Math. Program. 86: 187-197 (1999) O Springer-Verlag 1999
Digital Object Identifier (DOI) 10.1007/s10107990059a

Xin Chen- Ya-xiang Yuan
A note on quadratic forms

Received February 18, 1997 / Revised version received October 1, 1997
Published online June 11, 1999

Abstract. We extend an interesting theorem of Yuan [12] for two quadratic forms to three matrices. Let
C1, Cp, C3 be three symmetric matrices $t"<", if max{xT C1x, xT Cox, xT C3x} > 0 for all x € )", it is
proved that there exigf > 0 (i = 1, 2, 3) such thatZie’zl =1 andZie’zl tjCj has at most one negative
eigenvalue.
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1. Introduction

A very interesting result about two quadratic forms was given by Yuan [12]. It reads as
follows:

Theorem 1. LetC;, C; € W™ be two symmetric matrices adand B be two closed
sets inli" such that

AUB=n". 1)
If we have
X"Cix>0,xe A, X'Cox>0,xe B, (2)
then there exists te [0, 1] such that the matrix
tC1 + (1 -1Cs 3)
is positive semi-definite.

The above theorem is very useful in the studying of optimal conditions for the
two-ball trust region subproblem:

min g'd + %dT Bd (4)
st. [[c+ATd| <& (5)
[dl>=<A, (6)
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which is an important subproblem of some trust region algorithms for nonlinear con-
strained optimization. Problem (4)—(6) was first given by Celis, Dennis and Tapia[2], and
itis also called CDT problem. More details about the CDT problem and its applications
can be found in [2], [4], [8], [12] and [13].

Crouzeix et al. [3] pointed out that Yuan'’s result is actually an alternate theorem.
They also extended Theorem 1 to a locally convex topological linear space. For any
symmetric matrice€; andCy, Theorem 1 shows that

max{x' C1x, X" Cox} > 0 (7

for all x, if and only if there exists a convex linear combinatiorfandC, which is
positiv semi-definite. The main object of this paper is to generalize this result from two
matrices to three matrices. The two matrix case was also found very useful for analyzing
global optimal conditions for the minimization of a quadratic function subject to one
guadratic constraint (for example, see Moré [6]). As discussed by Peng and Yuan [7],
the three matrix cas is closely related to the following problem

min x' C1x (8)
s.t. X Cox <0, 9)
x"Csx < 0. (10)

An example was given by Crouzeix et al. [3] that Theorem 1 cannot be extended to
more than two matrices and copositive matrices in a simple w&y. (f = 1, 2, 3) are
symmetric matrices iti"<", Peng and Yuan [7] showed that when 0 solves (8)—(10),
there existse, B) € %2, such thaCy +aCz+ BCs has at most two negative eigenvalues.

If «Co + BCz is indefinite for all(«, B) € %2 ((«, B) # 0) and if the least eigenvalue
of C1 + aoC2 + BoCs is negative, wheréuo, So) maximizes the least eigenvalue of
C1+ aCy + BCs, itis shown by Peng and Yuan [7] th@f + «oC2 + BoC3 has at most
two negative eigenvalues ang, 8o must be greater than 0.

In this paper, we first give a different proof for Theorem 1. Then we present a similar
result for quadratic forms with special structure. Finally we present a result about three
guadratic forms which is stronger than the results in [7].

Throughout the paper, we use cp(Cj) to represent the convex linear combination
of matricesCi, i.e. cd_,(Ci) = {}i_1tiCi| Y j_;ti = 1, i > 0}. C1, Cp, Cz andC
denote symmetric matricest"*", and!} denotes the nonnegative orthanddf. We
write C > 0 if C is positive semi-definite, an@d > 0 if C is positive definite.

2. Results and their proofs

First we introduce an interesting result of Brickman [1] which will be used for our
new proof of Theorem 1 and for establishing Lemma 3 which is needed in the proof of
Theorem 3.

Lemma 1. Assume tha€;, C, are two symmetric matrices iR"*". Define
R(C1. Cp) = i(xTclx, X1 Cox)|x € m”} ,

R(C1. Cp) = {(xTclx, XTCox)x € R, || X || = 1] .
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ThenR(Cy, Cy) is a convex cone ifi2. If n # 2, thenR(Cy, Cy) is a convex set ifi2.

It should be noted that the condition # 2 is indispensable. A simple counter
example can be found in [1].

Unlike the detailed analysis of the least eigenvalue of the convex linear combination
of C; andC; used in [12], we give a simpler proof for Theorem 1 (for£ 2) by
applying Lemma 1 and the separating theorem.

Proof. Denotefi2 _ = {(x1, X2)|x1 < 0, X2 < 0O}. Since (1) and (2) is equivalent to
max{x' C1x, x" Cox} > 0 for everyx € %", then

%2 _NR(C1,Co) =4, (11)

whereR(Cy, Cy) is defined in Lemma 1. By Lemma 1 and the separating theorem for
convex cones, there exisis, 8) € %2 ((«, ) # 0) such that

inf{ax” Cix + BXTCox} > 0 > suplaxi + B2} (12)

for everyx e %" and(xy, X2) € #2_. Itis obvious thax > 0, 8 > 0. From (12) we
havexCy + BC; > 0.
O

It is worthwile to note that Theorem 1 is also true wheis restricted in a subspace
in \".

Crouzeix et al. [3] pointed out that Theorem 1 cannot be parallely extended to
three matrices and they gave a nice counter example. In the following we give another

example:
10 ~1 05 1 -05
Cl:<0—1>’02=<o.50 )’C3=<—0.5 0 ) (13)

Itis easy to see that méx’ C1x, x' Cox, x" C3x} > 0. But for any convex combination
C = t1C1 + toCy + t3C3, we havecyy < 0, if t; > 0, andcyp = -1, if t3 = O,
wherec;j denotes thé-th row, j-th column element of matri€. Therefore for every
C € co(Cy, Cy, C3), C cannot be positiv semi-definite.

For the special case when all matrices are diagonal, we can easily generalize The-
orem 1.

Theorem 2. Letr be any positive integer. I€; (i = 1,2,...,r) are all diagonal
matrices inR"™" and max<j<r {x' Cix} > 0 for everyx e %", then there exists
aC e cd_,(Cj) such thatC is positive semi-definite.

Proof. LetCj = diag(cgi, .. ,c,q%). It follows from our assumptions that:

1<i<r 17

n
max X:c(-'-)x-2 >0, (14)
j=1
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for X = (X1,...,%n)' € R". That s to say the linear inequality system:
n .
ch'j)yj<0, i=1....,r (15)
j=1
y>0. (16)

has no solution. By Theorem 21.1 in [9] we can show that there exists a nonzero
(a1, ..., ar) € N, satisfying

r
Y aic) >0, j=1....n, (17)
i—1

r
Z(xi Ci > 0. (18)
i=1
Then it follows what we need.

O

Though Theorem 1 cannot be parallely extended to three matrices, we will show
that there exists & € co(Cy, Co, C3) such thaC has at most one negative eigenvalue
if

max{xTclx, xTCox, xTC3x} >0, Vx e ®W". (19)

max{xTCZX, xTC3x] >0, Vx € ®", (20)

it follows from Theorem 1 that there exis@& € co(Cy, C3) such thatC is positive
semi-definite. Because @@y, C3) C co(C1, Cp, C3), we only need to study under the
assumption that (20) fails. This assumption and (19) imply that the following problem

min x' C1x (21)
s.t. X' Cox <0, (22)
x"C3x <0, (23)

has optimal objective value 0. It should be noted that (19) does not guarantee a zero
solution for problem (8)—(10). For example,@ (i = 1, 2, 3) are given by (13). We

can see that (19) holds, but problem (8)—(10) is unbounded. First we establish a lemma
which shows that we can focus our attentions to problem (8)—(10).

Lemma 2. If (19) holds andx"Cix < Ofori = 1, 2, 3, then either there is a convex
linear combination ofC;, C; and Cz which has at most one negative eigenvalue or
xTCix = Oforalli.
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Proof. If the lemma is not true, there exists € %" such that

Xg C]_XO < O, (24)
x§ Caxo < 0, (25)
x§ Caxo < 0. (26)

It follows from (19) that either (25) or (26) holds as an equalityngC3x0 <0
then xgczxo = 0. Thereforexp is a local minimizer ofx" C,x, as (19) indicates
xTCox > 0 for all x close toxg. ThusCoXg = 0 and(xg + td) T Ca(xg + td) = t2dT Cod

for all d € \", which implies thatC, is positive semi-definite. This contradicts our
assumptions. Similarly itisimpossible to hag&Coxo < 0. Thus it follows for (24)—(26)
that

XE)-ClXo <0, XEI)-CZXO = XgC?,Xo =0. 27)

If Coxp andCsxg are linearly independent, then there exists anfficiently close tocg
such that

X"C1x <0, X"Cox <0, X'Cax <0, (28)

which contradicts (19). ThuS,xg andCzxg must be linearly dependent, which shows
that there exists am—1 dimensional subspac#,_1 such thatCyxp L $-1 and
CsXo L S$-1. Therefore for ald € S,_1 we have
(X0 + td) "Ca(xo + td) = t?d"Cod, (29)
(X0 + td) T Ca(xo + td) = t2d" Cad. (30)

(19), (27), (29) and (30) imply that
max{d’ Cod,d"Cad} > 0, Vd € S_1. (31)

Applying Theorem 1 in subspac®_1 yields that there exists a matrix in @y, C3)
having at most one negative eigenvalue, which contradicts the assumption. The contra-
dictions prove the lemma.

i

The above lemma implies that if (19) holds and if every matrix i6Ga0Cp, C3)
has more than one negative eigenvalue, then

max{xTclx, X" Cox, xTC3x] <0 (32)
is equivalent to
XTC1x = X' Cox = x"Cax = 0. (33)

Therefore, we only need to study the case when 0 solves problem (8)—(10).

We will need the following Lemmas 3, 4, 6, 7 and 8 to obtain Theorem 3 which shows
that there exists a matrix in ¢01, Cp, C3) which has at most one negative eigenvalue,
if 0 solves problem (8)—(10).
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Lemma 3. Assume thaCi, C, € %"™*" are symmetric andh > 3, then there exist
a, B € N satisfyinge? + 2 > 0 such thatxCy + BC; is positive definite if and only if
Nc, N Nc, = {0}, whereNg = {x|x" Qx = 0}.

Proof. By the definition ofR(Cy, Cp) in Lemma 1,Nc; N Nc, = {0} if and only if
0 ¢ R(Cy, Cp). Becaus@m > 3, R(Cy, C) is a convex set ifit? by Lemma 1. Moreover,
it is obvious thatR(C1, Cp) is closed. It follows from the separating theorem for closed
convex sets that @ R(Cy, Cy) if and only if there existse, f) € 9?2, such that
axTCix + BxTCox > 0, for everyx € %", i.e.aCy + BC; is positive definite ini".

O

Remark 1.Itis easy to see the above lemma s truerfes 1. But it fails forn = 2. Let

=(37) e=(1).

itis easy to verify thalNc, N N, = {0}. While for any(a, 8) € %2, «C; + C, cannot
be positive definite. Moreover, Lemma 3 is also trug i restricted in a subspace in
R" as long as the dimension of the subspace is not 2.

Our analysis also depends on the following theorem, which is given by Moré [6].

Lemma 4. If C; andC; are two symmetric matrices iR"<", thenC1 + aC5 is positive
definite inR" for somex € N if and only if

x"Cix>0, VO£xeR", x'Cox=0. (35)

It should be noted that the lemma does not depend on the dimension of the linear
space and it is true i is restricted in any subspaceiti'.

In the next three lemmas, we consider the problem of eigenvalue changes when
a matrix is perturbed. Lemmas 6 and 7 will be used in the proof of Theorem 3. We give
Lemma 5 and its proof because one can use the same techniques to prove Lemmas 6
and 7 whos proofs are omitted. Lemma 5 shows that if a given eigenvalue cannot be
increased for all perturbation along a certain direction, then the peturbation matrix
cannot be positive definite in the subspace spanned by eigenvectors related to the given
eigenvalue.

Lemma 5. Assume thatk(w) is thek-th largest eigenvalue @1 + «C> andik(«) has

a local minimum atvg. ThenCs; is neither positive definite nor negative definite on any
subspace¥ O X, whereCy, C, are two symmetric matrices IR"™<", X denotes the
subspace spanned by the eigenvectofSiof «oC; related toik («o).

Proof. If the lemma is not true, without loss of generality, we assume:

C1 + aoCp = diag(D1, Ak(xo) Iy, D2), (36)
D; = diagds, ... . dr,). (37)
Dy = diag(®h,41. ... . dn), (38)
dh < ... <0Opt1 < Ak(o) <y <...<dg, (39)

ri+r=ry, rp >k, (40)
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andC; is positive definite intk. Thus there exists a> 0 such that
XTCox > e, VX € X1, (41)

whereXi 1 = {X|X € Ak, || X || = 1}. Hence there exists an open neighborhoadiof,
sayU, such that

X"Cox>e, VxeU. (42)

Itis easy to show that there exists@> 0 such that

X (C1 + @oC2)X > Ak(ao) + €0, (43)
for all x € sparier,+1. ... ,en}* \ U satisfying|| x || = 1. Because
n—k+ 1> dim(sparfe,+1,...,€en}), (44)

then for any subspac¥® with dimensiom — k + 1, there exists
veX, vl =1, vespaie,i1,....en}". (45)

Therefore by the famous Courant—Fischer theorem (see [10]), there exists &"
satisfying (45) such that

min max X' (C1 + aoC2)X + ax' Cox
dim(X)=n—k+1 xeX,|x|,=1

o' (C1 + aoCo)v + av’ Cov. (46)

k(oo +a) =

v

If v e U, (45) and (42) give that

n (C1 + aoC2)v > k(o) , v Cou > ¢, )
If v ¢ U, itfollows from (43) that

v (C1 + (a0 + ®)C2)v > Ak(eo) + £0/2. (48)

for all sufficiently smalle > 0. Now (46)—(48) imply thaby(co + @) > Ak(xp) for
sufficiently smalle > 0, which contradicts our assumption. Thus we complete our
proof.

]

Remark 2.1t is easy to see from our proof thatif(«o) is a one sided local maximum,
Ak(ap) > Ak(@), fora € (ao, ap + €) (¢ > 0), thenC, cannot be positive definite ifr.
Similarly one can prove that ¥k (ag) > Ak(), for o € (ap — ¢, ap) (¢ > 0), thenC»
cannot be negative definite ii.

The following two lemmas are generalizations of the above lemma from one
parameter to two parameters. Their proofs are more complicated and are omitted because
basically they follow the same approach of the proof of Lemma 5.
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Lemma 6. Assumeik(w, B) is thek-th largest eigenvalue of; + «Cy + C3 and
Ak(ao, Bo) is a local maximum. ThewC, + BC3 cannot be positive definite in subspace
X D X for («, B) € M2, whereCy, Cy, Cz are symmetric matrices i"<", X denotes
the subspace spanned by the eigenvecto® of «oCz + BoCs related tork(«o, Bo)-

Remark 3.Similarly to Remark 2, folC1 + «Cy + BCg, if Ak(xo, o) > rk(w, B) for
all (o, B) € Ne(ap, Bo), anda > o, B > Po, then we can show that faw, 8) € Eh%r
aCy + BC3 cannot be positive definite iA. Similarly if Ax(xo, Bo) > Ak(a, B) for
(a, B) € Ne(o, Bo), andpB > Bo, thenaC, + BC3 cannot be positive definite iA’.
WhereN; (ap, Bo) denotes a ball ifit? centered atao, So) with a radiuse.

Lemma 7. Assume thaky is thek-th largest eigenvalue of the symmetric maitix
andii = Ax (i =r1+1,...,r2), wherery > rq are two nonnegative integers. L&k
be the subspace spanned by the eigenvectdts aflated tork. Denotery(«) thek-th
eigenvalue of matri; + «C,. Then we have that

(1) If Co is indefinite inXk, thenir,4+1(a) > Ary41, Ary(@) < Ar, whena is small
enough andr > 0;

(2) If Cy is positive semi-definite ik and C2 # 0in Ak, theniij(@) > Aj (i =
ri+1,...,r2) whena is small enough and > 0. Moreoverhr, +1(c) > Ary41.

To establish our main result, we also need the following lemma.

Lemma 8. If for everyC € co(Cy, Cy, C3), C has at least two negative eigenvalues.
Thenipn—_1(«, B) attains its maximum mti wherein—1(«, B) is defined asin Lemma 6.

Proof. By the assumptiori,—1(a, ) < 0, foralle®+ % = 1 satisfyingx > 0, g > 0,
wherein_1(a, B) denotes tber(—l)—largest eigenvalue ofC; + BCs.
Due to the continuity ofn—1(«, B),

An_1 = max *n—1(er, B) < 0. (49)
a?+p%=1,0>0,6>0

Itis easy to see that

An-1(, B) < An-1(e, B) + | C1 Iz

< dn-1/e? + B2+ C 2, (50)

which, together with (49), shows thag_1(a, 8) — —oo asa® + 2 — oo (a > 0,
B > 0). Therefore there existéxg, Bo) € 5)’t§r such thatin_1(ao, Bo) maximizes
)\nfl(oh ﬁ)

]

With the above results, we can show an important theorem for our main result in the
following.

Theorem 3. If O solves the problem (8)—(10), then there exists a ma@ixe
co(Cq, Cy, Cg), such thatC has at most one negative eigenvalue.
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Proof. If the theorem is not true, there exiSk, Cp, C3 such that 0 solves (8)—(10),
and every matrix in c@C1, Cp, C3) has at least two negative eigenvalues. By Lemma 8,
assume(ag, Bo) € E}ti such thatin_1(xo, Bo) maximizesin_1(a, B) in mi, where
An—1(c, B) is defined in Lemma 6. Define

X = spanfx|(C1 4+ aoC2 + BoC3)X = AiX, Aj < 0} . (51)
We will discuss three cases according to the valueg 0Bo.
Case l.ag = o = 0.

It follows from Remark 3 tha&C, + SC3 cannot be positive definite ity for every
a > 0, g > 0. Therefore there exists8 Xo € X satisfyingx] Coxo < 0, X[ Caxo < 0.
Otherwisex"C3x > 0 for 0 £ x € X, x"Cox < 0, then there exists € 9% such that
aCy + C3 > 0in X by Lemma 4. The first sentence of this paragraph implies that
a < 0, thusx"Cox < 0 for everyx € X, x' Cax < 0, which gives a contradiction. The
definition of ¥ andag = Bp = 0 give that

¢ C1Xo = X§ (C1 + @oCz + BoCs)Xo < O, (52)
which contradicts the assumption that 0 solves (8)—(10).
Case 2.ap + Bo > 0, apBo = 0.

Without loss of generality, assunag > 0, 8o = 0. It follows from Remark 3 that
«Co+ BCz cannot be positive definite itf for all («, 8) € R2with g > 0. 1fxTCax > 0
for 0 # x € X, x"Cox = 0. Then there exisis € i such thawC, + C3 > 0in X by
Lemma 4, which gives a contradiction. Therefore there exists Xy € X, such that
¢ Coxo = 0, x] Caxo < 0. Thus (52) holds, which contradicts our assumption.

Case 3.ag > 0, o > 0.

It follows from Lemma 6 thatrC, + BC3 cannot be positive definite it for every
(a, B) € M2. If dim(X) > 3, it follows from Lemma 3 that there exists € X such
that xgczxo = xg Csxp = 0, which yields (52). This is a contradiction. Therefore we
can assume that di) = 2.

If dim(Xh-1) = 1 (whereAXk is defined in Lemma 6). SinaeCy + SC3 cannot be
positive definite int},,_1 for every(«, B) € "2 by Lemma 6 C,, C3 must be equal to 0
in Xh—1, which yields (52) for everyxg € A,,—1. This is a contradiction.

If dim(Xh—1) = 2, i.e. X1 = X, thenin(ao, Bo) = An—1(c0, Bo) and(xo, Bo)
maximizesin_1(a, B), An(a, B) in mi simultaneously. If there exists, ) € %2 such
thataCo + BCs is indefinite inX’, (ag, Bo) cannot maximizén_1(«, B), An(a, B) in E}ti
simultaneously by (1) of Lemma 7. Sine€; + BC3 cannot be either positive definite
or indefinite inX for every(a, ) € %2, «C, + BC3 must be either positive semi-definite
or negative semi-definite i&” for («, B) € M2, thenaC, + BC3 must be equalto 0 in
X for every(a, B) € %2 by (2) of Lemma 7. Therefor€, andCs are equal to O ink.

It then follows that (52) holds for every € R", which gives a contradiction.

Thus the proof is completed.
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Now we have obtained our main theorem, which is stronger than the results in [7].

Theorem 4. LetCy, Cp, C3 be three symmetric matrices ™", If
maxixTclx, xT Cox, xTC3x} >0, foreveryx e %", (53)

then there exists a matri@ = Y2 G (32, t = 1.t > 0,i = 1,2, 3), such that
C has at most one negative eigenvalue.

Proof. It follows obviously from Lemma 2 and Theorem 3.

o
Theorem 5. LetC; (i = 1, 2, 3) be three symmetric matrices #™". Then
max {UT(Ci ® Ci)v] > 0,Vv e R, (54)
1<r<3

if and only if there exist€ € co|3 1(Ci) such thatC > 0in %", whereX & Y denotes

the direct sum: B
X 0
0OY)"

Proof. We only need to verify the “only if ” part. It follows from Theorem 4 that there
exists aD ¢ co?:l(Ci @ Cj) such thatD has at most one negative eigenvalue. Due to
the special structure dd, the multiplicity of every eigenvalue must be even. Therefore
D must be positive semi-definite. It follows the conclusion stated in theorem.

O

In fact, [1] pointed out tha?V(C1, Co, C3) = {y = (Y1, Y2, y3) € %3y, = v" (C; ®
Civ, i =1,2,3, forv e %2} is a convex cone ifi3, so one can also use separating
theorem for convex sets to prove the above theorem.

A natural conjecture for multi-quadratic forms is as follows: if

max ixTCix} >0, Vx € RN (55)

1<i<r

then there exists a matri€ € cd_;(Ci) such thatC has at most—2 negative

eigenvalues. Theorem 1 and Theorem 4 are the cases when2 andr = 3,
respectively. Whether the conjecture is truerfor 3 is still unknown.

References

1. Brickman, L. (1961): On the field of values of a matrix. Proc. Am. Math. $8c61-66

2. Celis, M.R., Dennis, J.E., Tapia, R.A. (1985): A trust region algorithm for nonlinear equality constrained
optimization. In: Boggs, P.T., Byrd, R.H., Schnabel, R.B., eds., Numerical Optimization, pp.71-82.
SIAM, Philadelphia

3. Crouzeix, J.P., Martinez-Legaz, J.E., Seeger, A. (1995): An alternative theorem for quadratic forms and
extensions. Linear Algebra Ap#215 121-134

4. Heinkenschloss, M. (1994): On the solution of a two ball trust region subproblem. Math. Prégram.
249-276



A note on quadratic forms 197

12.

13.

Martinez-Legaz, J.E., Seeger, A. (1994): Yuan’s Alternative theorem and the maximization of the mini-
mum eigenvalue. J. Optim. Theory AppR, 159-167

Moré, J.J. (1993): Generalization of the trust region problem. Optim. Methods Sofwls88-209

Peng, J., Yuan, Y. (1997): Optimality conditions for the minimization of a quadratic with two quadratic
constraints. SIAM J. OptiniZ, 574-594

Powell, M.J.D., Yuan, Y. (1991): A trust region algorithm for equality constrained optimization. Math.
Program49, 189-211

Rockafellar, T. (1970): Convex Analysis. Princeton University Press

. Sun, J. (1987): Matrix Perturbation Analysis (in Chinese). Science Press, Beijing
. Uhlig, F. (1979): A recurring theorem about pairs of quadratic forms and extensions: A survey. Linear

Algebra Appl.25, 219-237

Yuan, Y. (1990): On a subproblem of trust region algorithms for constrained optimization. Math. Program.
47,53-63

Yuan, Y. (1991): A dual algorithm for minimizing a quadratic function with two quadratic constraints.
J. Comput. Math9, 348-359



