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Abstract

Traditional inventory models focus on risk neutral decision makers, i.e., characterizing replen-
ishment strategies that maximize expected total profit, or equivalently, minimize expected total
cost over a planning horizon. In this paper, we propose a general framework for incorporating
risk aversion in multi-period inventory models as well as multi-period models that coordinate
inventory and pricing strategies. In each case, we characterize the optimal policy for various
measures of risk that have been commonly used in the finance literature. In particular, we show
that the structure of the optimal policy for a decision maker with exponential utility function
is almost identical to the structure of the optimal risk neutral inventory (and pricing) policies.
Computational results demonstrate the importance of this approach not only to risk averse de-
cision makers, but also to risk neutral decision makers with limited information on the demand
distribution.

1 Introduction

Traditional inventory models focus on characterizing replenishment policies so as to maximize the
expected total profit, or equivalently, to minimize the expected total cost over a planning horizon.
Of course, this focus on optimizing expected profit or cost is appropriate for risk neutral decision
makers, i.e., inventory mangers that are insensitive to profit variations.

Evidently, not all inventory managers are risk neutral; many planners are willing to tradeoff lower
expected profit for downside protection against possible losses. Indeed, some experimental evidence
suggests that for some products, the so-called high-profit products, the decision makers are risk
averse; see Schweitzer and Cachon [27] for more details. Unfortunately, traditional inventory control
models fail short of meeting the needs of risk averse planners. For instance, traditional inventory
models do not suggest mechanisms to reduce the chance of unfavorable profit levels. Thus, it is
important to incorporate the notions of risk aversion in a broad class of inventory models.

The literature on risk averse inventory models is quite limited and mainly focuses on single period
problems. Lau [17] analyzes the classical newsvendor model under two different objective functions.
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In the first objective, the focus is on maximizing the decision maker’s expected utility of total profit.
The second objective function is the maximization of the probability of achieving a certain level of
profit.

Eeckhoudt, Gollier and Schlesinger [13] focus on the effects of risk and risk aversion in the
newsvendor model when risk is measured by expected utility functions. In particular, they determine
comparative-static effects of changes in the various price and cost parameters in the risk aversion
setting.

Chen and Federgruen [6] analyze the mean-variance tradeoffs in newsvendor models as well as
some standard infinite horizon inventory models. Specifically, in the infinite horizon models, Chen
and Federgruen focus on the mean-variance tradeoff of customer waiting time as well as the mean-
variance tradeoffs of inventory levels. Mart́ınez-de-Albéniz and Simchi-Levi [21] study the mean-
variance tradeoffs faced by a manufacturer signing a portfolio of option contracts with its suppliers
and having access to a spot market.

The paper by Bouakiz and Sobel [5] is closely related to ours. In this paper, the authors focus
on a decision maker with exponential utility function. The objective is to characterize the inventory
replenishment strategy so as to minimize the expected utility of the present value of costs over a
finite planning horizon or an infinite horizon. Assuming linear ordering cost, they prove that a base
stock policy is optimal.

So far all the papers referenced above assume that demand is exogenous. A rare exception is
Agrawal and Seshadri [1] who consider a risk averse retailer which has to decide on its ordering
quantity and selling price for a single period. They demonstrate that different assumptions on the
demand-price function may lead to different properties of the selling price.

In this paper, we propose a general framework for incorporating risk aversion in multi-period
inventory (and pricing) models. We consider two different measures of risk that have been used in
the finance literature:

• Increasing concave utility function and its special case, the exponential utility function;

• Conditional-Value-at-Risk, or CVaR.

For each risk measure, we consider two closely related problems. In the first one, demand is
exogenous, i.e., price is not a decision variable, while in the second one demand depends on price and
price is a decision variable. In both cases, we distinguish between models with fixed ordering costs
and models with no fixed ordering cost. For each model, the objective is to find an inventory policy
(and a pricing strategy, when price is a decision variable) so as to maximize either the expected
utility or the CVaR of wealth at the end of the planning horizon. Observe that if the utility function
is linear and increasing, the decision maker is risk neutral and these problems are reduced to the
classical finite horizon stochastic inventory problem and the finite horizon inventory and pricing
problem.

We summarize known and new results in Table 1.
The row “Risk Neutral Model” presents a summary of known results. For example, when price is

not a decision variable, and there exists a fixed ordering cost, k > 0, Scarf [26] proved that an (s, S)
inventory policy is optimal. In such a policy, the inventory strategy at period t is characterized by
two parameters (st, St). When the inventory level xt at the beginning of period t is less than st, an
order of size St − xt is made. Otherwise, no order is placed. A special case of this policy is the base
stock policy, in which st = St. This policy is optimal when k = 0.
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Price Not a Decision Price is a Decision
k = 0 k > 0 k = 0 k > 0

Risk Neutral base stock
Model base stock (s, S) list price (s, S, A, p)

Increasing & wealth dependent wealth dependent
Concave Utility base stock ? base stock ?

Exponential
Utility base stock (s, S) base stock (s, S, A, p)

Conditional wealth dependent wealth dependent
Value-at-Risk base stock ? base stock ?
Myopic CVaR base stock (s, S) base stock (s, S, A, p)

Table 1: Summary of Results

If price is a decision variable and there exists a fixed ordering cost, the optimal policy of the risk
neutral model is an (s, S, A, p) policy, see Chen and Simchi-Levi [8]. In such a policy, the inventory
strategy at period t is characterized by two parameters (st, St) and a set At ∈ [st, (st+St)/2], possibly
empty depending on the problem instance. When the inventory level xt at the beginning of period
t is less than st or xt ∈ At, an order of size St − xt is made. Otherwise, no order is placed. Price
depends on the initial inventory level at the beginning of the period. A special case of this model is
when k = 0, for which a base stock list price policy is optimal. In this policy, inventory is managed
based on a base stock policy and price is a non-increasing function of inventory at the beginning of
each period, see Federgruen and Heching [14] and Chen and Simchi-Levi [8].

The table suggests that when risk is measured using an expected exponential utility function of
the final wealth, the structures of optimal policies are almost the same as the one under the risk
neutral case. For example, when price is not a decision variable and k > 0, the optimal replenishment
strategy follows the traditional inventory policy, namely an (s, S) policy. A corollary of this result
is that a base stock policy is optimal when k = 0. This is exactly the optimal policy characterized
by Bouakiz and Sobel [5].

When risk is measured using a general increasing concave utility function or CVaR and there is
no fixed ordering cost, the optimal policy is such that inventory is managed using a base stock policy
independent of whether price is a decision variable. Unfortunately, this base stock policy depends
on the total profit accumulated from the beginning of the planning horizon up to the current period.
Under the same risk measures and when there is a fixed ordering cost, the structure of the optimal
policy is unknown.

Finally, we propose a myopic approach based on the CVaR risk measure and we show that this
approach, like the exponential utility measure, can preserve (almost) all the structural results as the
one under the risk neutral case.

We complement the theoretical results with an experimental study demonstrating that this frame-
work can identify the tradeoff between expected profit and the risk of under-performing. Interest-
ingly, in addition to catering for risk averse inventory managers, we demonstrate empirically that risk
averse inventory policies are also powerful when there is a limited demand information. Specifically,
we empirically illustrate that when demand information is limited, inventory replenishment policies
based on the risk criteria analyzed here yield a profit distribution that dominates those based on risk
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neutral models.
In Section 2, we review classical and recent approaches in risk averse valuation. In Section 3 we

revisited the classical newsvendor problem and derived closed form solutions for a class of quantile
based risk averse model. In Section 4, we propose a general framework incorporating risk aversion
in multi-period inventory (and pricing) models, and focus on characterizing the optimal inventory
policy for a risk averse decision maker. Section 5 presents the computational results illustrating
the effects of different risk averse multi-period inventory models on profit distribution. In Section 6
we apply the framework developed in this paper to models with limited demand information. Our
objective is to compare empirically risk neutral and risk averse policies in environment when only
limited historical data is available. Finally, Section 7 provides some concluding remarks.

We complete this section with a brief statement on notations. Specifically, in this paper, lowercase
boldface will be used to denote vectors. A variable with tilde over it such as d̃, denotes a random
variable. Similarly, d̃ denotes a vector of random variables.

2 Risk averse valuations

Traditional stochastic inventory models focus on a risk neutral decision maker whose objective is to:

max E[f(µ, d̃)]
subject to µ ∈ Π,

(1)

where d̃ denotes a vector of random perturbations of demand, µ is an inventory (and pricing) policy
over the set of feasible policies Π, and f(µ, d̃) is the profit function under evaluation with the control
policy, µ and perturbation vector on demand, d̃.

To incorporate the evaluation of risk in inventory models, we recall the notion of Expected Utility
Theory (see [22], Chapter 6), which plays a central role in the economics literature and has been
applied to model a person’s choice under uncertainty. Under the influence of uncertainty, an inventory
manager with utility function u(x) optimizes the following problem,

max E[u(f(µ, d̃))]
subject to µ ∈ Π.

(2)

We require the utility function, u(x), to be increasing so that more is always preferred over
less. Of course, if u(x) is a linear and increasing function, the model (2) yields the same optimal
solution as the risk neutral model of (1). A risk averse decision maker has utility function that is
concave so that the marginal satisfaction of gaining a dollar is never more than the marginal loss
of satisfaction associated with losing the same amount of money. Hence, it is possible to relate risk
aversion to the concavity of the utility function. Specifically, given a utility function, u(x), that is
twice differentiable, a well-known measure of risk, the Arrow-Patt coefficient [2, 23] of absolute risk
aversion at x, is defined as

rA(x) = −u′′(x)/u′(x). (3)

A larger magnitude of rA(x) denotes greater risk aversion at the level x. In particular, the exponential
utility function is an important class of utility functions of the form

u(x) = 1− exp(−x/b), b > 0, (4)
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for which the Arrow-Patt coefficient, rA(x) = 1/b, is a positive constant. Consequently, a decision
maker with exponential utility function has risk aversion that is independent of his/her wealth. A
person with greater risk aversion naturally chooses a lower value of the risk parameter b. Interestingly,
as we demonstrate later on, the ramification of exponential utility function is the preservation of
wealth independent risk averse policies in multi-period inventory models.

In the celebrated mean-variance approach of Markowitz (see Markowitz [20], Huang and Lizen-
berger [15]), we value an uncertain profit level, z̃, by its mean minus a positive scalar multiple of the
variance. In fact the mean-variance valuation of Markowitz satisfies a class of decision makers with
concave quadratic utility functions.

Even though the mean-variance approach has been widely used in finance as a risk measure, it
has a number of important limitations. Clearly, a concave quadratic function is not always increas-
ing. More importantly, the mean-variance method is intuitively inadequate as it equally penalizes
desirable upside influence and undesirable downside outcomes.

Thus, a popular risk measure in finance is Value-at-Risk (VaR) (see Jorion [16], Dowd [11],
Duffie and Pan [12]), which allows the decision maker to specify the confidence level for attaining a
certain level of wealth. Specifically, in the VaR evaluation of the control policy, µ, one maximizes
the quantity, qρ(f(µ, d̃)), where qρ(z̃) is the ρ-quantile of a random variable z̃ defined as follows:

qρ(z̃) = inf{z|Pr(z̃ ≤ z) ≥ ρ}. (5)

Unfortunately, even the VaR measure faces some fundamental challenges. As a risk measure,
VaR does not preserve the property of subadditivity (see [24, 3]). In other words, a portfolio with
two instruments may have a larger risk, i.e., VaR, than the sum of individual VaRs of the two
instruments. A different challenge is that the VaR risk measure is indifferent to the extent of which
the profit falls below the ρ-quantile level. In particular, given two policies, µ1 and µ2, with two
corresponding profit distributions, f(µ1, d̃) and f(µ2, d̃), and with the same ρ-quantile value, the
VaR risk evaluation would value both equally, even if the distribution f(µ1, d̃) may have greater loss
margins below its ρ-quantile profit level. Finally, computing optimal policies under the VaR measure
is quite difficult due to the lack of convexity, see [24]. As a result, most approaches for calculating
VaR rely on linear approximation of risks and assume normal (or log-normal) distribution of wealth,
which can be indeed quite restrictive in inventory models.

In recent years, an alternative measure of risk has evolved under the name of Conditional Value-
at-Risk (CVaR), Mean Excess Loss, Mean Shortfall, or Tail VaR. The CVaR criterion (see [24, 25,
3]), which measures the average value of the profit falling below the η-quantile level, has better
computational characteristics and surfaces in the financial and insurance literature. With respect
to the evaluating of a profit profile, f(µ, d̃), CVaR ignores the contributions of profit beyond the
specified quantile level, and focuses on the average profits from the lower quantiles. For the case
of profit maximization, if the underlying distribution has no probability atom at qη(f(µ, d̃)), the
η-CVaR of an inventory (and pricing) policy µ can be defined as follows

CVaRη(f(µ, d̃)) = E[f(µ, d̃)|f(µ, d̃) ≤ qη(f(µ, d̃))].

When the underlying distribution is discrete, a more general definition of CVaR ( see [24, 25]) is as
follows:

Definition 2.1
CVaRη(f(µ, d̃)) = max

v∈<

{
v +

1
η
E[min(f(µ, d̃)− v, 0)]

}
.
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Under the CVaR risk assessment parameterized by η, the inventory manager solves the following
problem:

max CVaRη(f(µ, d̃))
subject to µ ∈ Π.

(6)

As observed in [25], CVaR is a more consistent measure of risk since it is sub-additive and concave.
Moreover, it is easy to observe the following property:

CVaRη(f(µ, d̃)) ≤ qη(f(µ, d̃)).

Thus, one can view CVaR risk as a lower bound on the VaR objective. In fact, numerical experiments
indicate that the minimization of CVaR also leads to near optimal solutions to models minimizing
the VaR measure (see [24]).

More importantly, optimizing CVaR is closely related to second order stochastic dominance de-
fined as follows,

Definition 2.2 We denote r̃1 º r̃2 to imply that r̃1 dominates r̃2 by second order stochastic domi-
nance rule if and only if

E [u(r̃1)] ≥ E [u(r̃2)] , for every increasing concave function, u(x). (7)

We denote r̃1 Â r̃2 for strictly dominates if and only if (7) hold as a strict inequality.

Thus, given two profit returns, r̃1 and r̃2, r̃1 is preferred by all risk averse decision makers if
r̃1 º r̃2. Consequently, for any risk averse inventory manager with an increasing concave utility
function, optimizing (2) guarantees a profit profile that is not strictly second order dominated by
any other feasible profit profile. Interestingly,

Theorem 2.1 (Levy and Kroll [19]). Let r̃1 and r̃2 be two random variables. Then, r̃1 º r̃2 if and
only if

E[r̃1 | r̃1 ≤ qη(r̃1)] ≥ E[r̃2 | r̃2 ≤ qη(r̃2)] ∀η ∈ (0, 1).

The theorem thus implies that as long as the underlying distribution has no probability atom at
qη(z̃), optimizing the CVaR inventory model, (6), guarantees a solution with profit distribution that
is not dominated by second order dominance rule. These similarities between the CVaR measure
and expected utility motivate us to consider both measures in the analysis of risk averse inventory
models.

3 The Newsvendor Problem

Consider the celebrated newsvendor model, where a single retailer faces random demand. The retailer
places an order to an outside supplier before knowing the level of demand, and sells the product to
its customers with a unit price p. Let F be the cumulative distribution function of the demand. The
function F is assumed to be strictly increasing and differentiable. For simplicity, we assume that
unsatisfied demand is lost and there is no penalty cost for lost sales. In addition, leftover inventory
is salvaged with unit price z. Finally, we assume that there is no limit on ordering quantity and that
the per unit ordering cost is c with z < c < p.
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For a given ordering quantity y and any realization of the random demand d̃, the realized profit
of the retailer is

f(y, d̃) = −cy + p min(y, d̃) + z(y − d̃)+ = (p− c)y − (p− z)(y − d̃)+,

where (y − d̃)+ = max(y − d̃, 0).
The traditional newsvendor model assumes that the retailer is risk neutral and finds an ordering

quantity y∗ so as to maximize the retailer expected profit, E[f(y, d̃)]. It is well known that the
optimal ordering quantity is

y∗ = F−1
(p− c

p− z

)
. (8)

Consider now the CVaR risk averse model. Our objective is to find an ordering quantity y∗η
solving the optimization problem

max
y

CV aRη(f(y, d̃)).

As we demonstrate in Appendix A, there is a simple and intuitive analytical solution for y∗η.

Theorem 3.1 Under the CVaR risk averse model parameterized by η, the optimal solution to the
newsvendor problem is

y∗η = F−1
(
η

p− c

p− z

)
.

The above closed form expression suggests that the optimal risk averse ordering quantity is
smaller than its risk neutral counterpart. The intuition is clear – since salvage value is smaller than
ordering cost, risk is due to overstocking. Thus, the CVaR risk averse model leads to a smaller order
quantity. Similar results, under different measures of risk, have appeared in [13] and [6].

Notice the result in Theorem 3.1 can be generalized to the following objective function

max
y

E[f(y, d̃)] + ξCV aRη(f(y, d̃)) .

Details are in Appendix A.

Theorem 3.2 For any y > y∗1, the profit distribution f(y, d̃) is strictly second order stochastically
dominated by the profit distribution f(y∗1, d̃). That is,

f(y∗1, d̃) Â f(y, d̃) ∀y > y∗1

Proof : Eeckhoudt et al. [13] showed that for any concave and increasing utility function, u(·), the
optimal risk averse ordering quantity, y∗u is not more than y∗1. Let

g(y) = E[u(f(y, d̃))],

which is a concave function and therefore, we have g(y∗u) ≥ g(y∗1) ≥ g(y) for all y > y∗1. Suppose
g(y) = g(y∗1) for some y > y∗1, by the concavity of the function, g(·), y is also an optimal ordering
quantity, which is a contradiction since there does not exist an optimal risk averse ordering quantity
that is strictly greater than y∗1 . Hence, for all concave and increasing utility function, u(·) we have

E[u(f(y∗1, d̃))] > E[u(f(y, d̃))] ∀y > y∗1.

The above observation shows that any risk averse decision maker would prefer profit distributions
at production level y∗1 over higher production levels. Hence, to avoid profit profile that is strictly
stochastically dominated by second order, the inventory manager would not produce beyond y∗1.
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4 Multi-period Inventory Models

Consider a risk averse firm that has to make replenishment (and pricing) decisions over a finite time
horizon with T periods.

Demands in different periods are independent of each other. For each period t, t = 1, 2, . . ., let

d̃t = demand in period t
pt = selling price in period t
p

t
, p̄t are lower and upper bounds on pt, respectively.

Observe that when p
t

= p̄t for each period t, price is not a decision variable and the problem
is reduced to an inventory control problem. Throughout this paper, we concentrate on demand
functions of the following forms:

Assumption 1 For t = 1, 2, . . ., the demand function satisfies

d̃t = Dt(pt, ε̃t) := β̃t − α̃tpt, (9)

where ε̃t = (α̃t, β̃t), and α̃t, β̃t are two nonnegative random variables with E[α̃t] > 0 and E[β̃t] > 0.
The random perturbations, ε̃t, are independent across time.

Let xt be the inventory level at the beginning of period t, just before placing an order. Similarly,
yt is the inventory level at the beginning of period t after placing an order. The ordering cost function
includes both a fixed cost and a variable cost and is calculated for every t, t = 1, 2, . . ., as

kδ(yt − xt) + ct(yt − xt),

where

δ(x) :=

{
1, if x > 0,
0, otherwise.

Lead time is assumed to be zero and hence an order placed at the beginning of period t arrives
immediately before demand for the period is realized.

Unsatisfied demand is backlogged. Let x be the inventory level carried over from period t to the
next period. Since we allow backlogging, x may be positive or negative. A cost ht(x) is incurred at
the end of period t which represents inventory holding cost when x > 0 and shortage cost if x < 0.
For technical reasons, we assume that ht(x) is convex and lim|x|→∞ ht(x) = ∞.

Given a discount factor γ with 0 < γ ≤ 1, an initial inventory level, x1 = x, and a replenishment
(and pricing) policy, let

Ṽ γ
T (x) =

T∑

t=1

γt−1(−kδ(yt − xt)− ct(yt − xt)− ht(xt+1) + ptDt(pt, ε̃t)), (10)

be the T -period realized discounted profit, where xt+1 = yt −Dt(pt, ε̃t).
The traditional approach for the inventory (and pricing) problem is to decide on ordering (and

pricing) policies so as to maximize total expected discounted profit over the entire planning horizon,
that is, the objective is to maximize E[Ṽ γ

T (x)] for any initial inventory level x and any 0 < γ ≤ 1.

8



Denote by Vt(x) the profit-to-go function at the beginning of period t with inventory level x. A
natural dynamic program for the risk neutral inventory (and pricing) problem is as follows.

Vt(x) = ctx + max
y≥x,p̄t≥p≥p

t

−kδ(y − x) + gt(y, p), (11)

where VT+1(x) = 0 for any x and

gt(y, p) = E{p(β̃t − α̃tp)− cty − ht(y − (−α̃tp + β̃t)) + γVt+1(y − (−α̃tp + β̃t))}. (12)

Theorem 4.1 (a) If price is not a decision variable (i.e., p
t

= p̄t for each t), Vt(x) and gt(y, p)
are k-concave and an (s, S) inventory policy is optimal.

(b) If the demand is additive (i.e., α̃t is a constant), Vt(x) and maxp̄t≥p≥p
t
gt(y, p) are k-concave

and an (s, S, p) policy is optimal.

(c) For the general case, Vt(x) and gt(y, p) are symmetric k-concave and an (s, S, A, p) policy is
optimal.

Part (a) is the classical result proved by Scarf [26] using the concept of k-convexity; Part (b)
and Part (c) are proved in Chen and Simchi-Levi [8] using the concepts of k-convexity, for Part
(b), and a new concept, the symmetric k-convexity, for Part (c). These concepts are summarized in
Appendix B. In fact, the results in [8] hold true under more general demand functions than those in
Assumption 1.

In the following subsections, we focus on the inventory and pricing problem, and its special case,
the inventory replenishment problem when the objective is to maximize the expected utility or the
conditional value-at-risk of the total discounted profit over the entire planning horizon. That is, the
objective is to maximize

E[u(Ṽ γ
T (x))]

or
CV aRη(Ṽ

γ
T (x))

for any initial inventory level x and any 0 < γ ≤ 1.
In the next subsection, we discuss the general framework. This is followed by subsections on the

exponential utility and CVaR measures.

4.1 Expected utility and CVaR risk averse models

Unlike the risk neutral models analyzed in Chen and Simchi-Levi [8], the objective function E[u(Ṽ γ
T (x))]

or CV aRη(Ṽ
γ
T (x)) in its current form appears not to be decomposable and are not amenable to the

dynamic programming approach. To deal with this issue, we introduce a new variable w to denote the
wealth accumulated from the beginning of the planning horizon up to the current period. Thus, the
state of the problem at period t can now be modeled as the inventory level xt and the accumulated
wealth from period 1 to period t, wt.

Consider the expected utility measure. Let Wt(x,w) be the maximum utility achievable starting
at the beginning of period t with an initial inventory level x and an accumulated wealth w. The
dynamic program can be written as follows. Let

WT+1(x, w) = u(w).

9



and
Wt(x,w) = max

y≥x,p̄t≥p≥p
t

Eα̃t,β̃t
[Wt+1(x+, w̄+)], (13)

where u(·) is an increasing concave utility function,

x+ = y − (β̃t − α̃tp)

and
w̄+ = w + γt−1(−kδ(y − x)− ct(y − x) + p(β̃t − α̃tp)− ht(y − (β̃t − α̃tp)). (14)

Notice that here we assume WT+1(x, w) is independent of x, which implies zero salvage value. Finally,
we have

maxE[u(Ṽ γ
T (x))] = W1(x, 0).

For the CVaR risk measure, we make a slight modification so that

WT+1(x,w) = min(w, 0)

while preserving the DP recursion of (13) (for derivation details see Appendix C). Finally, the
optimal CVaR can be evaluated as follows:

maxCVaRη(Ṽ
γ
T (x)) = max

v∈<

{
v +

1
η
W1(x,−v)

}
.

Instead of working with the dynamic program (13), we find that it is more convenient to work
with an equivalent formulation. Let

Ut(x,w) = Wt(x,w − γt−1ctx).

The dynamic program (13) becomes

Ut(x,w) = max
y≥x,p̄t≥p≥p

t

Eα̃t,β̃t
[Ut+1(x+, w+)], (15)

where
w+ = w + γt−1(−kδ(y − x) + ft(y, p, α̃t, β̃t)),

and
ft(y, p, α̃t, β̃t) = −(ct − γct+1)y + (p− γct+1)(β̃t − α̃tp)− ht(y − (β̃t − α̃tp)). (16)

We have the following observation, which can be easily verified by induction.

Lemma 1 For any period t and fixed x, Ut(x,w) is increasing in w.

Interestingly, this observation allows us to show that a wealth dependent base stock inventory
policy is optimal in the case k = 0 for both the expected utility and the CVaR measures.

Theorem 4.2 Assume that k = 0. In this case, Ut(x,w) is jointly concave in x and w for any
period t. Furthermore, a wealth dependent base stock inventory policy is optimal for both the expected
utility risk measure and the CVaR risk measure.
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Proof. We prove by induction. Obviously, UT+1(x,w) is jointly concave in x and w. Assume that
Ut+1(x,w) is jointly concave in x and w. We now prove that a wealth dependent base stock inventory
policy is optimal and Ut(x,w) is jointly concave in x and w.

First, notice that for any realization of α̃t and β̃t, ft is jointly concave in (y, p), which implies
that w+ is jointly concave in (w, x, y, p).

Since x+ is a linear function of (y, p) and w+ is jointly concave in (w, x, y, p), Lemma 1 allows us
to show that Ut+1(x+, w+) is jointly concave in (w, x, y, p). This implies that Eα̃t,β̃t

[Ut+1(x+, w+)] is
jointly concave in (w, x, y, p).

We now prove that a w−dependent base stock inventory policy is optimal. Let y∗(w) be an
optimal solution for the problem

max
y

{
max

p̄t≥p≥p
t

Eα̃t,β̃t
[Ut+1(x+, w+)]

}
.

Since Eα̃t,β̃t
[Ut+1(x+, w+)] is concave in y for any fixed w, it is optimal to order up to y∗(w) when

x < y∗(w) and not to order otherwise. In other words, a state dependent base stock inventory policy
is optimal.

Finally, according to Proposition 4 in Appendix B, Ut(x,w) is jointly concave.

Recall that in the case of a risk neutral decision maker, a base stock list price policy is optimal.
Theorem 4.2 thus implies that in the case of an increasing concave utility risk measure and the
CVaR risk measure, the optimal policy is quite different. Indeed, in these cases, the base stock level
depends on the total profit accumulated from the beginning of the planning horizon and it is not
clear whether a list price policy is optimal. It is also appropriate to point out a difference between
optimal policies for a general increasing concave utility risk measure and the CVaR risk measure.
Indeed, while the former depends on the initial wealth available at the beginning of the planning
horizon, the latter is independent of that amount. This is true since the CVaR measure is invariant
to shifting, i.e., CV aRη(X̃ + C) = CV aRη(X̃) + C for a constant C.

Stronger results exist for models based on the exponential utility risk measure, as is demonstrated
in the next subsection.

4.2 Exponential utility risk averse models

We now focus on exponential utility functions of the form u(w) = 1 − exp(−w/b) with parameter
b > 0. The beauty of exponential utility functions is that we can essentially separate x and w as is
illustrated in the next theorem.

Theorem 4.3 For any time period t, there exists a function Gt(x) such that

Ut(x,w) = 1− exp(−(w + Gt(x))/b).

Proof. We prove by induction. For t = T + 1, GT+1(x) = 0 for any x. Assume that there exists a
function Gt+1(x) such that

Ut+1(x,w) = 1− exp(−(w + Gt+1(x))/b).

11



From the recursion (13), we have

Ut(x,w) = maxy≥x,p̄t≥p≥p
t
Eα̃t,β̃t

[1− exp(−(w+ + Gt+1(y − β̃t + α̃tp))/b)]
= 1− exp(−w/b) miny≥x,p̄t≥p≥p

t
exp(k/bδ(y − x)− Lt(y, p)/b)

= 1− exp(−(w + Gt(x))/b),

where
Lt(y, p) = −b ln

(
E[exp(−(γt−1ft(y, p, α̃t, β̃t) + Gt+1(y − β̃t + α̃tp))/b)]

)
,

and
Gt(x) = max

y≥x,p̄t≥p≥p
t

−kδ(y − x) + Lt(y, p). (17)

Thus the result is true.

The theorem thus implies that the optimal policy is independent of the accumulated wealth when
exponential utility functions are used, which significantly simplifies the problem. In fact, the optimal
policy can be found by solving problem (17).

This theorem, together with Theorem 4.2, implies that when k = 0, a base stock inventory policy
is optimal under the exponential utility risk criterion independent of whether price is a decision
variable. This is exactly the result obtained by [5] using a more complicated argument for the case
when price is not a decision variable. As before, it is not clear whether a list price policy is optimal
when k = 0 and price is a decision variable.

To present our main result for the problem with k > 0, we need the following theorem.

Theorem 4.4 If a function f is convex, k-convex or symmetric k-convex, then function

g(x) = ln(E[exp(f(x− ξ̃))])

is also convex, k-convex or symmetric k-convex respectively.

Proof. We only prove the case of convexity; the other two cases can be proven by following similar
steps.

Define
M(x) = E[exp(f(x− ξ̃))].

and
Z(x,w) := E[exp(w + f(x− ξ̃))] = ewM(x).

Since f is convex and the exponential function can preserve convexity, Z(x,w) is jointly convex in x
and w. In particular, for any x0, x1, w0, w1 and λ ∈ [0, 1], we have from the definition of convexity
that

Z(xλ, wλ) ≤ (1− λ)Z(x0, w0) + λZ(x1, w1), (18)

where xλ = (1− λ)x0 + λx1 and wλ = (1− λ)w0 + λw1.
Dividing both sides of (18) by ewλ , we have that

M(xλ) ≤ (1− λ)zλM(x0) + λz−(1−λ)M(x1),

12



where z := exp(w0−w1). Taking minimization over z at the righthanded side of the above inequality
gives z = M(x1)/M(x0). Since w0 and w1 are arbitrary, we have that

M(xλ) ≤ M(x0)1−λM(x1)λ.

Thus g(x) = ln(M(x)) is convex.

We can now present the optimal policy for the risk averse multi-period inventory (and pricing)
problem with exponential utility function.

Theorem 4.5 (a) If price is not a decision variable (i.e., p
t
= p̄t for each t), Gt(x) and Lt(y, p)

are k-concave and an (s, S) inventory policy is optimal.

(b) For the general case, Gt(x) and Lt(y, p) are symmetric k-concave and an (s, S, A, p) policy is
optimal.

Proof. The main idea is as follows: if Gt+1(x) is k-concave when price is not a decision variable (or
symmetric k-concave for the general case), then, by Theorem 4.4, Lt(y, p) is k-concave (or symmetric
k-concave). The remaining parts follow directly from Lemma 2 and Proposition 2 for k-concavity
or Lemma 3 and Proposition 3 for symmetric k-concavity. Lemma 2, Proposition 2, Lemma 3 and
Proposition 3 are in Appendix B.

We observe the similarities and differences between the optimal policy under the exponential
utility measure and the one under the risk neutral case. Indeed, when demand is exogenous, i.e.,
price is not a decision variable, an (s, S) inventory policy is optimal for the risk neutral case; see
Theorem 4.1 Part (a). Theorem 4.5 implies that this is also true under the exponential utility
measure. Similarly, for the more general inventory and pricing problem, Theorem 4.1 Part (c)
implies that an (s, S, A, p) policy is optimal for the risk neutral case. Interestingly, this policy is also
optimal for the exponential utility case.

Of course, the results for the risk neutral case are a bit stronger. Indeed, if demand is additive,
Theorem 4.1 Part (b) suggests that an (s, S, p) policy is optimal. Unfortunately, we are not able to
prove or disprove such a result for the exponential utility measure.

4.3 Myopic CVaR risk averse models

Unlike the case in which risk is measured based on the expected exponential utility function in
Section 4.2, we have to solve a dynamic program with two state variables for the general framework
discussed in Section 4.1, which significantly increases computational complexity. Hence, we propose,
for the CVaR risk model, a form of myopic risk averse multi-period inventory (and pricing) model
for which we are only concerned with the influence of demand uncertainties at the current period.
This is done without having to introduce a new variable to represent the accumulated profit, which
would increase the dimension and computational complexity of the dynamic program.

Consider the myopic dynamic program

V η
t (x) = ctx + max

y≥x,p̄t≥p≥p
t

−kδ(y − x) + CV aRηt(g
η
t (y, p, ε̃t)), (19)

13



where V η
T+1(x) = 0 for any x, η = (η1, . . . , ηT ) with 0 < ηt < 1,

gη
t (y, p, ε̃t) = p(β̃t − α̃tp)− cty − ht(y − (−α̃tp + β̃t)) + γV η

t+1(y − (−α̃tp + β̃t)). (20)

It is easy to see that
V η

t (x) ≤ Vt(x),

for any x. In Section 5, we evaluate the effectiveness of this myopic approach.
Before we summarize the structural result for this myopic approach for the risk averse inventory

(and pricing) problem, we show that CVaR can preserve k-concavity and symmetric k-concavity.

Proposition 1 If g(x, ξ̃) is a k-concave (or symmetric k-concave) function of x for any realized ξ̃,
then CV aRη(g(x, ξ̃)) is also k-concave (or symmetric k-concave).

Proof. We prove that CV aR preserves k-concavity. The proof for symmetric k-convexity is similar
and hence is omitted. For any x0, x1 with x0 ≤ x1 and any λ ∈ [0, 1], let v0 and v1 satisfy

CV aRη(g(x0, ξ̃)) = v0 +
1
η
Eξ[min(g(x0, ξ̃)− v0, 0)],

and
CV aRη(g(x1, ξ̃ − k)) = v1 +

1
η
Eξ[min(g(x1, ξ̃)− k − v1, 0)].

Upon denoting xλ = (1− λ)x0 + λx1 and vλ = (1− λ)v0 + λv1, we have that

CV aRη(g(xλ, ξ̃)) ≥ vλ + 1
ηEξ[min(g(xλ, ξ̃)− vλ, 0)]

≥ vλ + 1
ηEξ[min((1− λ)g(x0, ξ̃) + λg(x1, ξ̃)− λk − vλ, 0)]

≥ vλ + 1
ηEξ[(1− λ) min(g(x0, ξ̃)− v0) + λmin(g(x1, ξ̃)− k − v1, 0)]

= (1− λ)CV aR(g(x0, ξ̃)) + λCV aR(g(x1, ξ̃)− k)
= (1− λ)CV aR(g(x0, ξ̃)) + λCV aR(g(x1, ξ̃))− λk,

where the first inequality follows from the definition of CVaR, the second inequality from the k-
concavity of g(x, ξ̃) for any realized ξ, and the third inequality holds since min(x, 0) is non-decreasing
and concave in x. The last equality follows from the observation that for any constant C,

CV aRη(g(x, ξ̃)− C) = CV aRη(g(x, ξ̃))− C.

Hence CV aR preserves k-convexity.

This proposition allows us to prove the structural results for the myopic approach, whose proof
is similar to the one for Theorem 4.5 and hence is omitted.

Theorem 4.6 (a) If price is not a decision variable (i.e., p
t
= p̄t for each t), the functions V η

t (x)
and CV aRηt(g

η
t (y, p, ε̃t)) are k-concave. Consequently, an (s, S) inventory policy is optimal.

(b) For the general case, the functions V η
t (x) and CV aRηt(g

η
t (y, p, ε̃t)) are symmetric k-concave.

Consequently, an (s, S, A, p) policy is optimal.
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Discount factor, γt 1
Fixed ordering cost, k 100
Unit ordering cost, ct 1
Unit holding cost, h+ 6
Unit shortage cost, h− 3
Unit item price, pt 8

Table 2: Parameters of inventory model

5 Computational Results

In this section, we present the results of an empirical study. The objective is to analyze the effects of
different risk averse multi-period inventory models on the profit distributions. In the experimental
setup, we consider a fixed price inventory model over a planning horizon with T = 10 time periods.
The inventory holding and shortage cost function is defined as follows:

ht(y) = h−max(−y, 0) + h+ max(y, 0),

where h+ is the unit inventory holding cost and h− is the unit shortage costs. The parameters of
the inventory model are listed in Table (2).

Demands in different periods are independent and identically distributed with the following dis-
crete distribution,

d̃ = max(b30z̃c+ 10, 0),

where z̃ ∼ N (0, 1), and byc, the floor function, denotes the largest integer smaller or equal to y.
To solve the dynamic program associated with the different models there is a need to determine

expectations of certain quantities that are difficult to evaluate analytically. For this reason, we
apply simulation whenever is necessary. This is done as follows. At each time period, we have a
collection of N independent demands, d̃i, i = 1, .., N , drawn from d̃. Of course, the size N is relatively
large compared to T . The inventory policy is derived using this data. Following machine learning
terminology, we refer to this data as the training data.

Using the training data, we estimate E[f(d̃)],

Ê[f(d̃)] =
1
N

N∑

i=1

f(d̃i)

and construct the policy that maximizes the estimated maximum profit based on the training sam-
ples. In all the numerical results presented below, we fix the training set and construct inventory
replenishment policies by applying different risk averse criteria.

To evaluate the inventory policies derived from the training set, we analyze the sample profit
distributions via Monte Carlo simulation on S = 10, 000 independent trials. In each trial of evaluating
a policy, we generate T demand samples (one for each period) independent from the training set and
obtain the accumulated profit at the end of the T th period.

In addition to analyzing the profit distribution using sample mean and standard deviation, we
evaluate the profit distribution using an estimator of CV aRρ(ỹ), the sample CVaR, which is defined
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b Mean Standard Deviation % Negative Profit Mean Loss
100 259 204.5 8.59 60.4
200 262.8 209.8 9.14 64.9
500 265.9 220.9 10.44 75.2
1000 265.3 227.3 11.54 81

Normal 265.9 234.4 12.26 89.8

Table 3: Summary of results for exponential utility model with N = 1000 training data.

as follows

̂CV aRρ(ỹ) =
1

bρSc
bρSc∑

j=1

ỹ(j),

where ỹ(k) is the kth order statistics such that ỹ(1) ≤ ... ≤ ỹ(S). Given two sets of S independent
samples of random variables v(ω) and u(ω), if S is reasonably large and

̂CV aRρ(v(ω)) > ̂CV aRρ(u(ω)) ∀ρ ∈ [1/S, 1),

then we expect that v(ω̃) is likely to dominate u(ω̃) by second order stochastic dominance, that is,
v(ω̃) is strictly preferred over u(ω̃) by every investors with increasing concave utility functions.

In the experimental setup, we focus on two risk averse models, namely the Exponential Utility
Inventory Model and the Myopic CVaR Inventory Model.

5.1 Exponential Utility Approach

We consider a utility function of the form u(w) = 1 − exp(−w/b), where b is chosen from the set
{100, 200, 500, 1000}. We fix the training set to the size of N = 1000. For each risk parameter
b we construct the inventory policy using the training set. Observe that for small value of b, for
instance, b = 20, u(w) can be extremely large, which is generally beyond the precision of floating
point representation.

Table (3) shows the profit profile as the parameter b varies. The column under ‘% Negative
Profit’ indicates the fraction of profit samples falling below zero. Likewise, ‘Mean Loss’ refers to the
average loss, given that the profit is negative. The row ‘Normal’ represents the risk neutral case.

Observe that as the parameter b decreases, the sample mean profit and standard deviation of the
profit profile decrease, which indicates greater risk averse decisions.

We compare the different policies, generated using different values of b, using the sample CVaR.
Figure (1) presents the sample CVaR as a function of ρ for each b. Observe that the curves cross,
which suggests that the profit distributions generated by varying the parameter b do not appear
to be second order stochastically dominated by each other. This is not surprising, as indicated by
Theorem 2.1, since u(w) is an increasing concave utility function.

5.2 Myopic CVaR Approach

We now experiment with the myopic CVaR inventory model of (19), for which a wealth independent
(s, S) policy is optimal. Of course, being a myopic approach, we cannot guarantee that the policy
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Figure 1: Comparison of sample CVaR for policies derived from N = 1000 samples using exponential
utility model.

derived from this method would lead to profit profile that is not second order stochastically domi-
nated. Nevertheless, unlike the exponential utility approach, we can potentially vary the parameters
for risk adjustment, ηt, without causing any computational issues. We fix the parameters ηt = η for
every time period and analyze the profit profile as η varies in the set {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.

The results with N = 1000 training samples are presented in Table (4). We observe that the
sample mean and standard deviation behave similarly to their behavior in the case of exponential
utility, that is, as the parameter η decreases from 1, which is the risk neutral level (denoted by
‘Normal’), the sample mean and standard deviation decrease. We also observe the trend that as
η decreases, i.e., as the manager becomes more risk averse, the average loss, and the likelihood of
a negative profit, decrease. Finally, Figure (2) suggests that the profit distributions generated by
varying the parameter η do not appear to be second order stochastically dominated by each other.

6 Impact of Limited Demand Information

An important challenge faced by most traditional stochastic inventory models is that they require a
complete knowledge of the demand distributions, which is unrealistic in many practical situations.
Evidently, inaccurate estimates of demand distributions yield inappropriate replenishment and pric-
ing decisions, leading to poor inventory policies; see computational results in [4]. Hence, given limited
knowledge of demand distributions, there is an implicit “risk” of obtaining poor inventory policies.

We assume that while the decision maker has no precise information of demand distributions,
she has N observations, the training sample, for each time period. These observations, representing
historical data, have been generated independently from an identical distribution for that period.
A natural approach for a risk neutral decision maker is to use this data to estimate the demand
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η Mean Standard Deviation % Negative Profit Mean Loss
0.7 245.9 197.3 9.06 58.1
0.75 253.3 200.4 8.77 58.4
0.8 260.4 209.2 9.26 64.4
0.85 263.5 215.3 9.93 70.2
0.9 265.9 220.9 10.44 75.2
0.95 265.3 227.3 11.54 81

Normal 265.9 234.4 12.26 89.8

Table 4: Summary of results for myopic CVaR model with N = 1000 training data.
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Figure 2: Comparison of sample CVaR for policies derived from N = 1000 samples using Myopic
CVaR model.
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Figure 3: Comparison of distributions for risk neutral policies derived from N = 100 and N = 1000
samples.

distribution and hence the appropriate replenishment policy.
Clearly, the larger the sample size N , the closer the policy to the optimal policy. However,

working with limited demand samples, the policies could significantly differ from the optimal policy.
In the following experiment, we construct inventory policies using N = 100 instead of N = 1000, as
was done in the previous section. The small size N represents the more realistic situation in which
one has limited knowledge of the demand distributions.

Figure (3) illustrates the difference in profit distributions between the risk neutral policies derived
using N = 1000 and N = 100 training samples. With N = 100 training samples, the sample mean
profit and standard deviation are respectively 250.1 and 272.4, while with N = 1000 training samples,
the mean and standard deviation improve (that is, higher mean and lower standard deviation) to
respectively, 265.9 and 234.4.

In Figure (4), we compare the respective sample CVaR of the profit distributions derived with
N = 100 and N = 1000 training data. That is, for any ρ we determine the sample CVaR for
the above profit distributions, those associated with risk neutral policies based on N = 100 and
N = 1000. It is very suggestive that the solutions derived from only N = 100 training data is second
order stochastically dominated by the solution with N = 1000 training data. Thus, a policy based
on the risk neutral model and limited demand information may lead to poor profit profile.

We therefore study the profit distribution obtained when the policy is derived using limited data
and the risk averse inventory models. As we shall demonstrate empirically, these profit distributions
generated based on the CVaR and exponential measures dominate the profit distribution obtained
using the risk neutral model.

In Table (5) we compared policies based on the exponential utility approach and policies based
on the risk neutral approach, in both cases using N = 100 training samples. Observe that unlike
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Figure 4: Comparison of sample CVaR for risk neutral policies derived from N = 100 and N = 1000
samples.

b Mean Standard Deviation % Negative Profit Mean Loss
100 263.5 215.3 9.93 70.2
200 265.3 227.3 11.54 81
500 264 241.2 13.38 96.8
1000 261.4 248.6 14.52 104.6

Normal 250.1 272.4 18.02 132.4

Table 5: Summary of results for exponential utility model with N = 100 training data.

the case of larger training samples, the performance of the risk neutral inventory policy (‘Normal’)
is significantly worse than all the risk averse policies. In particular, with the parameter b = 200, the
sample mean is significantly improved by 6.1%, the standard deviation reduced by 16.6% and the
mean loss is reduced by 38.8%.

Figure (5) presents the sample CVaR of each one of the four policies; the policy based on the
risk neutral model and those based on the exponential utility approach with b = 200, 500, 1000. The
figure suggests that the profit profile based on a risk neutral model is second order stochastically
dominated by the profit profiles associated with the exponential utility approach.

In Table (6) we present a similar experiment using the myopic CVaR approach with N = 100
training data. We observe similar trends, that is, the profit mean (standard deviation) of the myopic
CVaR policy is larger (smaller) than the risk neutral policy for all values of η considered. In particular,
when the parameter η = 0.85, the sample mean improved by 5% and the mean loss level is reduced by
27% over the risk neutral approach. Similarly to the exponential utility approach, Figure (6) suggests
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Figure 5: Comparison of sample CVaR for policies derived from N = 100 samples using exponential
utility model.

that the profit profile based on a risk neutral model is second order stochastically dominated by the
profit profiles associated with the three policies derived using the myopic CVaR model.

Hence, this empirical study suggests that when little is known about the demand distributions,
the inventory policies derived from a risk neutral model could lead to poor profit performance. More
importantly, our preliminary computational study suggests that policies based on the risk averse
models can lead to stochastically dominating profit profiles, underscoring the importance of these
risk averse approaches in practical application of inventory models.

η Mean Standard Deviation % Negative Profit Mean Loss
0.7 260.6 226.8 12.02 81.1
0.75 262.1 233.8 12.58 89.7
0.8 260.3 240.9 13.74 97.2
0.85 262.5 241 13.59 96.5
0.9 259.9 248.5 14.71 104.8
0.95 254.4 264 16.55 124.3

Normal 250.1 272.4 18.02 132.4

Table 6: Summary of results for myopic CVaR model with N = 100 training data.
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Figure 6: Comparison of sample CVaR for myopic CVaR model.

7 Conclusions

In this paper, we propose a general framework to incorporate risk aversion into inventory (and
pricing) models. The framework proposed in this paper and the results obtained motivate a number
of extensions.

• Risk Averse Infinite Horizon Models: The risk averse infinite horizon models are not only
important but also theoretically challenging. The analysis of these types of models is presented
in a companion paper.

• The Stochastic Cash Balance Problem: Recently, Chen and Simchi-Levi [10] applied the
concept of symmetric k-convexity and its extension to characterize the optimal policy for the
classical stochastic cash balance problem when the decision maker is risk neutral. It turns out,
similar to what we did in Section 4.2, that this type of policies remains optimal for risk averse
cash balance problems under exponential utility measure.

• Random Yield Models: So far we have assumed that uncertainty is only associated with
the demand process. An important challenge is to incorporate supply uncertainty into these
risk averse inventory problems.

• Capacity Constraints: When there is no fixed ordering cost, capacity constraints on inven-
tory levels can be incorporated into our risk averse inventory models. In this case, one can
easily verify that a wealth dependent modified bask stock inventory policy is optimal when risk
is evaluated by a general increasing concave utility function or by the CVaR measure. On the
other hand, a wealth independent modified base stock inventory policy is optimal when risk is
measured by the exponential utility function. In addition, this result allows us to incorporate
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spot market and portfolio contracts into our risk averse multi-period framework. Observe that,
a different risk averse model, based on the mean-variance tradeoff in supply contracts, cannot
be easily extended to multi-period, as pointed out by Mart́ınez-de-Albéniz and Simchi-Levi
[21].

Of course, it is also interesting to extend the framework proposed in this paper to more general
inventory models, such as the multi-echelon inventory models and continuous time inventory (and
pricing) models. Finally, it is possible to extend this framework to different environments, those that
go beyond inventory models, for instance, revenue management models.

A Proof of Theorem 3.1 and its generalization

We first proof Theorem 3.1. Then we present its generalization.
Proof. Define a concave function

g(y, v) := v +
1
η

∫

D
[(p− c)y − (p− z)(y −D)+ − v]−dF (D).

According to Proposition 2.1, the optimal ordering quantity y∗ = arg maxy≥0{maxv g(y, v)}.
Obviously

g(y, v) = v +
1
η

(∫ y

0
[(z − c)y + (p− z)D − v]−dF (D) +

∫ ∞

y
[(p− c)y − v]−dF (D)

)
.

For any fixed y, we distinguish between three different cases:

(1) v < (z − c)y.

In this case, g(y, v) = v and thus ∂g
∂v = 1 > 0.

(2) (z − c)y ≤ v ≤ (p− c)y

In this case, one can derive that

g(y, v) = v +
1
η

{
[(z − c)y − v]F (

v − (z − c)y
p− z

) + (p− z)
∫ v−(z−c)y

p−z

0
DdF (D)

}
,

and
∂g

∂v
= 1−

F (v−(z−c)y
p−z )

η
.

(3) v > (p− c)y

In this case, we have that

g(y, v) = v +
1
η

{
(z − p)yF (y) + (p− z)

∫ y

0
Df(D)dD + (p− c)y + v

}
,

and
∂g

∂v
=

η − 1
η

< 0.
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It is clear that, for a fixed y, g(y, z) attains maximum when (z − c)y ≤ v ≤ (p − c)y. Let v∗(y) be
an optimal solution of g(y, z) for a fixed y. If y ≥ F−1(η), we have v∗(y) = (p− z)F−1(η) + (z− c)y;
otherwise, v∗(y) = (p− c)y.

When y ≥ F−1(η), we have that

g(y, v∗(y)) = (z − c)y +
p− z

η

∫ η

0
F (x)dx,

and
dg

dy
= z − c < 0.

On the other hand, when y < F−1(η),

g(y, v∗(y)) = (p− c)y +
1
η

{
(z − p)yF (y) + (p− z)

∫ y

0
DdF (D)

}
,

and
dg

dy
= (p− c) +

1
η
(z − p)F (y).

Therefore, y∗ = F−1
(
η p−c

p−z

)
.

Now we consider the objective function that trades off between the expected profit and CVaR.

Theorem A.1 Under the following CVaR risk averse model

max
y

E[f(y, d̃)] + ξCV aRη(f(y, d̃)) ,

the optimal newsvendor solution is

y∗ =





F−1
(

p−c
p−z − ξ(c−z)

p−z

)
when η ≤ p−c

p−z − ξ(c−z)
p−z

F−1
(

ηξ+η
η+ξ

p−c
p−z

)
when η > p−c

p−z − c−z
ξ(p−z)

.

Notice from the above theorem we can directly observe the following special cases corresponding
to the risk neutral and pure CVaR objective models

1. When ξ = 0, the optimal ordering quantity is the risk neutral decision y∗ = F−1
(

p−c
p−z

)
.

2. When ξ →∞ we have y∗ = F−1
(
η p−c

p−z

)

Proof. Define a concave function

g(y, v) := ξ

(
v +

1
η

∫

D
[(p− c)y − (p− z)(y −D)+ − b(D − y)+ − v]−dF (D)

)

+
∫

D
[(p− c)y − (p− z)(y −D)+ − b(D − y)+]dF (D) .

According to Proposition 2.1, the optimal ordering quantity y∗ = arg maxy≥0{maxv g(y, v)}.
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Obviously

g(y, v) = ξ

[
v +

1
η

(∫ y

0
[(z − c)y + (p− z)D − v]−dF (D) +

∫ ∞

y
[(p− c + b)y − bD − v]−dF (D)

)]

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p− c + b)y − bD]dF (D)

)
.

For any fixed y, we distinguish between three different cases:

(1) v < (z − c)y.

In this case,

g(y, v) = ξv +
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p− c + b)y − bD]dF (D)

)
,

thus ∂g
∂v = ξ > 0.

(2) (z − c)y ≤ v ≤ (p− c)y

In this case, one can derive that

g(y, v) = ξ
(
v +

1
η

{
[(z − c)y − v]F

(
v − (z − c)y

p− z

)
+ (p− z)

∫ v−(z−c)y
p−z

0
DdF (D)

[(p + b− c)y − v]
[
F

(
(p + b− c)y − v

b

)
− F (y)

]
− b

∫ (p+b−c)y−v
b

y
DdF (D)

})

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p− c + b)y − bD]dF (D)

)
,

and

∂g

∂v
= ξ − ξ

η

[
F

(
v − (z − c)y

p− z

)
− F

(
(p + b− c)y − v

b

)
+ F (y)

]

∂g

∂y
=

ξ

η

(
(z − c)F

(
v − (z − c)y

p− z

)
+ (p + b− c)F

(
(p + b− c)y − v

b

)

−(p + b− c)F (y)− [(p− c)y − v]f(y)
)

+ (p + b− c)− (p + b− z)F (y)

Consider the following two cases:

a) y < F−1(η)

∂g

∂v
= ξ

{
1− 1

η

[
F

(
v − (z − c)y

p− z

)
− F

(
(p + b− c)y − v

b

)
+ F (y)

]}

> ξ

{
1− 1

η

[
F

(
v − (z − c)y

p− z

)
− F

(
(p + b− c)y − v

b

)
+ η

]}
> 0

The last inequality follows from v−(z−c)y
p−z > (p+b−c)y−v

b because v < (p− c)y.

b) y > F−1(η)
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(3) (p− c)y < v ≤ (p + b− c)y

In this case, one can derive that

g(y, v) = ξ

(
v +

1
η

{
[(z − c)y − v]F

(
v − (z − c)y

p− z

)
+ (p− z)

∫ v−(z−c)y
p−z

0
DdF (D)

})

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p− c + b)y − bD]dF (D)

)
,

and
∂g

∂v
= ξ


1−

F (v−(z−c)y
p−z )

η


 .

(4) v > (p + b− c)y

In this case, we have that

g(y, v) = ξ
(
v

(
1− 1

η

)
+

1
η
·

{
(z − p− b)yF (y) + (p− z)

∫ y

0
DdF (D) + (p− c + b)y − b

∫ ∞

y
DdF (D)

} )

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p + b− c)y − bD]dF (D)

)
,

and
∂g

∂v
= ξ

η − 1
η

< 0.

It is clear that, for a fixed y, g(y, z) attains maximum when (z − c)y ≤ v ≤ (p + b− c)y. Let v∗(y)
be an optimal solution of g(y, z) for a fixed y. We have the following cases for y.

a)
p− z

p + b− z
F−1(η) ≤ y ≤ F−1(η),

we have
v∗(y) = (p− z)F−1(η) + (z − c)y ,

which satisfies (p− c)y < v(y∗) ≤ (p + b− c)y.

In this case, we have that

g(y, v∗(y)) = ξ

(
(z − c)y +

p− z

η

∫ η

0
F−1(x)dx

)

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p + b− c)y − bD]dF (D)

)
,

and
dg

dy
= ξ(z − c) + (p + b− c) + (z − p− b)F (y) .

26



Thus when

(p + b− c)− ξ(c− z)
p + b− z

≤ η ≤ F

(
p + b− z

p− z
F−1

(
ξ(z − c) + (p + b− c)

p + b− z

))
,

and
ξ <

p + b− c

c− z

we have
y∗ = F−1

(
(p + b− c)− ξ(c− z)

p + b− z

)

b)

y <
p− z

p + b− z
F−1(η) ,

we have v∗(y) = (p + b− c)y .

g(y, v∗(y)) = ξ

(
(p + b− c)y +

1
η

{
(z − p− b)yF (y) + (p− z)

∫ y

0
DdF (D)− b

∫ ∞

y
DdF (D)

})

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
[(p + b− c)y − bD]dF (D)

)
,

and
dg

dy
= (1 + ξ)(p + b− c) + (1 +

ξ

η
)(z − p− b)F (y) .

Thus when

ξ <
η

(
p+b−z
p+b−cF

(
p−z

p+b−zF−1(η)
)
− 1

)

η − p+b−z
p+b−cF

(
p−z

p+b−zF−1(η)
)

we have
y∗ = F−1

(
ηξ + η

η + ξ

p + b− c

p + b− z

)

c) otherwise,
v∗(y) = (p + b− c)y .

When y ≥ p−z
p+b−zF−1(η),

On the other hand, when y < F−1(η),

g(y, v∗(y)) = ξ

(
(p− c)y +

1
η

{
(z − p)yF (y) + (p− z)

∫ y

0
DdF (D)

})

+
(∫ y

0
[(z − c)y + (p− z)D]dF (D) +

∫ ∞

y
(p− c)ydF (D)

)
,

and
dg

dy
= (1 + ξ)(p− c) + (1 +

ξ

η
)(z − p)F (y) .
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Therefore, for ξ > 0, we have

y∗ =





F−1
(

p−c
p−z − ξ(c−z)

p−z

)
when η ≤ p−c

p−z − ξ(c−z)
p−z

F−1
(

ηξ+η
η+ξ

p−c
p−z

)
when η > p−c

p−z − ξ(c−z)
p−z

.

B Review on k-convexity and symmetric k-convexity

In this section, we review some important properties of k-convexity and symmetric k-convexity that
are used in this paper; see Chen [7] for more details.

The concept of k-convexity was introduced by Scarf [26] to prove the optimality of an (s, S) for
the traditional inventory control problem.

Definition B.1 A real-valued function f is called k-convex for k ≥ 0, if for any x0 ≤ x1 and
λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + λk. (21)

Below we summarize properties of k-convex functions.

Lemma 2 (a) A real-valued convex function is also 0-convex and hence k-convex for all k ≥ 0. A
k1-convex function is also a k2-convex function for k1 ≤ k2.

(b) If f1(y) and f2(y) are k1-convex and k2-convex respectively, then for α, β ≥ 0, αf1(y) + βf2(y)
is (αk1 + βk2)-convex.

(c) If f(y) is k-convex and w is a random variable, then E{f(y − w)} is also k-convex, provided
E{|f(y − w)|} < ∞ for all y.

(d) Assume that f is a continuous k-convex function and f(y) → ∞ as |y| → ∞. Let S be a
minimum point of g and s be any element of the set

{x|x ≤ S, f(x) = gf(S) + k}.

Then the following results hold.

(i) f(S) + k = f(s) ≤ f(y), for all y ≤ s.

(ii) f(y) is a non-increasing function on (−∞, s).

(iii) f(y) ≤ f(z) + k for all y, z with s ≤ y ≤ z.

Proposition 2 If f(x) is a K-convex function, then function

g(x) = min
y≥x

Qδ(y − x) + f(y),

is max{K, Q}-convex.

Recently a weaker concept of symmetric k-convexity was introduced by Chen and Simchi-Levi
[8, 9] when they analyze the joint inventory and pricing problem with fixed ordering cost.
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Definition B.2 A function f : < → < is called symmetric k-convex for k ≥ 0, if for any x0, x1 ∈ <
and λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + max{λ, 1− λ}k. (22)

A function f is called symmetric k-concave if −f is symmetric k-convex.

Observe that k-convexity is a special case of symmetric k-convexity. The following results describe
properties of symmetric k-convex functions, properties that are parallel to those summarized in
Lemma 2 and Proposition 2. Finally, notice that the concept of symmetric k-convexity can be easily
extended to multi-dimensional space.

Lemma 3 (a) A real-valued convex function is also symmetric 0-convex and hence symmetric k-
convex for all k ≥ 0. A symmetric k1-convex function is also a symmetric k2-convex function
for k1 ≤ k2.

(b) If g1(y) and g2(y) are symmetric k1-convex and symmetric k2-convex respectively, then for
α, β ≥ 0, αg1(y) + βg2(y) is symmetric (αk1 + βk2)-convex.

(c) If g(y) is symmetric k-convex and w is a random variable, then E{g(y−w)} is also symmetric
k-convex, provided E{|g(y − w)|} < ∞ for all y.

(d) Assume that g is a continuous symmetric k-convex function and g(y) →∞ as |y| → ∞. Let S
be a global minimizer of g and s be any element from the set

X := {x|x ≤ S, g(x) = g(S) + k and g(x′) ≥ g(x) for any x′ ≤ x}.

Then we have the following results.

(i) g(s) = g(S) + k and g(y) ≥ g(s) for all y ≤ s.

(ii) g(y) ≤ g(z) + k for all y, z with (s + S)/2 ≤ y ≤ z.

Proposition 3 If f(x) is a symmetric K-convex function, then the function

g(x) = min
y≤x

Qδ(x− y) + f(y)

is symmetric max{K,Q}-convex. Similarly, the function

h(x) = min
y≥x

Qδ(x− y) + f(y)

is also symmetric max{K, Q}-convex.

Proposition 4 Let f(·, ·) be a function defined on <n × <m → <. Assume that for any x ∈ <n

there is a corresponding set C(x) ⊂ <m such that the set C ≡ {(x, y) | y ∈ C(x), x ∈ <n} is convex
in <n ×<m. If f is symmetric k-convex over the set C, and the function

g(x) = inf
y∈C(x)

f(x, y)

is well defined, then g is symmetric k-convex over <n.
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Proof. For any x0, x1 ∈ <n and λ ∈ [0, 1], let y0, y1 ∈ <m such that g(x0) = f(x0, y0) and
g(x1) = f(x1, y1). Then

g((1− λ)x0 + λx1) ≤ f((1− λ)x0 + λx1, (1− λ)y0 + λy1)
≤ (1− λ)f(x0, y0) + λf(x1, y1) + max{λ, 1− λ}K
= (1− λ)g(x0) + λg(x1) + max{λ, 1− λ}K,

Therefore g is symmetric K-convex.

C Derivation of CVaR DP formulation

Referring to Proposition 2.1, we have

max
yt,pt:1≤t≤T

(CV aRη(Ṽ
γ
T (x))) = max

v
Gx(v) ,

where
Gx(v) := v +

1
η

max
yt,pt:1≤t≤T

{Eα̃t,β̃t:0≤t≤T [(Ṽ γ
T (x)− v)−]}.

We can design the following algorithm: for any fixed v, we solve Gx(v) using dynamic program.
Then find the optimal v that maximizes Gx(v), which leads to the solution to the CVaR maximization
problem.

The DP algorithm for solving Gx(v) is defined as

W̄ v
T+1(x, w) = v +

1
η
(w − v)−

and
W̄ v

t (x,w) = max
y,p:y≥x,p̄≥p≥p

Eα̃,β̃[W̄ v
t+1(x+, w+)],

where x+ and w+ are defined according to Eq. (14). Thus for the fixed v value, we have

Gx(v) = W̄ v
1 (x, 0).

Let w′ := w − v and W v
t (x,w′) := η(W̄ v

t (x,w′ + v)− v), we obtain

W v
T+1(x,w′) = min(w′, 0)

and
W v

t (x,w′) = max
y,p:y≥x,p̄≥p≥p

Eα̃,β̃[W v
t+1(x+, w′+)].

Notice that W v
t does not depend on v. Thus W v

t can be expressed as Wt and we have

max
v

Gx(v) = max
v

(
v +

1
η
W1(x,−v)

)
,

which gives us the formulation in Section 4.1. Notice that the main advantage of this formulation,
comparing to the DP algorithm on W̄ v

t , is that we only need to solve the DP once since the external
variable v is not involved in the DP recursion.
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