedious calculations, we omit the details.

We conjecture that the central limit theorem in Corollary 1 still holds if (38)
is weakened to m~'logn + n~'m — 0. A key difficulty toward this result is
that our argument requires m = o(n?/?) to ensure a satisfactory martingale
approximation of A,(0) by A, (6); see the proof of Theorem 2 in the Appendix.
If Corollary 1 is valid under m~'logn + n~'m — 0, then we can allow m to be
a multiple of n*> that minimizes the mean squares error | f,,(é?) - f(®))* =

1£(6) = E{f.(0)}* + [E{/,(6)} — £(6)|? because the bias E{ £,(6)} — f(6) is

of the order (m/n)? under suitable conditions on K and f.

COROLLARY 2. Let 5; = 1 + log(j/m) for 1 = j = m and s; = 0 for
—m = j = 0. Assume (34) for some q > 4 and

] 3
(ogm)” ~m o (39)

2/’%

m

Then (36) holds.
Example 1 (Nonlinear time series)
Let &,k € Z, be i.i.d. random variables and define X,, recursively by

Xn = R(anlvsn)’ ne Z’ (40)

where R is a measurable function. Many popular nonlinear time series models,
such as threshold autoregressive (TAR) models, bilinear autoregressive mod-
els, and autoregressive models with conditional heteroskedascity (ARCH) are
of the form (40). Let

[R(x,e) = R(x',2)|
L, = sup

¢ x#x’ |.X - x’ |
Assume that

E(logL,) <0 and E[L] +[R(x,&0)|*] < oo 41)
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for some a > 0 and x,. Then (40) has a stationary distribution (Diaconis and
Freedman, 1999; Wu and Shao, 2004), and iterates of (40) give rise to (8). Addi-
tionally, Wu and Woodroofe (2000) show that (41) implies that there exist
B > 0and r € (0,1) for which

1X, =X,z =0(r"), where X;=G(...,e_,,80,&,,...,8,). (42)

The preceding property is called geometric-moment contraction (GMC) in Hsing
and Wu (2004). Furthermore, if X, € L7 for some g > 4, then (42) holds for
all B € (0,g) (cf. Wu and Min, 2005, Lem. 2). It is easily seen that (42) implies
IX, — X,|lz = O(r"). Hence (34) holds. Recently, Shao and Wu (2007a)
showed that GMC holds for various generalized autoregressive conditional het-
eroskedasticity (GARCH) models, including general asymmetric GARCH(r, s)
and nonlinear GARCH(1, 1) models. For the GMC property of an exponential
GARCH (EGARCH) model, see Min (2004).

Example 2 (Nonlinear transforms of linear processes)

Let g, be i.i.d. random variables with g, € L7 for some g > 4; let ay,ay,... be
a square summable real sequence and U, = E_}”;Oajst,j be a linear process.
Consider the process

Xt = |Ut| _]E"Ut|

Let (&])icz be an i.i.d. copy of (g;)iez. Then ||U,| — |U/|| = |a,| ey — &}l,
and consequently || X, — X/|, = [|U,| — [U/|], = |la,||eo — &)l,. Under the
simple sufficient condition

2 jla;l < oo, 43)
j=0

because | &, < oo, (34) holds. It is easily seen that, for any Lipschitz contin-
uous function G, (43) implies (34) for X, = G(U,) — E{G(U,)}. The classical
central limit theorems on spectral density estimates are not applicable here
because they require strong mixing conditions and summability conditions on
joint cumulants. As pointed out in Andrews (1984), the process X, is not strong
mixing if g, are i.i.d. with the distribution P(g;, = 1) = P(g, = —1) = 5 and
a; = 27/, j € N. On the other hand, if G is a nonlinear function, it seems very
difficult to verify summability conditions on joint cumulants of X,, because of
the nonlinear nature. The central limit theorem in Hannan (1970, Thm. 5.11) is
only for linear processes and hence is not applicable to our X,. The argument in
Hannan (1970) does not work either because it depends heavily on the linearity
structure.
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APPENDIX

Proof of Theorem 2. Recall the definitions of y,,(s), 7,,(s), @,,(s), and w,,(s) in
Section 3.2. For simplicity we abbreviate them as y, 7, @, and w, respectively. By
Lemma 4, condition (34) implies that the martingale M, (0, A) defined in (29) exists in
L4, Recall that Di(0) = Y,(0) — E[Yx(0)| F—1]. Let

A 0) = 2 5;[IM,(6,1)]* — E{|M,(6,1,)]*}]. (A.1)
Jj=—m

LetR,(0,A) = S,(0 + A) — M, (60, A). By (30) of Lemma 4, for —m =j =m, |R,(6,A;)| =

O(\nm/n + 1). Because m = o(n%?) and X" Is;| = 2m + D)2y 12,

=—m

E[A,(0) = A(0)] =2 3 |s;[ X E[|M,(6,4)] = [S,(6 + 4))|

Jj=—m

IA

2 2 [5,1121M,(0, )1 1R(8,2))] + |R(6,4,)]%]

j=—m

ﬁé|SA0[V;(V;mﬁ1+1)+(V;mﬁ1+l)q

j==m

O(m+ \m)Nmy = o(nx'?).
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It then remains to show (36) with A(6) replaced by A, (0).
(i) Let # = 0. Then (A.1) becomes

A0 =2 X a,k —k)DDy + 1 3 (DF = [Do|?) =127, + 70,
1=k<k'=n k=1
where
a, ()= 5;c0s(lA;).
Jj=—m

Note that Py DZ = E(D?| F,) — E(DZ|F)) = E[DZ — (D;)?*| F,]. The second term 7€,
in A,,(0) is of order O(\my)\n = o(nx'/?) because

> (DF = [Do|*) || = Nn 2 [P DEI = Nn 3 |DE = (D)
k=1 k=0 k=0

= \/;Z ”Dk - DIL”4”Dk + D1:H4
k=0

=0(Wn) 2 21Xk = X/ illa = 0(Wn) (A.2)
k=01=0

as a consequence of (34). We now shall apply Theorem 1 to 7,, by verifying conditions
(12)=(15). By Lemma 5, which is given later in this Appendix,

—1 n

n
A, =D art—j)=2an(j) =tA,, = St 50)

Jj=1 Jj=1
and
n 2

2 - . 2( n 2 n 2
ol =2A4,,=2m—ja(j)=—(x+s3)— =72
> =1 4 2

So (12) follows because 72 = O(my) and m = o(n?/?). Note that for any I, a>(l) =
O(my) = o(n*3y), (13) easily follows. Because >, a2(t —t') = A,41.,, We have
(14). It is slightly more complicated to verify (15). To this end, for 6 € (0,1/4) let

={(k,t) ENXN:n<k<(1—-08)ndén<t<(l1-38)nén<k—t}

and ¢,(k,t) = 27, a,(j — ka,(j — t). By the Cauchy-Schwarz inequality,
le,(k, )] = Api1,. For I =1, let h,=237__, cos(IA;),v = —m, and h_,,_; = 0. Then

SUPy=—m|h,| = 2/[1 — exp(\—1IA,)| = O[1/sin(IA,/2)]. Using the Abelian summa-
tion technique,

m m

la,(D)] = 2 Sj(hj_hj—l)‘ =0(n/l) |:|S—m| + E ‘Sj_sj—1|:| = O0(wn/l).

j=—m j=1-m
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Hence |a,(l)| = O(w) uniformly over én = [ = (1 — §)n. By (35),

sup le, k0l ,
LLET
————=— max _|[q,())|max X |a,(j—k)|
ny ny dn=I=(1-8)n Sn=k Jj=k+1
O (w) %" O(w?logn)
= Z a)n/l=—g=0(1)
nxy =i X

as n — oo. Therefore,

1 1
cp(k,1) = limsup —; > + limsup —; >

n—oo O, k=1 1=1 n—oo O, ktEl—T; n—ow O, k€T,

1
= limsup — A2, #(I, — I;) = 85 — 852,

n—oo n

which completes the proof of (15) because 8 > 0 can be made arbitrarily small. Here
#(I, — Ts) denotes the number of elements in the set Ty — T}.

(ii) Outline of the proof in the case 6 € (0,1r). The proof for this case can be done in
an analogous way as in the case # = 0, and it does not involve additional methodolog-
ical difficulties. However, it does involve quite lengthy manipulations. Here we only
provide an outline of the arguments. Let Dy(0) = Y,(6) — E[Y(0)| F—1] = Ax +
\/—_1 By, where both (A;) and (By) are real, stationary martingale difference sequences
with Ak,Bk € L49. Write

E s;exp[\N =110 + 1)1 = a,(1) + \=1b,(]),

where a,(1) and b, () are real numbers. The quantity A, (6) in (A.1) can be rewritten as

A0) =2 X Rla,(k’ —k) +\—1b,(k' = k)]D(0) Dy ()} + 7Q,

1=k<k'=n

=2 > Ala,(k' — kA, —b,(k' — k)B.JA,

1=k<k'=n
+ [an(k/ - k)Bk + bn(k/ - k)Ak]Bk'} +7Q,
=2 [Z,,(k = DAy + Z, (k' = 1)B, ]+ 0,
k'=2
where Q,, = 2;_|D,(6)|> — n|Di(6)]?,

k'—1

Z (k' =1) = 3 [a,(k = A, = b,(k' = k)B,],
k=1
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and

k'—1

Zy (K = 1) = X [a,(k" = K)B + b, (k" = k)AL

Similar to (A.2), we have |Q,] = O(\/n), and consequently |7Q,| = O(|7|\n) =
o(ny'?). Because Z, ,(k' — DAy + Z, ,(k' — 1)By, 2 = k' < n, form martingale
differences, we can again apply the martingale central limit theorem. Following the proof
of Theorem 1, it is easily seen that the Lindeberg condition holds. It remains to verify
the convergence of the sum of conditional variance

1 n
- 2 ]E{[Zl,n(k’ - I)Ak’ + ZZ,n(k’ - 1)Bk’]2|~7:k'fl}

Ty k=2

1 n
=— 22}, (K = DE@A | Foo)) + 23 (k' = DE(B | Foy)
2

Ty k=
+2Z,,(k' = 1)Z, (k' = DE(AgBo| F- )} = [Do(O)* in L. (A3)

By (ii) of Lemma 53,

n k'—1 n k'—1

1
lim — > > alk'—k)=1 and lim — > > bX(k'—k)=1.

n—00 O s k=1 no0 Oy gr=p k=1
Therefore, because
k'—1
1, (k" = DI* = Z} [az (k" = ) Aol* + by (k" = k) Bo|?
= 2a, (k' —k)b,(k' — k)E(AyBy)],
k'—1

125, (k" = DIP = X [az(k" = BByl + by (k" = k)| A,|?
k=1

+ 2a,(k" = k)b, (k" = k)E(A¢By)],

E(Z,,( = 2o, (k' = D] = 3 {[a3k' =) = b3k — KIE(Ag By)

+a, (k" = k)b, (k" = k) ([Aol* = [Bol*)},
and [Do(0)[* = [Ao|* + [ Bol*, we have

2

! < ’ 2 2 ’ 2
— 2 A1z, K = DIP A ? +1Z,,,(k" = DI? By

Ty k=2

+2E[Z, (k' = 1)Z, ,(k" = DIE(Ap Bir)} = [Do(0)]1*. (A4
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An analogue of Lemma 2 indicates that (A.3) follows from

1 : 2 ’ 2 2 ’ 2
- Z {Zl,n(k - 1)”A0H +Zz,n(k _1)”30”

Oy k=2

+ 2Z1,n(k, - I)ZZ,n(k’ —DE(ABy)} = ||Do('9)”4 in L2

The preceding convergence is a consequence of (A.4) and a similar version of Lemma 3.

LEMMA 5. Let m be a positive integer with m < n/2 — 1, let s, —m=j=m, be

real numbers, 7,,(s) = 27 _,s;, @u(s) = 27|

,and xn(s) = 2", 52

j=—m?©j
(i) Assume that s; = 0 for —-m =j = —1. For |l € Z let
a, ()= > s;cos(I1A;).
j==m

Then

> a2(1) = 3 (o) + 53]
=1

and

2 n

" n
D lay(l) = — [xu(s) + 551+ = 70(s).
=1 4 2

(ii) For a fixed 0 € (0,7) and | € Z let

a,(l) = 12": sicos[{(A; +0)] and b,(l)= i s;psin[1(A; + 6)].

j=—m Jj=—m

Assume that m = o(n). Then

San RO
. I=1 . =1

lim = lim = -
noe nx,,(s)  noe nx,(s) 2

and

S S w
=1 =1 _

im = lim =-.
n—oe nz/\/m(s) n—oo nz/\/m(s) 4

Proof. (i) For —m = j,j' = m let

wa( i) =2 cos(lA;)cos(lA;)) and wv,(j,j") = > Lcos(IA;)cos(IA;r).
=1 =1

(A.5)

(A.6)

(A7)

(A.8)

(A9)

(A.10)
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Because A; = jA;, basic trigonometric manipulations imply that w,(j,;j') = n if
J=J =05 w04, ") = 0ifj # ' wa(f,j') = n/2if j=j" # 0; v,(j,j') = n(n + 1)/2
ifj=j" =0;v,(j,j)=n/2ifj#j';and v,(j,j') = n(n + 2)/4 if j = j' # 0. Using
these trigonometric identities, (A.6) and (A.7) easily follow.

(i1) We only prove (A.9) because (A.10) can be proved in a similar way. As in (i), let

n

wa()sj'50) = 2 cos[1(A; + 6)]cos[1(A; + 6)]

2": {cos[1(A; ;s +260)] + cos(IA;_;)}.

NI>—~

Let B € (0,27). Then

‘ >, exp(N—1I8)

1
“h fexpwf_wn  Isin(8/2)]’

If j = j', because for sufficiently large n, 6/2 < A; + 0 < 6 + (7 — 6)/2 uniformly over
Jj = —m,...,m, (A.11) implies that u,(j,j;0) = n/2 + O(1). On the other hand, if
Jj #j', we similarly have u,(j,j’;0) = O(1) uniformly over j and j'. Therefore,

(A.11)

m

Eai(l): E Sjsj’ﬂ«n(j,]'/;@)

=1 ' ==m

= E szﬂn(J7J70) + 0(1) E ‘Sjsj"

j==m i#i’

=20+ 3 007+ 0l (9]

n
2 Xm($)[1 +0(1)]

because @2 (s) = (2m + 1) x,u(s) = o[nym(s)]. u



