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The Dependent Wild Bootstrap
Xiaofeng SHAO

We propose a new resampling procedure, the dependent wild bootstrap, for stationary time series. As a natural extension of the traditional
wild bootstrap to time series setting, the dependent wild bootstrap offers a viable alternative to the existing block-based bootstrap methods,
whose properties have been extensively studied over the last two decades. Unlike all of the block-based bootstrap methods, the dependent
wild bootstrap can be easily extended to irregularly spaced time series with no implementational difficulty. Furthermore, it preserves the
favorable bias and mean squared error property of the tapered block bootstrap, which is the state-of-the-art block-based method in terms of
asymptotic accuracy of variance estimation and distribution approximation. The consistency of the dependent wild bootstrap in distribution
approximation is established under the framework of the smooth function model. In addition, we obtain the bias and variance expansions
of the dependent wild bootstrap variance estimator for irregularly spaced time series on a lattice. For irregularly spaced nonlattice time
series, we prove the consistency of the dependent wild bootstrap for variance estimation and distribution approximation in the mean case.
Simulation studies and an empirical data analysis illustrate the finite-sample performance of the dependent wild bootstrap. Some technical
details and tables are included in the online supplemental material.

KEY WORDS: Block bootstrap; Irregularly spaced time series; Lag window estimator; Tapering; Variance estimation.

1. INTRODUCTION

The nonparametric block-based bootstrap for time series has
been an active area of research since Künsch (1989) and Liu and
Singh (1992) independently introduced the moving block boot-
strap (MBB). As an important extension of Efron’s iid bootstrap
to dependent observations, the MBB can be used to approxi-
mate the sampling distributions and variances of many compli-
cated statistics in time series. To capture temporal dependence
nonparametrically, the MBB samples the overlapping blocks
with replacement and then pastes the resampled blocks together
to form a bootstrap sample. Based on the idea of resampling
blocks, a few variants of the MBB have been developed, in-
cluding the nonoverlapping block bootstrap (NBB) (Carlstein
1986), the circular block bootstrap (CBB) (Politis and Romano
1992), the stationary bootstrap (SB) (Politis and Romano 1994),
the matched block bootstrap (Carlstein et al. 1998), and the
tapered block bootstrap (TBB) (Paparoditis and Politis 2001,
2002), among others. (See Lahiri 2003a for the differences and
similarities of these block-based methods.)

In the literature, it seems that the theoretical analysis and
applications of the aforementioned block-based methods have
been limited mainly to regularly spaced time series. In practice,
however, irregularly spaced time series are quite common. As
mentioned by Hipel and Mcleod (1994, p. 693), “time series
with missing observations or, equivalently, time series where
the measurements are taken at unequal time intervals, occur
quite often in practice in various fields . . . the problem of miss-
ing values in data sequences happens frequently in environ-
mental engineering.” The irregularity could be due to missing
observations in an evenly spaced time series or to the observa-
tions taken at randomly sampled time points. There is consider-
able interest in time series analysis for irregularly spaced data.
Statistical methods tailored to regularly spaced time series of-
ten need suitable modification to accommodate the irregularity.
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(See Parzen 1983 for a collection of papers devoted to statistical
methodology for irregularly spaced time series.)

The block-based bootstrap methods have been extended to
spatial settings for both regular lattice data and irregular non-
lattice observations (see, e.g., Politis and Romano 1993; Poli-
tis, Paparoditis, and Romano 1999; Lahiri and Zhu 2006; Zhu
and Lahiri 2006). Because time series can be considered a
one-dimensional analog of spatial data, this might suggest that
the aforementioned block-based bootstrap methods can be ap-
plied directly to irregularly spaced time series with no difficulty.
However, we contend that the use of the block-based bootstrap
methods, although theoretically justified, is not convenient for
irregular spatial data or regular lattice data in a sampling re-
gion of irregular shape. These methods often require a careful
partition of the sampling region into incomplete and complete
blocks, because the partition usually depends on spatial config-
uration of the data. This implementational disadvantage, which
weakens the automatic feature of bootstrap method, also carries
over to irregularly spaced time series.

In this article we propose a new bootstrap method, called the
dependent wild bootstrap (DWB), that is generally applicable
to stationary, weakly dependent data. The development in this
article is confined to time series; extension of the DWB to spa-
tial data will be done elsewhere. The DWB extends the tradi-
tional wild bootstrap (Wu 1986) to the time series setting by
allowing the auxiliary variables involved in the wild bootstrap
to be dependent, so it is capable of mimicking the dependence
in the original series. Unlike the block-based bootstrap meth-
ods, no partitioning of the data into blocks is involved in the
DWB, and an irregular temporal configuration causes no dif-
ficulty in implementation. For the smooth function model, the
DWB variance estimator reaches the optimal convergence rate
in the mean squared error (MSE), which can be achieved only
by the TBB among the existing block-based methods. The fa-
vorable bias and MSE properties of the TBB variance estima-
tor over its MBB counterpart have been noted and justified by
Paparoditis and Politis (2001, 2002) for regularly spaced time
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series, but a direct extension of the tapering idea to irregularly
spaced time series seems difficult. In contrast, the DWB pro-
vides a good alternative to the existing block-based bootstrap
methods with its superior capability to cope with missing ob-
servations or unequally spaced data.

The remainder of the article is organized as follows. Sec-
tion 2 describes the DWB and its connection to various block-
based methods in the context of variance estimation for the sam-
ple mean. Section 3 states the consistency of the DWB in distri-
bution approximation for the regularly spaced time series under
the framework of a smooth function model. Section 4 presents
asymptotic bias and variance expansions for the DWB variance
estimator for irregularly spaced time series on a lattice. For time
series taken at randomly sampled time points, Section 5 estab-
lishes the consistency of the DWB for both variance estimation
and distribution approximation in the mean case. The results
from simulation studies and an empirical data analysis are re-
ported in Section 6. Section 7 concludes. Technical details are
relegated to the Appendix and a supplemental online appendix.

2. THE DEPENDENT WILD BOOTSTRAP

In this section, to facilitate a comparison between the DWB
and the block-based methods, we restrict our attention to the
regularly spaced univariate time series. The more general set-
ting, which allows for irregularly spaced multivariate time se-
ries, is adopted in Section 4. For a stationary time series {Xt}t∈Z

with finite variance, let μ = E(Xt) and γk = cov(X0,Xk). Given
the observations Xn = {Xt}n

t=1, we define the DWB pseudo-
observations as

X∗
i = X̄n + (Xi − X̄n)Wi, i = 1, . . . ,n, (1)

where X̄n = n−1 ∑n
t=1 Xt is the sample mean and {Wi}n

i=1 are n
random variables satisfying the following assumption.

Assumption 2.1. The random variables, {Wt}n
t=1, are in-

dependent of our data, Xn, E(Wt) = 0, var(Wt) = 1 for
t = 1, . . . ,n. Assume that Wt is a stationary process with
cov(Wt,Wt′) = a{(t − t′)/l}, where a(·) is a kernel function and
l = ln is a bandwidth parameter. Furthermore, assume that

Ka(x) =
∫ ∞

−∞
a(u)e−iux du ≥ 0 for x ∈ R. (2)

The bandwidth parameter, l, plays a similar role as the block
size in the block-based methods, as we discuss later. The kernel
function a(·) is the same as the lag window function in the defi-
nition of the spectral density estimate introduced later [see (3)].
The condition (2) ensures the nonnegative definiteness of the
covariance matrix of {Wt}n

t=1, which can be shown by an ele-
mentary argument. Note that (2) is satisfied by a few commonly
used kernels, such as Bartlett, Parzen, and quadratic spec-
tral kernels, and it excludes the truncated kernel and Tukey–
Hanning kernel (see Andrews 1991, pp. 822–823). The term
“dependent wild bootstrap” was coined based on two consider-
ations. On the one hand, it is akin to the wild bootstrap (Wu
1986; Liu 1988; Mammen 1993), which was originally pro-
posed to deal with independent and heteroscedastic errors in the
regression problems; on the other hand, unlike the traditional
wild bootstrap, the random variables, {Wt}n

t=1, here are depen-
dent and so are able to capture the dependence in the original

sample. Strictly speaking, the series {Wt}n
t=1 form a triangular

array of the type {Wtn : t = 1, . . . ,n;n = 1,2, . . .}. For conve-
nience of presentation, we use {Wt}n

t=1, and no confusion will
arise.

The following notation is used throughout the article. For
a random variable ξ , write ξ ∈ Lp (p > 0) if ‖ξ‖p =
[E(|ξ |p)]1/p < ∞ and let ‖ ·‖ = ‖ ·‖2. Let “→D” and “→p” de-
note convergence in distribution and in probability, respectively,
and let Op(1) and op(1) denote being bounded in probability
and convergence to 0 in probability, respectively. Let N(μ,�)

be a normal distribution with mean μ and covariance matrix
�. Let 	a
 denote the integer part of a and a ∨ b = max(a,b),
a ∧ b = min(a,b) for any a,b ∈ R. Write Z+ = {0,1,2, . . .}.
For v = (v1, . . . , vp)

′ ∈ (Z+)p, x ∈ R
p, write xv = ∏p

i=1 xvi
i ,

v! = ∏p
i=1(vi!). For α = (α1, . . . , αp)

′ ∈ (Z+)p, let Dα denote

the differentiable operator Dα = ∂α1+···+αp

∂x
α1
1 ,...,∂x

αp
p

on R
p. For a vec-

tor x = (x1, . . . , xp)
′ ∈ R

p, let ‖x‖, ‖x‖1 = ∑p
i=1 |xi| denote the

Euclidean and l1 norms of x, respectively. The positive con-
stant C is generic and may vary from line to line. All asymp-
totic statements in the article are with respect to n → ∞ unless
specified otherwise.

2.1 Sample Mean

To elucidate the connection between the DWB and other
block-based methods, we treat the sample mean case first. Un-
der some moment and weak dependence conditions, we have
Tn := √

n(X̄n − μ) →D N(0, σ 2∞), where σ 2∞ = ∑∞
j=−∞ γj is

assumed to be positive. Let f (λ) = (2π)−1 ∑
k∈Z

γke−ikλ, λ ∈
[−π,π] be the spectral density function of the process Xt.
Then σ 2∞ = 2π f (0). To construct a confidence interval for
μ, one needs to estimate σ 2∞ or, equivalently, f (0). Let γ̂k =
n−1 ∑n

t=|k|+1(Xt − X̄n)(Xt−|k| − X̄n) denote the sample autoco-
variance at lag k, |k| ≤ n − 1. A large class of spectrum estima-
tors admits the lag-window form

f̂n(λ) = (2π)−1
n−1∑

k=1−n

a(k/l)γ̂k cos(kλ), (3)

where a(·) is the so-called “lag window function” and l = ln is
the bandwidth. We can take σ̂ 2∞ = 2π f̂n(0). Alternatively, the
long run variance σ 2∞ can be estimated by bootstrap methods.
Let P∗,E

∗,var∗, cum∗ denote the probability, expectation, vari-
ance, and cumulant, respectively, conditional on the data Xn.
Let X̄∗

n,DWB = n−1 ∑n
t=1 X∗

i , with X∗
i as defined in (1). Note that

E
∗(X̄∗

n,DWB) = X̄n, so the DWB sample has the mean fixed at
X̄n. The bootstrapped version of Tn is T∗

n = √
n(X̄∗

n,DWB − X̄n),

and the DWB estimator of σ 2∞ is σ̂ 2
l,DWB = var∗(T∗

n ).
Because later we present the asymptotic equivalence be-

tween the DWB variance estimator and its TBB counterpart,
here we briefly introduce the TBB procedure (Paparoditis and
Politis 2001). Let w : R → [0,1], w(t) = 0 if t /∈ [0,1], and
w(t) > 0 when t is in a neighborhood of 1/2. Further as-
sume that w(t) is symmetric about 1/2 and nondecreasing for
t ∈ [0,1/2]. Let wn(t) = w{(t − 0.5)/n}, t = 1, . . . ,n, be the
data-tapering sequence. For a fixed block size l, 1 ≤ l < n, let

Bj = {Xj,Xj+1, . . . ,Xj+l−1} be the jth block, j = 1,2, . . . ,N =
n − l + 1. The number of blocks in the bootstrap sample is de-
noted by b = 	n/l
. For the convenience of presentation, we
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assume that n = lb. The TBB consists of two steps: (a) Let
i0, . . . , ib−1 be drawn iid distributed with uniform distribution
on the set {1,2, . . . ,N}; and (b) for m = 0, . . . ,b − 1, let

X∗
ml+j = wl(j)

l1/2

‖wl‖2

(
Xim+j−1 − X̄n

)
, j = 1, . . . , l, (4)

where ‖wl‖2 = {∑l
t=1 w2

l (t)}1/2. The TBB estimator of σ 2∞ is
σ̂ 2

l,TBB = n var∗(X̄∗
n,TBB), where X̄∗

n,TBB is the bootstrapped sam-
ple mean based on the TBB pseudoseries X∗

1 , . . . ,X∗
n defined in

(4). When w(t) = 1(t ∈ [0,1]) (i.e., no tapering), the TBB boils
down to the MBB. Furthermore, if (i0, . . . , ib−1) are random
draws from the set {1 + (j − 1)l}b

j=1, then this corresponds to
nonoverlapping tapered block bootstrap.

The asymptotic behavior of σ̂ 2
l,DWB depends largely on the

choice of {Wt}n
t=1. It turns out that with different choices of

Wt, the DWB delivers asymptotic variance estimators equiva-
lent to those based on various block bootstrap methods. Under
Assumption 2.1 on Wt, we have

σ̂ 2
l,DWB = n−1

n∑
t,t′=1

(Xt − X̄n)(Xt′ − X̄n) cov∗(Wt,Wt′)

= n−1
n−1∑

h=1−n

n∧(n−h)∑
t=1∨(1−h)

(Xt − X̄n)(Xt+h − X̄n)a(h/l)

= 2π f̂n(0);
that is, it is equivalent to the lag window estimator defined in
(3). Thus in the sample mean case, the DWB variance estima-
tor depends on Wt through its covariance kernel a(·) and the
bandwidth parameter l. Note that the MBB variance estima-
tor is equivalent to 2π f̂n(0) when a(x) = (1 − |x|)1(|x| ≤ 1) is
the Bartlett kernel (see Politis 2003). For the equivalence be-
tween the DWB variance estimator and its TBB counterpart,
see Remark 2.1. Often in practice, we can take {Wt}n

t=1 to be
multivariate normal with mean 0 and covariance matrix �l =
(σij)i,j=1,...,n, where σij = a{(i − j)/l}. Let W = (W1, . . . ,Wn)

′;
then W = �

1/2
l Zn, where Zn ∼ N(0, In×n), with In×n being the

n × n identity matrix. In the implementation of the DWB, �
1/2
l

need be computed only once for each l and given a(·). The com-
putation of �

1/2
l is fast for small and moderate sample sizes. For

large n, more efficient algorithms, such as circular embedding,
can be used to generate W (see Dietrich and Newsam 1997). It
is worth mentioning that the auxiliary variables W do not have
to follow multivariate normal distribution (see Example 4.1).

Let B̃j = {j, j + 1, . . . , j + l − 1} be the jth block of indexes
corresponding to Bj. In general, for the MBB, NBB, CBB, and
TBB, due to the mechanism of resampling blocks of fixed size,
X∗

i and X∗
i′ are independent conditional on the data Xn if the in-

dexes i and i′ are not in the same block, B̃(j−1)l+1, j = 1, . . . ,b.
In particular, the dependence between neighboring observations
Xl and Xl+1 are not preserved by its block bootstrap counter-
part, whereas for the DWB, dependence of the bootstrap sample
is reflected through the dependence of {Wt}n

t=1. Assuming that
the Wt’s are l-dependent (which is assumed in our theory) and
Assumption 2.1 holds, X∗

i and X∗
i′ are conditionally dependent

(independent) whenever |i − i′| ≤ l (|i − i′| > l). Thus in the
DWB, the block structure is enforced on the covariance matrix

of the variables {Wt}n
t=1, but not on the bootstrap sample itself.

So, unlike in the block-based methods, the dependence between
Xl and Xl+1 is to some extent preserved by the DWB sample.
Furthermore, we note that the DWB sample is no longer sta-
tionary conditional on the data.

2.2 Bias and Variance

To state the consistency of σ̂ 2
l,DWB as an estimator of σ 2∞, we

introduce some assumptions on the lag window function a(·).
Assumption 2.2. Assume that a : R → [0,1] is symmetric

and has compact support on [−1,1], a(0) = 1 and limx→0{1 −
a(x)}/|x|q = kq �= 0 for some q ∈ (0,2].

Several commonly used windows (kernels) in spectral analy-
sis, such as Bartlett, Parzen, and Tukey–Hanning windows,
satisfy Assumption 2.2. Furthermore, note that q = 1 for the
Bartlett window and q = 2 for the Parzen and Tukey–Hanning
windows.

Proposition 2.1. Suppose that Assumption 2.1 on Wt and
Assumption 2.2 (with q = 2) on a(·) hold. (a) Assume that
Xt ∈ L2,

∑∞
k=1 k2|γk| < ∞, and 1/l + l/n1/3 = o(1). Then

E(σ̂ 2
l,DWB) = σ 2∞ + 	/l2 + o(1/l2), (5)

where 	 = −k2
∑∞

k=−∞ k2γk. (b) Assume that Xt ∈ L4,∑
k1,k2,k3∈Z

| cum(X0,Xk1,Xk2,Xk3)| < ∞ and
∑

k∈Z
|γk| < ∞.

Let 
 = 2σ 4∞
∫ 1
−1 a2(x)dx. If 1/l + l/n = o(1), then

var(σ̂ 2
l,DWB) = 
 · l/n + o(l/n). (6)

Proof. The assertions (5) and (6) are special cases of the bias
and variance expressions of the lag window estimator at zero
frequency. Thus part (a) follows from theorem 9.4.3 of Ander-
son (1971) (also see Priestley 1981, p. 459), and part (b) holds
in view of eqs. (3.9)–(3.12) of Rosenblatt (1984).

Remark 2.1. Let w∗w(t) = ∫ 1
−1 w(x)w(x+|t|)dx be the self-

convolution of w(t) and a(x) = w ∗ w(x)/w ∗ w(0). Assum-
ing that w ∗ w(t) is twice continuously differentiable at the
origin and some other regularity conditions, Paparoditis and
Politis (2001) showed that E(σ̂ 2

l,TBB) − σ 2∞ = 	/l2 + o(1/l2)

and var(σ̂ 2
l,TBB) = 
 · l/n + o(l/n). In other words, the DWB

variance estimator and the TBB counterpart are asymptotically
equivalent provided that a(x) = w∗w(x)/w∗w(0) and the same
bandwidth l is used. Thus the favorable bias and MSE proper-
ties of the TBB variance estimator over other block-based coun-
terparts in the mean case automatically carry over to the DWB
on choosing q = 2.

Fix q = 2. Following Paparoditis and Politis (2001), the
MSE is minimized when the bandwidth lopt

n = (4	2/
)1/5n1/5,
which gives MSEopt = (	2/5
4/55 · 4−4/5)n−4/5{1 + o(1)}.
Given the covariance structure {γk}k∈Z, the lag window that
minimizes MSEopt is the one that minimizes the quantity
|a′′(0)|{∫ 1

−1 a2(x)dx}2. Paparoditis and Politis (2001) consid-

ered the following family of trapezoidal functions: wtrap
c (t) =

(t/c)1(t ∈ [0, c))+1(t ∈ [c,1−c])+{(1− t)/c}1(t ∈ (1−c,1]).
It was found that when c = 0.43, the expression |a′′(0)| ×
{∫ 1

−1 a2(x)dx}2 reaches its minimum; thus wtrap
0.43 is used in our

simulation studies. (Also see Andrews 1991 for consideration
of the optimal kernel in a similar context.)
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3. DISTRIBUTION APPROXIMATION VIA THE
DEPENDENT WILD BOOTSTRAP

As noted by Paparoditis and Politis (2002), applicability of
the block-based bootstrap methods is limited to linear or ap-
proximately linear statistics that are root-n consistent and as-
ymptotically normal. For example, suppose that Xt is a univari-
ate time series with marginal distribution F and the quantity of
interest is θ = T(F). A natural estimator of θ is θ̂n = T(ρn),
where ρn = n−1 ∑n

t=1 δXt is the empirical measure, with δx rep-
resenting a unit mass on point x. For an approximately lin-
ear statistic T(ρn), it admits an expansion in a neighborhood
of F, that is, T(ρn) = T(F) + n−1 ∑n

t=1 IF(Xt;F) + Rn, where
IF(x;F) is the influence function (Hampel et al. 1986) defined
by IF(x;F) = limε↓0[T{(1 − ε)F + εδx} − T(F)]/ε and Rn

is the remainder term. Under suitable conditions, n var(θ̂n) =
n−1 var{∑n

t=1 IF(Xt;ρn)} + o(1).
To see whether the DWB is applicable to the approximately

linear statistics, we follow Hall and Mammen (1994) and inter-
pret the DWB in terms of the generation of random measures.
Given the sample Xn, the bootstrapped measure ρ∗

n (corre-
sponding to the DWB) can be considered a random distribution
with weights at the points X1, . . . ,Xn. Specifically, we can write
ρ∗

n = n−1 ∑n
i=1(Wi + 1 − W̄n)δXi , where W̄n = n−1 ∑n

t=1 Wt

and {Wt}n
t=1 are random variables satisfying Assumption 2.1.

In the case where T(F) = ∫
x dF, the foregoing formulation

amounts to T(ρn) = X̄n and T(ρ∗
n ) = n−1 ∑n

t=1(Wt + 1 −
W̄n)Xt = X̄n + n−1 ∑n

t=1 Wt(Xt − X̄n), which coincides with the
bootstrapped sample mean under the definition in (1). For more
general nonlinear statistics, it may be difficult to obtain boot-
strap samples, because ρ∗

n is not a valid probability measure.
But if IF(Xt;ρn) were known once the data were observed, then
the DWB could be applied directly to IF(Xt;ρn). Note that the
formulation in the smooth function model is given later. The
tapering in the TBB of Paparoditis and Politis (2002) is also
applied to IF(Xt;ρn). On the other hand, IF(Xt;ρn) may not
be known for some important statistics. For example, when
T(F) = F−1(1/2) (i.e., the median of X1), a natural estimator
is T(ρn) = sample median. Because IF(Xt;F) = [1 − 21{Xt ≤
F−1(1/2)}]/[2F′{F−1(1/2)}] depends on the unknown mar-
ginal density function of X1, IF(Xt;ρn) is unknown in practice.
Therefore, the DWB and the TBB of Paparoditis and Politis
(2001, 2002) are not directly applicable to variance estimation
and distribution approximation in this setting. In contrast, the
MBB still works, so the applicability of the DWB is not as wide
as that of the MBB for regularly spaced time series.

In the sequel, we consider the class of estimators within
the framework of the “smooth function model” (Hall 1992;
Lahiri 2003a). This framework is sufficiently general to in-
clude many statistics of practical interest, such as autocovari-
ance, autocorrelation, the Yule–Walker estimator, and other
interesting statistics in time series. Let {Xt}t∈Z be a sta-
tionary process in R

p with μ = E(Xt). The quantity of in-
terest is θ0 = H(μ), where H : Rp → R is a smooth func-
tion. Write σ 2

n = n var(θ̂n), where θ̂n = H(X̄n). Let ∇(x) =
{∂H(x)/∂x1, ∂H(x)/∂x2, . . . , ∂H(x)/∂xp}′ be the vector of
first-order partial derivatives of H at x. Write ∇ = ∇(μ) and
�∞ = ∑∞

k=−∞ cov(X0,Xk). Under some suitable conditions,

we have
√

n(θ̂n − θ0) →D N(0, τ 2∞), where τ 2∞ = ∇′�∞∇ > 0.

The sampling distribution of
√

n{H(X̄n) − H(μ)} can be ap-
proximated by its bootstrap analog,

√
n{H(X̄∗

n,DWB) − H(X̄n)}.
Alternatively, because IF(Xt;ρn) = ∇(X̄n)

′(Xt − X̄n), we can
apply the DWB to IF(Xt;ρn), and the resulting bootstrap ap-
proximation is ∇(X̄n)

′√n(X̄∗
n,DWB − X̄n), which is asymp-

totically equivalent to
√

n{H(X̄∗
n,DWB) − H(X̄n)}. In practice,

when obtaining a closed-form expression for the derivative of
H(·) is difficult,

√
n{H(X̄∗

n,DWB) − H(X̄n)} is preferred, be-
cause it does not involve a calculation of the derivative. We
state the consistency only for

√
n{H(X̄∗

n,DWB) − H(X̄n)}, but
the same argument can be applied to show the consistency for
∇(X̄n)

′√n(X̄∗
n,DWB − X̄n).

Let α(k) denote strong mixing coefficients of the process Xt;
by Xt,i the ith component of Xt. The following assumptions are
needed to state the consistency of the DWB in distribution ap-
proximations.

Assumption 3.1. Assume that there exists a δ ≥ 2 such that∑∞
j=1 α(j)δ/(2+δ) < ∞ and E‖X1‖2+δ < ∞. Also suppose that

�∞ is nonsingular.

Assumption 3.2. For any (i1, i2, i3, i4) ∈ {1,2, . . . ,p}4, we
have

∞∑
t1,t2,t3=−∞

∣∣cum
(
X0,i1 ,Xt1,i2 ,Xt2,i3,Xt3,i4

)∣∣ < ∞.

Theorem 3.1. Assume that the function H is differentiable
in a neighborhood of μ, that is, NH = {x ∈ R

p :‖x − μ‖ ≤
ε} for some ε > 0,

∑
|α|=1 |DαH(μ)| �= 0, and the first par-

tial derivatives of H satisfy a Lipschitz condition of order
s > 0 on NH . Suppose that Assumptions 2.2, 3.1, and 3.2 and
l−1 + l/nδ/(2+2δ) = o(1) hold. Further assume that Wt satisfy
Assumption 2.1, Wt ∈ L2+δ and Wt are l-dependent. Then

sup
x∈R

∣∣P[√
n{H(X̄n) − H(μ)} ≤ x

]
− P∗[√n{H(X̄∗

n,DWB) − H(X̄n)} ≤ x
]∣∣ = op(1).

Note that the l-dependence of Wt implies that for each t ∈ N,
the two sets of random variables {Wi, i ≤ t} and {Wi, i ≥ t +
l + 1} are independent. We impose this assumption to facili-
tate the blocking argument used in the proof. If the underlying
process that generates {Wt}n

t=1 is Gaussian, then it holds under
Assumptions 2.1 and 2.2. The same comment applies to The-
orems 4.1, 4.2, and 5.2, where the l-dependence of Wt [W(t)]
greatly simplifies the argument in deriving the bias and vari-
ance expansions for the DWB variance estimator and proving
the consistency of the DWB distribution estimator for irregu-
larly spaced time series.

Remark 3.1. When δ > 2, the main restriction on the band-
width l allows for l = O(n1/3). Thus the optimal bandwidths
lopt = Cn1/5 for q = 2 (see Corollary 4.1) and lopt = Cn1/3

for q = 1 are both included. The mixing condition in Assump-
tion 3.1 is standard (see Doukhan 1994). The summability of
cumulants condition in Assumption 3.2 is commonly adopted in
spectral analysis (Brillinger 1975) and is implied by appropriate
mixing conditions (Zhurbenko and Zuev 1975; Andrews 1991).
In particular, lemma 1 of Andrews (1991) implies that Assump-
tion 3.2 holds if E‖X1‖4+δ < ∞ and

∑∞
j=1 j2α(j)δ/(4+δ) < ∞

for some δ > 0.
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4. IRREGULARLY SPACED TIME SERIES
ON A LATTICE

In practice, the practitioners are often faced with irregularly
spaced time series, which arise if there are missing observations
in the series. The values missing may be scattered or miss-
ing in blocks. Mathematically, suppose that we observe a sta-
tionary time series Xt ∈ R

p at time points t1 < t2 < · · · < tn.
Again, we are interested in the statistic θ̂n = H(X̄n), where
X̄n = n−1 ∑n

j=1 Xtj . Under some appropriate conditions, theo-

rem 4.3 of Lahiri (2003b) asserts that n−1/2 ∑n
j=1{Xtj −μ} →D

N(0,�∞), which implies, in conjunction with the smoothness
of H(·), √

n{H(X̄n) − H(μ)} →D N(0, τ 2∞). A problem of in-
terest is to estimate τ 2

n = n var(θ̂n) or, equivalently, its limiting
variance, τ 2∞ = limn→∞ τ 2

n .
Because the DWB procedure does not involve a partition of

the data (or the associated time indexes) into blocks, taper-
ing, and so on, it can be readily applied to irregularly spaced
time series. Specifically, the DWB sample is generated by X∗

tj =
X̄n +{Xtj − X̄n}Wtj , j = 1, . . . ,n, where {Wtj}n

j=1 satisfy the fol-
lowing assumption:

Assumption 4.1. The random variables {Wtj}n
j=1 are indepen-

dent of the data and are a realization of a stationary process with
E{Wtj} = 0, var{Wtj} = 1, and cov(Wtj ,Wtj′ ) = a{(tj − tj′)/l},
where a(·) satisfies (2).

A simple example of {Wtj}n
j=1 that satisfies Assumption 4.1 is

N(0,�W), where �W = [a{(ti − tj)/ln}], i, j = 1, . . . ,n. In prin-
ciple, the DWB is applicable to any temporal configuration; that
is, {t1, . . . , tn} can be arbitrary. To facilitate asymptotic analysis,
we adopt a one-dimensional analog of the formulation used in
most theoretical work for spatial block bootstrap (Lahiri 2003a;
Nordman, Lahiri, and Fridley 2007). Let Rn = λnR0, where λn

is a sequence of positive real numbers such that λn ↑ ∞ as
n → ∞ and R0 satisfies the following assumption.

Assumption 4.2. Define R0 to be a Borel subset of (−1/2,

1/2] containing an open neighborhood of the origin such that
for any sequence of positive real numbers an → 0, the number
of cubes of the scaled lattice anZ that intersect R0 and Rc

0 is
O(1) as n → ∞.

Assumption 4.2 is the one-dimensional analog of assump-
tion (1) of Nordman, Lahiri, and Fridley (2007, p. 475) (also
see Lahiri and Zhu 2006). It ensures that the effect of the data
points lying near the boundary of the line segments is negligible
and is satisfied when R0 = ⋃m

i=1(ai,bi], where (ai,bi] ⊂ (0,1].
We assume that {t1, . . . , tn} = {t ∈ Z ∩ Rn}; that is, the time
points are located on a one-dimensional lattice. The forego-
ing definition implies that n ∼ λn|R0|, where |R0| denotes the
Lebesgue measure of a set R0 in R. In the special case where
R0 = (−1/2,1/2] and λn = n, it reduces to regularly spaced
time series. This formulation excludes the case where the obser-
vations are taken on randomly sampled time points. The prop-
erty of the DWB under random sampling is investigated in Sec-
tion 5.

Denote the bootstrap version of θ̂n by θ̂∗
n = H(X̄∗

n), with
X̄∗

n = n−1 ∑n
j=1 X∗

tj , the DWB estimator of τ 2∞ by τ̂ 2
n = n ×

var∗(θ̂∗
n ). Note that τ 2∞ = ∑

k∈Z
rk, where rk = cov(∇′Xt,

∇′Xt+k). To give the (asymptotic) bias and variance expansions
of τ̂ 2

n , we need to introduce the following conditions.
Condition Dr: H : Rp → R is r-times continuously differen-

tiable and satisfies that max{|DvH(x)| : |v| = r} ≤ C(1+‖x‖κr),
x ∈ R

p for some integers κr ≥ 1, r = 1,2,3.
Condition Mr: E‖X1‖2r+δ < ∞ and 
(r, δ) = ∑∞

n=1 n2r−1 ×
α(n)δ/(2r+δ) < ∞ for some δ > 0.

Condition Cr: For any (i1, . . . , is) ∈ {1, . . . ,p}s, 2 ≤ s ≤ r,∑
t1,t2,...,ts−1∈Z

∣∣cum
(
X0,i1 ,Xt1,i2 , . . . ,Xts−1,is

)∣∣ < ∞.

Theorem 4.1. Suppose that Assumptions 2.2 (with q = 2),
4.1, and 4.2 and Conditions C8 and D3 hold, and that Mr
holds with r = (3 + κ3) ∨ (2κ2) ∨ 4. Assume that 1/ln +
ln/n1/4 = o(1),

∑
k∈Z

|krk| < ∞, and Wtj, j = 1, . . . ,n, are ln-
dependent. Then E(τ̂ 2

n ) = τ 2∞ + B0l−2
n + o(l−2

n ), where B0 =
−k2

∑∞
k=−∞ k2rk.

Remark 4.1. Lahiri (1999) used conditions Dr and Mr to de-
rive the bias and variance expansions of the block-based boot-
strap variance estimator. The constraint on the bandwidth ln is
a bit restrictive because of some technical requirements, but
it does not exclude the optimal bandwidth, which is of order
O(n1/5) (see Corollary 4.1). Theorem 4.1 still holds if we re-
place τ 2∞ by τ 2

n , because τ 2
n = τ 2∞ + O(n−1/2) (cf. lemma 10.1

in Nordman and Lahiri 2004).

Theorem 4.2. Suppose that Assumptions 2.2, 4.1, and 4.2
and Conditions C16 and D3 hold, and that Mr holds with
r = (6 + 2κ3) ∨ (4κ2) ∨ 8. Assume that 1/ln + ln/n1/2 =
o(1),

∑
k∈Z

|krk| < ∞, and Wtj , j = 1, . . . ,n, are ln-dependent.
Then we have var(τ̂ 2

n ) = D0ln/n{1 + o(1)}, where D0 =
2τ 4∞

∫ 1
−1 a2(x)dx.

Corollary 4.1. Under the combined assumptions of The-
orems 4.1 and 4.2, the optimal bandwidth that minimizes
the MSE of the DWB variance estimator is given by lopt

n =
(4B2

0/D0)
1/5n1/5, and the corresponding MSE is {(4−4/5 +

41/5)B2/5
0 D4/5

0 }n−4/5{1 + o(1)}.
Unlike the choice of the block size, the bandwidth l in the

DWB does not have to be an integer in practice, so the optimal
theoretical MSE can be reached by choosing a noninteger band-
width. For spatial data on a regular grid, Nordman, Lahiri, and
Fridley (2007) obtained the asymptotic bias and variance ex-
pansions of the spatial block bootstrap variance estimator under
the framework of smooth function model. Their results, when
reduced to the one-dimensional case, amount to 1/ln and ln/n
for the order of the leading terms in the bias and variance expan-
sions. Consequently, the order of the leading term in the min-
imized MSE is n−2/3 for both MBB and NBB. Therefore, in
terms of the optimal MSE, the MBB (NBB) is inferior to the
DWB for both regularly and irregularly spaced time series on a
lattice. It is also worth noting that all the theoretical results still
hold if we approximate the sampling distribution (or the vari-
ance) of

√
n{H(X̄n)− H(μ)} by its bootstrap counterpart based

on ∇(X̄n)
′√n(X̄∗

n − X̄n). In this case, the strong moment con-
ditions in Theorems 4.1 and 4.2 can be relaxed in view of the
proof of Theorem 4.1.

Up to this point, we have justified the consistency of the
DWB for distribution approximation for regularly spaced time
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series, and obtained the bias and variance expansions of the
DWB variance estimator for irregularly spaced time series on
a lattice under the framework of smooth function model. A nat-
ural next step is to investigate whether the DWB can offer the
second-order correctness, that is, better than normal approxima-
tion. In the regularly spaced case, the second-order correctness
for the MBB has been studied by Lahiri (1992, 2007) and Götze
and Künsch (1996). We have not been able to obtain any results
for the DWB, but it is certain that the choice of multivariate nor-
mal distribution for Wt, although convenient, would not lead to
the second-order correctness in general. If the Wt are multivari-
ate normal, then cum(Wi,Wj,Wk) = 0 for any (i, j, k), which
implies that cum∗(X∗

i ,X∗
j ,X∗

k ) = 0 for any i, j, k = 1, . . . ,n. So
the DWB sample would not be able to match possibly nonzero
third cumulants of the original univariate process and would
not yield the second-order correctness. If the time series Xt is
Gaussian, we conjecture that the DWB using multivariate nor-
mal Wt would yield the second-order correctness for the prop-
erly studentized statistic under the framework of smooth func-
tion model, although a rigorous proof is well beyond the scope
of this article. On the other hand, the {Wt}n

t=1 do not have to
follow a multivariate normal distribution, as illustrated by the
following example.

Example 4.1. Let Wt = (W̃2
t − 1)/

√
2, where {W̃t}n

t=1 are
multivariate normal random variables with mean 0 and covari-
ance matrix �̃l = (σ̃ij)i,j=1,...,n, σ̃ij = ã(|i − j|/l), where ã(·)
satisfies (2) and Assumption 2.2. Then it is easy to see that Wt

satisfies Assumption 2.1 with cov(Wt,Ws) = cov2(W̃t, W̃s) =
ã2(|t − s|/l), that is, a(x) = ã2(x) under our notation. Unlike
the multivariate normal case, the marginal distribution of Wt is
no longer normal and

cum(W0,Wt,Ws)

= 2−3/2 cum(W̃2
0 , W̃2

t , W̃2
s )

= 2
√

2 cov(W̃0, W̃t) cov(W̃0, W̃s) cov(W̃t, W̃s)

= 2
√

2ã(t/l)ã(s/l)ã{(t − s)/l}
= √

8a(t/l)a(s/l)a{(t − s)/l} �≡ 0.

In general, given a time series at hand, it is a hard task to de-
sign the joint distribution for Wt to match the higher-order cu-
mulants of the unknown data-generating process. Thus we have
no practical recommendations as to the joint distribution of Wt

if the goal is to achieve the second-order accuracy. In practice,
the choice of the kernel a(·) and the bandwidth l, which affects
the first-order accuracy, may be more important than the choice
of possibly nonnormal joint distribution for Wt [for given l and
a(·)], which affects only the second-order accuracy. The DWB
is especially useful in the case of irregular spaced time series,
for which the second-order accuracy of the MBB is not known.
Thus it seems fair to regard the DWB as a viable alternative
to the block-based methods despite its possible lack of second-
order accuracy in the non-Gaussian case.

5. TIME SERIES WITH STOCHASTIC
SAMPLING DESIGN

To allow a nonlattice configuration for the time points {tj}n
j=1,

we adopt the framework of stochastic sampling design, which

was used by Lahiri and Zhu (2006) to study the consistency of
the spatial block bootstrap for irregularly spaced spatial data.
(See Lahiri 2003b and Lahiri and Mukherjee 2004 for earlier
work within the same framework.) Because we deal only with
time series in this article, we restrict our attention to the one-
dimensional case. Assume that tj = λnzj, j = 1, . . . ,n, where
zj takes values in R0 and {zj}n

j=1 are a realization of the iid
random variables Z1, . . . ,Zn. As described by Lahiri (2003b),
this formulation of stochastic design allows a nonuniform den-
sity across the region, so the expected number of points in two
regions of the same size could be different. In addition, de-
pending on the magnitude of κ := limn→∞ n/λn, this formu-
lation accommodates both pure increasing-domain asymptotics
(i.e., κ < ∞) and mixed increasing-domain asymptotics (i.e.,
κ = +∞).

In this section we assume that there is an underlying
continuous-time stationary process {X(t), t ∈ R} and the obser-
vations are {X(tj)}n

j=1. The notation differs from the {Xt, t ∈ Z}
used in previous sections for a discrete-time process. Corre-
spondingly, we use γ (z1) = cov{X(0),X(z1)}, C4(z1, z2, z3) =
cum{X(0),X(z1),X(z2),X(z3)} to denote the autocovariance
and the fourth-order cumulant for z1, z2, z3 ∈ R. For simplic-
ity, we focus on the mean case; see Remark 5.1 for a dis-
cussion of the smooth function model. Let μ = E{X(t)} and
X̄n = n−1 ∑n

j=1 X(tj). We are interested in estimating the dis-
tribution and the variance of X̄n − μ using the DWB method.
Write ξn = var(X̄n). The DWB sample is obtained as X∗(tj) =
X̄n + {X(tj) − X̄n}W(tj), j = 1, . . . ,n, where {W(tj)}n

j=1 repre-
sents a realization from a continuous-time stationary process
W(t), t ∈ R. Without loss of generality, we assume that {Zn}n≥1,
{X(t), t ∈ R} and that the bootstrap variables {W(t), t ∈ R} are
all defined on a common probability space (�, F ,P). Let PZ

denote the joint probability distribution of the sequence of iid
random variables Z1,Z2, . . . with density η(z), z ∈ R0. We use
EZ (varZ) to denote the expectation (variance) with respect to
the joint distribution PZ and use EX|Z (varX|Z) to denote the
conditional expectation (variance) with respect to PX (i.e., the
joint probability distribution for {X(t), t ∈ R}) given {Zn}n≥1.
The following assumption on η(·) is assumed throughout this
section.

Assumption 5.1. The pdf η(x) is continuous, everywhere
positive with support R̄0 and

∫
s∈R0

η(s)ds = 1.

Write ι = ∫
s∈R0

η2(s)ds. Lemma 5.2 of Lahiri (2003b) im-
plies that under appropriate conditions, we have that (a) if
κ ∈ (0,∞), then nξn → γ (0) + κι

∫
R

γ (s)ds, a.s. (PZ) and
(b) if κ = ∞, then λnξn → ι

∫
R

γ (s)ds, a.s. (PZ). Here a.s.
(PZ) means that the result holds with probability 1 under PZ ,
that is, for almost all realizations of the sequence {Zn}. Lahiri
(2003b) regarded the distribution of X̄n as a conditional dis-
tribution given {Zn}n≥1 and ξn as a function of the randomly
sampled locations. Whereas in our treatment, we view ξn as an
unknown quantity, where the randomness due to {Zn}n≥1 has
been removed by the expectation.

Let X̄∗
n = n−1 ∑n

j=1 X∗(tj). Let ξ̂n = var∗(X̄∗
n) denote the

DWB variance estimator of ξn. The following theorem shows
the consistency of ξ̂n as an estimator of ξn.
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Theorem 5.1. Suppose that Assumption 2.2 on a(·), As-
sumption 4.2 on R0, and Assumption 5.1 on η(·) hold. Assume
that {W(tj)}n

j=1 satisfies Assumption 4.1, with Wt replaced by

W(t). Further assume that ln/
√

n + ln/λn = o(1),∫
R

|γ (z)|dz < ∞ and (7)∫
R3

|C4(z1, z2, z3)|dz1 dz2 dz3 < ∞. (8)

We have that (a) if κ ∈ (0,∞), then nξ̂n →p γ (0) + κι ×∫
R

γ (s)ds, and (b) if κ = ∞, then λnξ̂n →p ι
∫

R
γ (s)ds.

Remark 5.1. It is possible to prove the consistency in the case
of smooth function model under additional regularity condi-
tions. In particular, we need to impose certain smoothness con-
ditions on the smooth function (including growth and bounded-
ness conditions on suitable derivatives of the smooth function)
and may require stronger moment and weakly dependence con-
ditions on X(t). The argument is expected to resemble that in
the proofs of Theorems 4.1 and 5.1, but is more involved.

It is worth noting that the process W(t) should be written as
Wn(t), where the dependence on n is suppressed for notational
convenience. The following theorem states the consistency of
the DWB in terms of distribution approximation.

Theorem 5.2. Suppose that the assumptions in Theorem 5.1
hold. Further suppose that the {W(t)} are l-dependent and
W(t) ∈ L4. Then we have that for case (a) (i.e., κ < ∞),

sup
x∈R

∣∣P[√n{X̄n − μ} ≤ x] − P∗[√n(X̄∗
n − X̄n) ≤ x]∣∣ = op(1),

and for case (b) (i.e., κ = ∞),

sup
x∈R

∣∣P[√λn{X̄n − μ} ≤ x] − P∗[√λn(X̄
∗
n − X̄n) ≤ x]∣∣ = op(1).

It is interesting to see that the DWB is consistent under both
pure increasing-domain asymptotics and mixed increasing-
domain asymptotics. Under the same sampling design, Lahiri
and Zhu (2006) showed the consistency for the grid-based block
bootstrap in the spatial setting in the sense that it can consis-
tently approximate the sampling distribution of the M-estimator
in spatial regression models. In particular, their theorem 2 states
the bootstrap consistency in the sense of P·|Z-probability a.s.
(PZ). This type of convergence is slightly stronger than what
we have in Theorem 5.2. It is certainly an interesting topic
to extend the validity of the DWB to their setup with the
stronger convergence result. We leave this for future investi-
gation. A comparison between the DWB and the grid-based
block bootstrap is made through simulations; see Section 6.2.

6. NUMERICAL EXAMPLES

In previous sections, we discussed the DWB from a theoret-
ical perspective. To corroborate our theoretical findings, here
we compare via simulations the finite-sample performance of
the DWB and the block-based bootstrap methods for time se-
ries with or without missing values in Section 6.1 and for time
series with randomly sampled time points in Section 6.2. We
provide an empirical illustration in Section 6.3.

6.1 Time Series on a Lattice

Here we focus on the inference of the population mean of a
time series. We revisit the following nonlinear autoregressive
model used by Paparoditis and Politis (2001):

Xt = 0.6 sin(Xt−1) + Zt, t ∈ Z, (9)

where {Zt} are iid N(0,1). Let n = 200. Among the block-
based bootstrap methods, the theoretical advantage of the TBB
over the MBB has been confirmed for (9) through simula-
tion studies by Paparoditis and Politis (2001). For this rea-
son, we only compare the DWB with the TBB in this case.
To make the comparison fair, we use w(x) = wtrap

0.43(x) and

a(x) = wtrap
0.43 ∗ wtrap

0.43(x)/wtrap
0.43 ∗ wtrap

0.43(0) in the TBB and DWB,
respectively, so the TBB and DWB variance estimators have the
same (asymptotic) MSEs for a given bandwidth l.

For each simulated time series (with no missing values) and
each block size, 1000 TBB and DWB pseudoseries are gener-
ated to perform variance estimation and distribution approxima-
tion. We repeat this procedure 3000 times and plot the empirical
MSE and empirical coverage of nominal 95% symmetric confi-
dence intervals as a function of block size in Figure 1(a) and (d).
Because our theoretical discussion focuses on the bias and vari-
ance of the DWB variance estimator, it seems natural to plot
the MSE and compare the optimal bandwidths that minimize
the empirical MSE. In light of the fact that MSE favors under-
estimation in the context of variance estimation, we also plot
the ratio of the averaged variance estimates (over 3000 repli-
cations) to the true variance σ 2

n = n var(X̄n) for n = 200 and
the coefficient of variation for 3000 independent variance es-
timates in Figure 1(b) and (c). Here σ 2

n is obtained by Monte
Carlo approximations with n = 200 and 106 replications. It can
be seen that the TBB and DWB have comparable empirical per-
formance at a range of block sizes, although in this case the
TBB is noticeably inferior to the DWB when the block size
exceeds 20. The optimal block sizes for the TBB and DWB
are very close in terms of both MSE and coverage. Moreover,
the optimal MSEs (i.e., the MSE corresponding to the empiri-
cally optimal block size) for the TBB and DWB are almost the
same. Figure 1(b) shows the tendency toward underestimation
of both the TBB and DWB estimators. The optimal bandwidth
that minimizes the distance between the (empirical) ratio and 1
is larger than the optimal bandwidth that minimizes the MSE,
which can be explained by the monotonically increasing pattern
of the coefficient of variation with respect to the block size [see
Figure 1(c)].

To investigate the performance of the DWB when there are
missing values, we artificially assume that the observations
from the model (9) are missing at the following 10 randomly
generated time points: t = 4,73,121,126,130,139,144,160,

163,191. Thus the effective sample size is n = 190. When a
time series has a small number of missing values, the MBB
(TBB) is expected to work in theory. In practice, we have a few
possible choices for dealing with missing values, including the
following schemes:

1. Ignore missing values and perform the MBB (TBB). In
other words, we need to keep track of the missing patterns
in the resampled blocks and use only the nonmissing re-
sampled data. We designate this scheme MBB-I (TBB-I).
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(a) (b)

(c) (d)

Figure 1. Time series generated from the model (9) with no missing values; sample size, n = 200. (a) Empirical MSEs of the TBB and DWB
variance estimators of σ 2

n . The largest standard error is 0.034. (b) Ratio of the averaged TBB (DWB) variance estimates (over 3000 replications)
to σ 2

n . The largest standard error is 0.070. (c) Coefficient of variation for 3000 independent TBB (DWB) estimates of σ 2
n . The largest standard

error is 0.0084, which is calculated using the jackknife method. (d) The empirical coverage probability of a two-sided 95% confidence interval
of the mean. The largest standard error is 0.0057.

2. Impute the missing values using the sample mean and
then perform the MBB (TBB) on the imputed data set.
We designate this scheme MBB-II (TBB-II). Note that
more complex imputation methods could be tried, but us-
ing sample mean as the imputed value seems simple and
natural.

3. Take the missing pattern into account in the block boot-
strapping, as described by Nordman, Lahiri, and Frid-
ley (2007). They used a modified MBB scheme (desig-
nated MBB-III) in the spatial setting, as we discuss in the
next paragraph. To make a fair comparison of the MBB,
TBB, and DWB, we let a(·) denote the Bartlett kernel in
the DWB procedure (designated DWB1), which can be
shown to deliver an asymptotically equivalent variance
estimator as the MBB counterpart for regularly spaced
time series. We also incorporate the DWB with a(·) =
wtrap

0.43 ∗ wtrap
0.43(x)/wtrap

0.43 ∗ wtrap
0.43(0) (designated DWB2) to

examine the possible advantage of tapering.

The basic idea of the modified MBB scheme of Nordman,
Lahiri, and Fridley (2007) is that for a prespecified block size l,

one finds all of the time points (or spatial locations) that con-
tain all of the nonoverlapping complete blocks of size l, and
fills in with the corresponding resampled values. Note that the
resampled data are only from all of the complete (overlap-
ping) blocks. In general the modified MBB sample has a shorter
length due to the ignorance of the boundary time points that are
close to the locations of missing values. For large l, the differ-
ence between the bootstrap sample size and the original sample
size tends to be nonnegligible, which may contribute to the in-
accuracy of the bootstrap estimator. In addition, as l increases,
the number of candidate blocks becomes less and the number
of data points used in resampling decreases. This may lead to a
loss of efficiency. These practical disadvantages are confirmed
in our simulation results presented later. Note that the TBB of
Paparoditis and Politis (2001, 2002) was introduced for the reg-
ularly spaced time series, and its extension to accommodate the
irregularity (e.g., missing values) is not available in the litera-
ture. For time series on a lattice, one can presumably carry out
such an extension by combining the modified MBB with the
tapering scheme of Paparoditis and Politis (2001, 2002). Here
we do not present the results for this modified TBB, but would
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(a) (b)

(c) (d)

Figure 2. Time series generated from the model (9) with 10 missing values; sample size n = 190. The comparison is among MBB-I, MBB-II,
MBB-III, DWB1, DWB2, TBB-I, and TBB-II. (a) Empirical MSEs of the bootstrap variance estimators of σ 2

n . The largest standard error is
0.058. (b) Ratio of the averaged variance estimates (over 3000 replications) to σ 2

n . The largest standard error is 0.097. (c) Coefficient of variation
for 3000 independent estimates of σ 2

n . The largest standard error is 0.016 based on the jackknife estimate. (d) The empirical coverage probability
of a two-sided 95% confidence interval of the mean. The largest standard error is 0.005.

expect that the aforementioned deficiency associated with the
modified MBB carries over to the modified TBB when there
are missing values.

Figure 2 compares the aforementioned 7 bootstrap schemes
in the presence of 10 missing values. It appears that the DWB2
(DWB with tapering) and TBB-I (TBB with missing values ig-
nored) perform the best of these, although the DWB2 is no-
ticeably better (worse) than TBB-I when the block size is large
(small), as seen from Figure 2(a) and (d). The imputation does
affect the accuracy of variance estimation and empirical cover-
age somewhat. In addition, a comparison of MBBs with their
tapered counterparts suggests that tapering is preferred. The
modified MBB scheme (MBB-III) is inferior to the DWB2 uni-
formly in the examined block sizes and performs rather poorly
for medium and large block sizes, as explained in the previ-
ous paragraph. We also compared the DWB2 (TBB-I) in Fig-
ure 2 and the DWB without missing values (TBB) in Figure 1
to demonstrate the impact of the missing observations (results
not shown). It turns out that the presence of missing values had
little affect on the performance of the DWB and TBB-I, which

might be expected because the percentage of the missing data
is only 5%.

We further compare the foregoing bootstrap schemes when
the missing percentage is 25%. Note that none of the boot-
strap methods (i.e., MBB, TBB, and DWB) has been theo-
retically justified for the situation where the missing percent-
age is large. Nevertheless, these methods are of practical use.
In particular, we examined two missing patterns: (I) missing
in blocks, with the 200 observations missing at the follow-
ing 50 time points: t = {j, j + 1, j + 2, j + 3, j + 4} for j =
1,21,41,61,81,101,121,141,161,181, and (II) missing “ir-
regularly,” with the missing time points randomly generated
from the uniform distribution over {1, . . . ,200}. For our study,
the missing time points are 1, 2, 7, 16, 24, 26, 27, 32, 33, 44, 59,
63, 68, 71, 88, 92, 94, 97, 98, 104, 115, 117, 118, 121, 134, 135,
136, 142, 143, 146, 147, 148, 149, 150, 152, 157, 161, 167, 169,
173, 174, 178, 183, 185, 186, 188, 189, 194, 195, and 198. Fig-
ures 3 and 4 correspond to (I) and (II), respectively. From these
two figures, we again see that the DWB2 and TBB-I outper-
forms all of the other bootstrap schemes in all aspects. Because
the percentage of missing is 25%, the bootstrap schemes with
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(c) (d)

Figure 3. Time series generated from the model (9) with 50 missing values following the missing pattern (I) (i.e., missing in blocks); sample
size, n = 150. The comparison is among MBB-I, MBB-II, MBB-III, DWB1, DWB2, TBB-I, and TBB-II. (a) Empirical MSEs of the bootstrap
variance estimators of σ 2

n . The largest standard error is 0.026. (b) Ratio of the averaged variance estimates (over 3000 replications) to σ 2
n . The

largest standard error is 0.111. (c) Coefficient of variation for 3000 independent estimates of σ 2
n . The largest standard error is 0.007 based on the

jackknife estimate. (d) Empirical coverage probability of a two-sided 95% confidence interval of the mean. The largest standard error is 0.007.

imputed missing values deliver substantially worse results, and
thus are not recommended. The modified MBB scheme is seen
to perform very poorly for the missing pattern (II), with its er-
ratic behavior presumably due to the particular missing pattern
under consideration. The performance of the modified MBB is
better for the missing pattern (I) but is still inferior to that of
the DWB2 and TBB-I. Moreover, when the block size exceeds
15 for the missing pattern (I) [16 for the missing pattern (II)],
the modified MBB scheme fails because there is no complete
block to sample from. This could be a disadvantage if the op-
timal block size happens to be larger than the maximum size
of a complete block with no missing values. Based on the fore-
going simulation results, the TBB with ignored missing values
and the DWB with tapering are the two schemes we would rec-
ommend in the case of lattice data with missing values. Note
that implementing the TBB with ignored missing values is less
straightforward than implementing the DWB, which in our ex-
perience is relatively easier to program. This implementational
convenience for the DWB may be appealing to practitioners.

6.2 Time Series With Randomly Sampled Time Points

Here we investigate the finite-sample performance of the
DWB under the framework of stochastic sampling design and
compare it with that of the grid-based block bootstrap (Lahiri
and Zhu 2006). Let R0 = (−1/2,1/2], n = 100 and λn = 18
or 36. The density function for Z1 is taken to be (a) truncated
N(0,1), that is, η(x) = (2π)−1/2 exp(−x2/2)/

∫ 1/2
−1/2(2π)−1/2 ×

exp(−x2/2)dx for x ∈ (−1/2,1/2] and 0 otherwise, or (b) trun-
cated N(0,1/4), that is, η(x) = 1(|x| ≤ 1/2)2/

√
2π exp(−2x2)/∫ 1/2

−1/2 2/
√

2π exp(−2x2)dx. The truncated N(0,1/4) distrib-
ution puts more mass around the origin than the truncated
N(0,1) distribution, which is close to a uniform distribu-
tion over R0. Given the sampled time points {tj}n

j=1, we then
generate the observations {X(tj)}n

j=1 from a one-dimensional
mean-0 Gaussian process with exponential covariance function
γ (z) = exp(−ρ|z|), z ∈ R, where ρ = 0.5, 1, and 2. Table 1
shows the normalized MSEs in estimating nξn [i.e., n var(X̄n)]
for three bootstrap schemes: (a) the grid-based block bootstrap,
(b) the DWB with a(x) = wtrap

0.43 ∗ wtrap
0.43(x)/wtrap

0.43 ∗ wtrap
0.43(0) (i.e.,
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Figure 4. Time series generated from the model (9) with 50 missing values following the missing pattern (II); sample size, n = 150. The
comparison is among MBB-I, MBB-II, MBB-III, DWB1, DWB2, TBB-I and TBB-II. (a) Empirical MSEs of the bootstrap variance estimators
of σ 2

n . The largest standard error is 0.075. (b) Ratio of the averaged variance estimates (over 3000 replications) to σ 2
n . The largest standard error

is 0.171. (c) Coefficient of variation for 3000 independent estimates of σ 2. The largest standard error is 0.028 based on the jackknife estimate.
(d) Empirical coverage probability of a two-sided 95% confidence interval of the mean. The largest standard error is 0.005.

with tapering), and (c) the DWB with a(x) = (1−|x|)1(|x| ≤ 1)

(i.e., without tapering). Note that there is no straightforward
extension of the TBB to the irregularly spaced case, so we
include only the foregoing three schemes in the comparison.
For any one of the bootstrap schemes, let ξ̂

(j)
n denote the

bootstrap estimate of ξn based on 1000 bootstrap samples for
the jth replicate, where j = 1, . . . ,1000 because 1000 repli-
cations are used. Then the normalized MSE is calculated as∑1000

j=1 {nξ̂
(j)
n /(nξn) − 1}2/1000. From Table 1, we can see that

the optimal MSE for the DWB with tapering is slightly smaller
than that for the grid-based block bootstrap and the DWB
without tapering. This phenomenon can be seen for almost all
combinations of (λn, ρ, η(·)). Larger ρ corresponds to smaller
MSE, which is expected because larger ρ implies weaker de-
pendence. Moreover, the MSE decreases as λn increases. It ap-
pears that the advantage of the DWBs (with or without tapering)
over the grid-based block bootstrap is noticeable for moderately
large block sizes. Table 2 shows the empirical coverages in per-
centage in the same format as Table 1. Again, the DWB with

tapering outperforms the other two bootstrap schemes in terms
of optimal coverage. The grid-based block bootstrap performs
poorly when l (block size in the grid-based block bootstrap) is
large, although it has a slight edge over the DWB with taper-
ing when l is small and suboptimal (e.g., l = 1). These findings
are consistent with those for the regularly spaced time series
with/without missing values presented in Section 6.1 and by
Paparoditis and Politis (2001). We also tried the spherical co-
variance function γ (z) = (1−3/2|z|/R+1/2|z|3/R3)1(|z| ≤ R)

for R = 4,8. As shown in the two tables in the online supple-
mentary materials, the normalized MSEs and coverages exhibit
the same pattern as described earlier. Qualitatively similar be-
haviors for the three bootstrap schemes when n = 200 are ob-
served, but for space considerations we do not discuss these
results here.

In the foregoing simulation studies, we do not consider the
issue of bandwidth selection, which is very important in prac-
tical data analysis. There is a large literature on selecting the
bandwidth ln for regularly spaced time series (see Lahiri 2003a,
chap. 7 for a review). The two major approaches—the nonpara-
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Table 1. Normalized MSEs for the bootstrap variance estimators of n var(X̄n) using (a) the grid-based block bootstrap, (b) the DWB with
a(x) = w

trap
0.43 ∗ w

trap
0.43(x)/w

trap
0.43 ∗ w

trap
0.43(0), and (c) the DWB with a(x) = (1 − |x|)1(|x| ≤ 1). The data are mean-0 Gaussian with an exponential

covariance function. The box for each row indicates the smallest normalized MSE among l = 1, . . . ,10. Part (A) corresponds to the truncated
N(0,1) density function for the sampling design, whereas part (B) is for the truncated N(0,1/4) density function. The largest standard error

is 0.020 for part (A) and 0.026 for part (B)

l

λn ρ 1 2 3 4 5 6 7 8 9 10

(A)

18 0.5 (a) 0.64 0.51 0.48 0.48 0.50 0.54 0.55 0.60 0.66 0.66

(b) 0.69 0.56 0.49 0.46 0.44 0.45 0.46 0.47 0.48 0.50

(c) 0.65 0.52 0.47 0.46 0.47 0.49 0.50 0.52 0.54 0.55

1 (a) 0.43 0.34 0.34 0.37 0.41 0.48 0.48 0.54 0.62 0.62

(b) 0.49 0.35 0.31 0.32 0.33 0.36 0.38 0.40 0.43 0.46

(c) 0.44 0.34 0.33 0.35 0.38 0.42 0.44 0.47 0.49 0.51

2 (a) 0.25 0.23 0.28 0.32 0.37 0.45 0.44 0.48 0.57 0.56

(b) 0.27 0.21 0.23 0.26 0.30 0.33 0.36 0.39 0.41 0.44

(c) 0.25 0.23 0.26 0.31 0.34 0.37 0.40 0.42 0.44 0.46

36 0.5 (a) 0.58 0.44 0.37 0.34 0.34 0.35 0.37 0.38 0.41 0.42

(b) 0.63 0.49 0.40 0.36 0.33 0.32 0.32 0.32 0.33 0.34

(c) 0.58 0.44 0.37 0.34 0.33 0.34 0.35 0.37 0.38 0.40

1 (a) 0.35 0.25 0.22 0.23 0.25 0.28 0.30 0.32 0.36 0.37

(b) 0.40 0.27 0.22 0.21 0.21 0.22 0.24 0.26 0.28 0.29

(c) 0.36 0.25 0.22 0.23 0.24 0.26 0.29 0.31 0.33 0.35

2 (a) 0.18 0.15 0.17 0.19 0.22 0.25 0.27 0.29 0.34 0.34

(b) 0.20 0.14 0.15 0.16 0.18 0.20 0.22 0.24 0.26 0.28

(c) 0.18 0.15 0.16 0.19 0.21 0.23 0.26 0.28 0.31 0.33

(B)

18 0.5 (a) 0.70 0.59 0.56 0.57 0.59 0.63 0.66 0.72 0.80 0.80

(b) 0.74 0.63 0.56 0.54 0.53 0.53 0.54 0.56 0.58 0.59

(c) 0.70 0.59 0.56 0.55 0.57 0.59 0.61 0.63 0.66 0.68

1 (a) 0.48 0.40 0.40 0.43 0.47 0.53 0.56 0.64 0.74 0.74

(b) 0.53 0.40 0.37 0.37 0.39 0.41 0.43 0.46 0.49 0.51

(c) 0.49 0.40 0.39 0.42 0.45 0.48 0.51 0.54 0.57 0.60

2 (a) 0.28 0.28 0.32 0.36 0.40 0.48 0.50 0.58 0.70 0.71

(b) 0.31 0.26 0.28 0.31 0.34 0.37 0.40 0.42 0.45 0.48

(c) 0.29 0.28 0.32 0.36 0.39 0.42 0.45 0.48 0.52 0.54

36 0.5 (a) 0.61 0.49 0.43 0.41 0.41 0.42 0.43 0.44 0.47 0.48

(b) 0.66 0.53 0.45 0.41 0.39 0.38 0.39 0.39 0.40 0.41

(c) 0.62 0.48 0.42 0.40 0.40 0.41 0.42 0.43 0.45 0.46

1 (a) 0.38 0.29 0.27 0.29 0.31 0.33 0.35 0.37 0.40 0.41

(b) 0.43 0.30 0.26 0.26 0.27 0.29 0.31 0.32 0.34 0.35

(c) 0.38 0.29 0.27 0.28 0.31 0.33 0.34 0.36 0.38 0.39

2 (a) 0.21 0.19 0.22 0.25 0.28 0.32 0.34 0.36 0.40 0.40

(b) 0.23 0.18 0.19 0.22 0.25 0.28 0.31 0.34 0.36 0.38

(c) 0.21 0.19 0.22 0.26 0.30 0.32 0.35 0.37 0.38 0.40

metric plug-in method (e.g., Bülmann and Künsch 1999; Papar-
oditis and Politis 2001, 2002; Politis and White 2004; Lahiri,
Furukawa, and Lee 2007) and the subsampling method (Hall,
Horowitz, and Jing 1995)—can be extended to the DWB for

time series on a lattice; see Section 6.3 for the use of the plug-in
method. For a nonlattice temporal series, it seems that no band-
width selection method is available for either the grid-based
block bootstrap or the DWB.
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Table 2. Empirical coverages (in percent) for the bootstrap-based confidence intervals of μ using (a) the grid-based block bootstrap, (b) the
DWB with a(x) = w

trap
0.43 ∗ w

trap
0.43(x)/w

trap
0.43 ∗ w

trap
0.43(0), and (c) the DWB with a(x) = (1 − |x|)1(|x| ≤ 1). The data are mean-0 Gaussian with an

exponential covariance function. The box for each row indicates the best coverage among l = 1, . . . ,10 (i.e., closest to the nominal level 95%).
The largest standard error is 1.6%. Part (A) corresponds to the truncated N(0,1) density function for the sampling design, whereas part (B) is

for the truncated N(0,1/4) density function

l

λn ρ 1 2 3 4 5 6 7 8 9 10

(A)

18 0.5 (a) 61 68 70 69 68 64 64 59 53 54

(b) 58 66 69 71 71 72 71 70 69 68

(c) 62 68 69 70 70 69 68 67 65 63

1 (a) 73 79 79 78 76 70 71 66 58 57

(b) 70 78 81 82 81 81 80 78 76 76

(c) 73 79 81 80 78 77 75 73 70 69

2 (a) 82 84 83 79 77 72 72 68 60 60

(b) 82 86 86 85 84 83 81 80 78 76

(c) 83 85 84 83 81 79 77 76 74 73

36 0.5 (a) 62 72 76 78 78 78 76 76 74 73

(b) 59 69 74 77 79 79 80 80 80 79

(c) 63 71 76 78 79 79 78 78 77 77

1 (a) 76 83 84 85 84 83 81 81 77 77

(b) 74 81 84 86 86 86 86 86 85 85

(c) 76 83 85 85 85 84 84 83 82 82

2 (a) 85 88 88 87 85 85 83 82 79 79

(b) 85 89 89 89 89 88 88 87 87 86

(c) 86 88 89 88 87 87 85 85 84 83

(B)

18 0.5 (a) 53 60 62 61 60 56 55 49 41 41

(b) 51 60 64 66 67 67 66 64 62 60

(c) 54 62 65 65 64 61 59 56 54 52

1 (a) 70 75 74 73 71 66 65 59 48 49

(b) 68 76 78 78 78 77 74 72 70 68

(c) 71 76 77 76 73 70 68 66 64 62

2 (a) 80 82 80 78 75 70 70 64 52 53

(b) 80 84 86 84 83 80 79 76 73 70

(c) 82 84 83 80 78 76 72 70 68 66

36 0.5 (a) 61 68 70 72 72 71 70 69 68 67

(b) 58 67 71 73 74 74 74 75 74 74

(c) 61 68 72 73 73 73 73 71 70 69

1 (a) 76 80 81 81 80 78 78 76 74 74

(b) 74 80 83 84 84 84 83 82 81 80

(c) 76 82 83 83 82 81 80 79 77 77

2 (a) 83 86 86 84 83 81 79 78 75 75

(b) 83 86 87 87 87 86 85 84 83 81

(c) 85 87 86 86 84 82 82 80 79 77

Several issues merit further investigation. For the DWB, we
need to choose the bandwidth l, the covariance kernel a(·), and
the joint distribution of Wt. The joint distribution of {Wt}n

t=1 is
taken to be multivariate normal in our simulations and empir-

ical data analysis. It would be interesting to explore how the
results are sensitive to the specification of the joint distribu-
tion; see Example 4.1. In practice, if a data-driven bandwidth is
used, then a natural question is how much improvement can the
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Figure 5. The monthly maximum temperature anomaly (F)
recorded at Salisbury, North Carolina during 1931–2005. The symbol
“+” indicates the missing values.

DWB offer compared with the MBB when coupled with dif-
ferent bandwidth selection algorithms. In addition, more time
series models and smooth functionals (see Sec. 6.3 for an ex-
ample) need to be examined through simulations to get a broad
picture of the finite-sample performance of the DWB method.
Given our space limitations here, we prefer to address these is-
sues in a separate numerical work.

6.3 Empirical Illustration

To illustrate the usefulness of the DWB, we analyze the
monthly maximum temperature anomaly at Salisbury, North
Carolina for the period 1931–2005. The data set can be ob-
tained at http:// lwf.ncdc.noaa.gov/oa/climate/research/ushcn/
ushcn.html, which stores high-quality moderate sized data set
of monthly averaged maximum, minimum, and mean tempera-
ture anomalies for more than 1000 stations in the United States.
Figure 5 shows the times series plot with the symbol “+” indi-
cating the missing values, which occur at the following months:
10/1956, 11/1982, 11/1984, 12/1984, 3/1986, 6/1986, 7/1986,
8/1986, 7/1991, 8/1991, 6/1995, 11/1995, and 1/2005. Thus the
sample size is n = 887 with 13 missing values.

At the initial stage of model building, it is an important
step to compute the empirical autocorrelations at a number
of lags and assess if they are significantly different from 0.
Toward this end, we construct 95% confidence intervals for

ρk = γk/γ0, k = 1, . . . ,5. Note that the asymptotic variance
for the sample estimator ρ̂k involves the integral of the fourth-
order cumulants, and a consistent estimation of its asymp-
totic variance is very involved even for regularly spaced time
series. One way of bypassing direct estimation of asymp-
totic variance is to use the subsampling and block-based boot-
strap methods, as advocated by Romano and Thombs (1996).
Here we apply the DWB method to this data set; the imple-
mentation is quite straightforward. Following the discussion
in example 4.7 of Lahiri (2003a), we can write ρk = H(μ),
where μ = E(Y1), Yi = (Y1i,Y2i,Y3i)

′ = (Xi,X2
i ,XiXi+k)

′, and
H(x, y, z) = {(z − x2)/(y − x2)}1(y > x2) for (x, y, z)′ ∈ R

3.
Let Sk = {j = 1, . . . ,n : Xj and Xj+k are both nonmissing}, k ∈
N, Ȳjn = |Sk|−1 ∑

i∈Sk
Yji, j = 1,2,3, and Ȳn = (Ȳ1n, Ȳ2n, Ȳ3n)

′.
We consider the following sample estimate of ρk:

ρ̂k = |Sk|−1 ∑
j∈Sk

XjXj+k − (|Sk|−1 ∑
j∈Sk

Xj)
2

|Sk|−1
∑

j∈Sk
X2

j − (|Sk|−1
∑

j∈Sk
Xj)2

= H(Ȳ1n, Ȳ2n, Ȳ3n).

To implement the DWB, we use a(x) = wtrap
0.43 ∗ wtrap

0.43(x)/wtrap
0.43 ∗

wtrap
0.43(0) and select the bandwidth l using the plug-in method

suggested by Paparoditis and Politis (2001) and Politis and
White (2004), which has been found to work well for block-
based methods. We estimate B0 and D0 in the expression
of lopt

n using the flat-top window λ(t) = 1[0,1/2](|t|) + 2(1 −
|t|)1(1/2,1](|t|), t ∈ [−1,1] (see Politis and Romano 1995).
Specifically, we estimate

∑∞
k=−∞ k2rk by ∇̂′ ∑2M

k=−2M λ{k/
(2M)}γ̂ Ykk2∇̂, where ∇̂ = ∂H(Ȳn)/∂μ, γ̂ Yk = |S|k||−1 ×∑

j∈S|k|(Yj − Ȳn)(Yj+|k| − Ȳn)
′, and M is a positive inte-

ger. Similarly, the quantity τ 2∞ = ∑∞
k=−∞ rk is estimated by

∇̂′ ∑2M
k=−2M λ{k/(2M)}γ̂ Yk∇̂. The data-driven optimal band-

width lopt
n is then obtained by plugging these estimates into the

expressions for B0 and D0. For the choice of M, Politis and
Romano (1995) suggested taking M to be the smallest integer
after which the correlogram appears negligible. In our setting,
Yt is a three-dimensional time series, and the autocorrelations
for each component are reasonably small when the lag is be-
yond 1. Table 3 shows the 95% confidence interval of ρk for a
range of M.

It appears that the confidence intervals do not vary much for
M ∈ {1, . . . ,6}. It seems safe to conclude that (a) there are sig-
nificant nonzero autocorrelations at the first two lags, (b) the
significance is marginal at lags 3 and 4, and (c) no sufficient
evidence is available to support ρ5 �= 0. Note that 3000 boot-
strap samples are used in the calculation.

Table 3. The 95% confidence intervals for {ρk}5
k=1 with M = 1, . . . ,6

M\(k‖ρ̂k) 1‖0.272 2‖0.080 3‖0.058 4‖0.050 5‖0.016

1 [0.219, 0.333] [0.012, 0.153] [−0.006, 0.126] [−0.010, 0.115] [−0.050, 0.083]
2 [0.217, 0.332] [0.012, 0.149] [−0.007, 0.125] [−0.011, 0.117] [−0.045, 0.079]
3 [0.220, 0.329] [0.015, 0.148] [−0.008, 0.127] [−0.010, 0.113] [−0.046, 0.084]
4 [0.221, 0.327] [0.023, 0.149] [−0.004, 0.128] [−0.006, 0.111] [−0.045, 0.079]
5 [0.221, 0.331] [0.022, 0.149] [−0.004, 0.128] [−0.006, 0.115] [−0.044, 0.081]
6 [0.223, 0.328] [0.022, 0.149] [−0.005, 0.127] [−0.005, 0.110] [−0.049, 0.081]

http://lwf.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html
http://lwf.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html
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7. CONCLUSION

We have proposed a new resampling method for time se-
ries, the DWB, that is generally applicable to variance estima-
tion and sampling distribution approximation for the smooth
function model. Compared with existing block-based bootstrap
methods, the DWB has a number of appealing features:

1. For variance estimation of regularly spaced time series,
the DWB is asymptotically equivalent to the TBB (with
proper choice of the covariance kernel), which outper-
forms all other block-based methods in terms of the bias
and MSE. As shown in our simulation results, this advan-
tage for the DWB carries over to irregularly spaced time
series, for which the TBB has no straightforward exten-
sion.

2. Computationally, it is very convenient to implement the
DWB if the joint distribution of Wt is chosen to be mul-
tivariate normal or its simple variants. In addition, the
bandwidth in the DWB does not have to be an integer,
so the optimal theoretical MSE in the variance estimation
is achievable in practice.

3. A common undesirable feature of block-based bootstrap
methods is that if the sample size is not a multiple of
the block size, then one must either take a shorter boot-
strap sample or use a fraction of the last resampled block.
This could lead to some inaccuracy when the block size is
large. In contrast, for the DWB, the size of the bootstrap
sample is always same as the original sample size.

4. The DWB can be easily extended to the spatial setting,
where irregular spaced data seems to be the rule rather
than the exception. This is currently under investigation.

A major advantage of the DWB over the block-based boot-
strap methods is its convenience to implement for irregularly
spaced data. Having said that, we also should note that for reg-
ularly spaced time series, the DWB is not as widely applica-
ble as the MBB, and the DWB lacks the higher order accuracy
property of the MBB. It is our view that the DWB is a com-
plement to, but not a competitor of, existing block-based boot-
strap methods. In addition, we are well aware of other bootstrap
methods in time series, such as parametric bootstrap (i.e., boot-
strap assuming parametric time series models), sieve bootstrap
(Bühlmann 1997), and frequency domain bootstrap (Franke and
Härdle 1992). But they are inconvenient to use in the presence
of unequally spaced time points. Because the DWB has its own
advantages not shared by all of the existing bootstrap methods
developed for regularly spaced time series, it can be recom-
mended to the practitioner as an additional tool for the inference
of irregularly spaced dependent data.

APPENDIX: PROOFS

Proof of Theorem 3.1

Let �(x;�∞) be the distribution function of N(0,�∞) on R
p. We

first show that

sup
x∈Rp

∣∣P{√n(X̄n − μ) ≤ x} − P∗{√n(X̄∗
n,DWB − X̄n) ≤ x}∣∣

= op(1). (A.1)

Because
√

n(X̄n −μ) →D N(0,�∞) under Assumption 3.1, it follows
from a multivariate version of Polyā’s theorem (Bhattacharya and Rao

1986) that supx∈Rp |P{√n(X̄n − μ) ≤ x} − �(x;�∞)| = o(1). Then
(A.1) follows if we can show that

sup
x∈Rp

∣∣P∗{√n(X̄∗
n,DWB − X̄n) ≤ x} − �(x;�∞)

∣∣ = op(1).

Write
√

n(X̄∗
n,DWB − X̄n) = n−1/2 ∑n

t=1 Wt(Xt − μ) + n−1/2 ×∑n
t=1 Wt(μ − X̄n) = Mn + Rn. It is easily seen that E

∗(‖Rn‖2) =
(X̄n −μ)′(X̄n −μ)O(ln) = op(1). Let Y∞ ∼ N(0,�∞). By lemma 4.1
of Lahiri (2003a) and the Cramer–Wold device, it suffices to show that
for any h ∈ R

p,

h′Mn = n−1/2
n∑

t=1

Wth′(Xt − μ) →D h′Y∞, (A.2)

in probability. Letting Yt = h′(Xt − μ), var∗(h′Mn) = n−1 ×∑n
t,t′=1 YtYt′a(|t − t′|/l). According to Proposition 2.1 and the refer-

ences therein, we have E{var∗(h′Mn)} = h′�∞h + o(1) and
var{var∗(h′Mn)} = O(l/n). So we get var∗(h′Mn) →p h′�∞h as
n → ∞.

In view of the l-dependence of Wt , we adopt the large-block–
small-block argument to prove the central limit theorem (A.2).
Define a sequence of numbers {Ln} that satisfy Ln → ∞, ln =
o(Ln), and kn = 	n/(Ln + ln)
 → ∞. Define the blocks Lr =
{j ∈ N : (r − 1)(Ln + ln) + 1 ≤ j ≤ r(ln + Ln) − ln}, 1 ≤ r ≤ kn,
Sr = {j ∈ N : r(Ln + ln) − ln + 1 ≤ j ≤ r(ln + Ln)}, 1 ≤ r ≤ kn −
1, and Skn = {j ∈ N : kn(Ln + ln) − ln + 1 ≤ j ≤ n}. Let Ur =∑

j∈Lr
WjYj and Vr = ∑

j∈Sr
WjYj, r = 1, . . . , kn. Conditional on Xn,

U1, . . . ,Ukn are independent random variables, as are V1, . . . ,Vkn−1.
Note that for r = 1, . . . , kn − 1, E

∗(V2
r ) = ∑

j,j′∈Sr
YjYj′a(|j −

j′|/l) ≥ 0, which implies that E{E∗(V2
r )} = ∑

j,j′∈Sr
h′ cov(Xj,Xj′)h ·

a(|j − j′|/l) ≤ Cln. A similar argument yields E{E∗(V2
kn

)} = O(Ln).

Thus E{E∗(
∑kn

r=1 Vr)
2} = ∑kn

r=1 E{E∗(V2
r )} = O(knln + Ln) = o(n).

Therefore, (A.2) follows if we can show that n−1/2 ∑kn
r=1 Ur →D

h′Y∞ in probability. For any ε > 0, let 
̂n(ε) = n−1 ∑kn
r=1 E

∗{U2
r ×

1(|Ur| > √
nε)}. Write ‖X‖∗

p = (E∗|X|p)1/p for p ≥ 1. By the triangle
inequality and Rosenthal inequality (conditional on Xn), we obtain

‖U1‖∗
2+δ ≤

2l∑
g=1

∥∥∥∥∥
	(Ln−g)/(2l)
∑

j=1

Wg+2(j−1)lYg+2(j−1)l

∥∥∥∥∥
∗

2+δ

≤ C
2l∑

g=1

{∥∥∥∥∥
	(Ln−g)/(2l)
∑

j=1

W2
g+2(j−1)lY

2
g+2(j−1)l

∥∥∥∥∥
∗

1+δ/2

}1/2

≤ C
2l∑

g=1

{	(Ln−g)/(2l)
∑
j=1

∥∥W2
g+2(j−1)l

∥∥∗
1+δ/2Y2

g+2(j−1)l

}1/2

≤ C
2l∑

g=1

{	(Ln−g)/(2l)
∑
j=1

Y2
g+2(j−1)l

}1/2

≤ C
√

l

{ 2l∑
g=1

	(Ln−g)/(2l)
∑
j=1

Y2
g+2(j−1)l

}1/2

= C
√

l

( ∑
t∈L1

Y2
t

)1/2
, (A.3)

where the last inequality is due to the Cauchy–Schwarz inequality.
By the same argument, ‖Ur‖∗

2+δ
≤ C

√
l(
∑

t∈Lr
Y2

t )1/2, r = 2, . . . , kn.



Shao: The Dependent Wild Bootstrap 233

Applying Hölder’s inequality,

kn∑
r=1

E
∗|Ur|2+δ ≤ Cl(1+δ/2)

kn∑
r=1

( ∑
t∈Lr

Y2
t

)(1+δ/2)

≤ Cl(1+δ/2)
kn∑

r=1

Lδ/2
n

∑
t∈Lr

|Yt|2+δ

= Op
(
l(1+δ/2)Lδ/2

n n
)
.

Therefore, if we let Ln = n1/2/l1/δ
n , then, because ln =

o{nδ/(2+2δ)}, we have 
̂n(ε) = op(1). Thus the assertion (A.1) holds
in view of the argument in the proof of theorem 3.2 of Lahiri (2003a).
Finally, our conclusion follows from the argument in the proof of the-
orem 4.1 of Lahiri (2003a). We omit the details here.

Proof of Theorem 5.1

We treat only case (a) here, because the proof for case (b) largely
repeats that for case (a). Write

ξ̂n = n−2
n∑

j,j′=1

{X(tj) − X̄n}{X(tj′ ) − X̄n}a{(tj − tj′)/ln}

= n−2
n∑

j,j′=1

{X(tj) − μ}{X(tj′ ) − μ}a{(tj − tj′ )/ln}

+
n∑

j,j′=1

{X(tj) − μ}a{(tj − tj′ )/ln}2n−2(μ − X̄n)

+ n−2
n∑

j,j′=1

a{(tj − tj′ )/ln}(μ − X̄n)2

= J1n + J2n + J3n.

The conclusion follows if we can show

E(nJ1n) → γ (0) + κι

∫
R

γ (s)ds, (A.4)

var(nJ1n) → 0, (A.5)

nJ3n = op(1), (A.6)

nJ2n = op(1). (A.7)

To show (A.4), we note that

E(nJ1n) = EZ{EX|Z(nJ1n)}

= γ (0) + n−1
n∑

j�=j′=1

EZ[γ (tj − tj′ )a{(tj − tj′ )/ln}]

= γ (0)

+ (n − 1)

∫
R2

0

γ {λn(x − y)}

× a{λn/ln(x − y)}η(x)η(y)dx dy.

Let Qn = ∫
R2

0
γ {λn(x − y)}a{λn/ln(x − y)}η(x)η(y)dx dy, RD = {x −

y : x ∈ R0, y ∈ R0} and for any z ∈ RD, R(z) = (R0 + z) ∩ R0.
Write Qn = ∫

RD

∫
x∈R(z) η(x)η(x − z)dxγ (λnz)a(λnz/ln)dz = λ−1

n ×∫
λnRD

∫
x∈R(z/λn)

η(x)η(x − z/λn)dxγ (z)a(z/ln)dz. We divide the in-

tegral
∫
λnRD

into two parts
∫
λnRD∩{|z|≤M} and

∫
λnRD∩{|z|>M} for some

M > 0. When z ∈ λnRD ∩ {|z| ≤ M}, we have a(z/ln) = 1 + o(1) uni-

formly over |z| ≤ M, which implies that∫
λnRD∩{|z|≤M}

∫
x∈R(z/λn)

η(x)η(x − z/λn)dxγ (z)a(z/ln)dz

→ ι

∫
|z|≤M

γ (z)dz.

When z ∈ λnRD ∩ {|z| > M}, we take advantage of the boundedness of
a(·) and η(·) (on R0) and get∣∣∣∣∫

λnRD∩{|z|>M}

∫
x∈R(z/λn)

η(x)η(x − z/λn)dxγ (z)a(z/ln)dz

∣∣∣∣
≤ C

∫
|z|≥M

|γ (z)|dz,

which can be made arbitrarily small by choosing a large M in view
of (7). This implies that λnQn → ι

∫
R

γ (z)dz and, subsequently,
that E(nJ1n) → γ (0) + κι

∫
R

γ (z)dz for case (a) and E(λnJ1n) →
ι
∫
R

γ (z)dz for case (b). Following the same argument, we can show
that

nξn → γ (0) + κι

∫
R

γ (s)ds for case (a) and

(A.8)

λnξn → ι

∫
R

γ (s)ds for case (b),

a fact that we make use of later.
To show (A.5), we note that var(nJ1n) = EZ{varX|Z(nJ1n)} +

varZ{EX|Z(nJ1n)} and show that each term approaches 0 as n → ∞.

Write EX|Z(nJ1n) = n−1 ∑n
j,j′=1 γ (tj − tj′)a{(tj − tj′)/ln} and

varX|Z(nJ1n) = n−2
n∑

j1,j2,j′1,j′2=1

a
{(

tj1 − tj′1
)
/ln

}
a
{(

tj2 − tj′2
)
/ln

}
× [

γ
(
tj1 − tj2

)
γ
(
tj′1 − tj′2

) + γ
(
tj1 − tj′2

)
γ
(
tj2 − tj′1

)
+ cum

{
X
(
tj1

)
,X

(
tj2

)
,X

(
tj′1

)
,X

(
tj′2

)}]
.

We first show that |EZ{varX|Z(nJ1n)}| = o(1). Toward this end, we
decompose

∑n
j1,j2,j′1,j′2=1 in varX|Z(nJ1n) into two parts: N(j1, j2, j′1,

j′2) := {(j1, j2, j′1, j′2) : j1 �= j2 �= j′1 �= j′2, j1 �= j′1, j2 �= j2} and its com-
plement, and we designate their contributions to varX|Z(nJ1n) as V1n
and V2n, respectively. In other words,

V1n = n−2
∑

(j1,j2,j′1,j′2)∈N(j1,j2,j′1,j′2)
a
{(

tj1 − tj′1
)
/ln

}
a
{(

tj2 − tj′2
)
/ln

}
× [

γ
(
tj1 − tj2

)
γ
(
tj′1 − tj′2

) + γ
(
tj1 − tj′2

)
γ
(
tj2 − tj′1

)
+ cum

{
X
(
tj1

)
,X

(
tj2

)
,X

(
tj′1

)
,X

(
tj′2

)}]
= V11n + V12n + V13n.

We first analyze V11n. For (j1, j2, j′1, j′2) ∈ N(j1, j2, j′1, j′2),

EZ
[
a
{(

tj1 − tj′1
)
/ln

}
a
{(

tj2 − tj′2
)
/ln

}
γ
(
tj1 − tj2

)
γ
(
tj′1 − tj′2

)]
=

∫
R4

0

a{λn(z1 − z2)/ln}a{λn(z3 − z4)/ln}γ {λn(z1 − z3)}

× γ {λn(z2 − z4)}η(z1)η(z2)η(z3)η(z4)dz1 dz2 dz3 dz4

= λ−4
n

∫
R4

n

a{(z1 − z2)/ln}a{(z3 − z4)/ln}γ {(z1 − z3)}

× γ {(z2 − z4)}η(z1/λn)η(z2/λn)η(z3/λn)

× η(z4/λn)dz1 dz2 dz3 dz4

= λ−4
n V111n.
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Because η(·) is bounded on R0 and a(·) has compact support
on [−1,1], we can easily show that |V111n| ≤ Cl2nλn under (7),
which implies that |EZ(V11n)| ≤ Cλnl2n/n2. By a similar argument,
|EZ(V12n)| ≤ Cλnl2n/n2. As for V13n, we have, by (8),

EZ
[
a
{(

tj1 − tj′1
)
/ln

}
a
{(

tj2 − tj′2
)
/ln

}
× cum

{
X
(
tj1

)
,X

(
tj2

)
,X

(
tj′1

)
,X

(
tj′2

)}]
=

∫
R4

0

a{λn(z1 − z2)/ln}a{λn(z3 − z4)/ln}

× C4{λn(z3 − z1), λn(z2 − z1), λn(z4 − z1)}
× η(z1)η(z2)η(z3)η(z4)dz1 dz2 dz3 dz4

= λ−4
n

∫
R4

n

a{(z1 − z2)/ln}a{(z3 − z4)/ln}

× C4(z3 − z1, z2 − z1, z4 − z1)η(z1/λn)η(z2/λn)

× η(z3/λn)η(z4/λn)dz1 dz2 dz3 dz4

= O(λ−3
n ).

Thus |EZ(V13n)| ≤ Cn2/λ3
n and |EZV1n| = o(1) under the assumption

that ln = o(n1/2). To show |EZV2n| = o(1), we can separate the com-
plement of N(j1, j2, j′1, j′2) into several subsets and discuss the contri-
butions from each subset. For example, when j1 = j2 �= j′1 = j′2, the
corresponding term in varX|Z(nJ1n) is

n−2
n∑

j1 �=j′1=1

a2{(
tj1 − tj′1

)
/ln

}
× [

γ 2(0) + γ 2(
tj1 − tj′1

) + C4
(
0, tj′1 − tj1 , tj′1 − tj1

)]
. (A.9)

Using the same argument as before, it is not hard to show that the
L1 moment of (A.9) is O(ln/λn) = o(1). The contributions from other
subsets can be handled similarly and are of order o(1). This leads to
|EZ{varX|Z(nJ1n)}| = o(1).

We next consider varZ[EX|Z(nJ1n)]. Define gn(t) = EZ[γ (t1 −
t)a{(t1 − t)/ln}], where t1 = λnZ1. Let Uj = ∑j−1

j′=1[γ (tj − tj′ )a{(tj −
tj′)/ln} − gn(tj′ )] for j = 2, . . . ,n. Write

EX|Z(nJ1n) − EZ{EX|Z(nJ1n)}

= 2n−1
n∑

j=2

Uj + 2n−1
n−1∑
j=1

(n − j)
[
gn(tj) − EZ{gn(tj)}

]
. (A.10)

Let F Z
j = σ(Z1, . . . ,Zj) for 1 ≤ j ≤ n. Then {Uj}n

j=2 form martingale
differences with respect to F Z

j . Note that gn(t) ≤ Cλ−1
n uniformly in t.

Thus we have that

EZ

(
n−1

n−1∑
j=1

(n − j)
[
gn(tj) − EZ{gn(tj)}

])2

≤ n−2
n−1∑
j=1

(n − j)2
EZ[g2

n(tj)]

= O(n/λ2
n) (A.11)

and that EZ(n−1 ∑n
j=2 Uj)

2 = n−2 ∑n
j=2 EZ(U2

j ) = n−2 ×∑n
j=2 EZ{E(U2

j |Zj)}. Conditional on Zj, Uj is a sum of (j − 1) iid ran-

dom variables. Thus E(U2
j |Zj) = ∑j−1

j′=1 E[[γ (tj − tj′)a{(tj − tj′)/ln} −
gn(tj′)]2|Zj]. Straightforward calculations show that |E[γ 2(tj − tj′) ×
a2{(tj − tj′ )/ln}|Zj]| ≤ Cλ−1

n , which yields |E(U2
j |Zj)| ≤ C(j − 1)λ−1

n

uniformly in j = 2, . . . ,n. Consequently, we obtain EZ(n−1 ×∑n
j=2 Uj)

2 = O(λ−1
n ) = o(1). In view of (A.10) and (A.11), we get

varZ{EX|Z(nJ1n)} = o(1), which, in conjunction with |EZ{varX|Z(n ×
J1n)}| = o(1), leads to (A.5).

By (A.8), X̄n −μ = Op(n−1/2) under case (a). Furthermore, it is not
hard to show that EZ[n−2 ∑n

j,j′=1 a{(tj − tj′ )/ln}] = O(ln/λn), which
implies that nJ3n = Op(ln/n) = op(1). It remains to show (A.7). Write

Gn := E

( n∑
j,j′=1

{X(tj) − μ}a{(tj − tj′)/ln}
)2

=
n∑

j1,j2=1

n∑
j′1=1

n∑
j′2=1

EZ
[
γ
(
tj1 − tj2

)
a
{(

tj1 − tj′1
)
/ln

}
× a

{(
tj2 − tj′2

)
/ln

}]
.

Analogous to the analysis of EZ varX|Z(nJ1n), we can derive the order
of Gn by dividing

∑n
j1,j2,j′1,j′2=1 into N(j1, j2, j′1, j′2) and its comple-

ment and treating them separately. After quite tedious but straightfor-
ward calculations, we have that Gn = O(λnl2n), which implies (A.7)
because X̄n − μ = Op(n−1/2). Thus the proof is complete.

SUPPLEMENTAL MATERIALS

Proofs of theorems, lemmas, and additional tables: Proofs
of Theorems 4.1, 4.2, and 5.2, some useful lemmas and their
proofs, two tables showing the normalized MSEs and cov-
erages for the case of randomly sampled time points with
spherical covariance functions. (DWB-final-supp.pdf)
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