Digital Object Identifier (DOI) 10.1007/s10107990059a

Xin Chen \cdot Ya-xiang Yuan

A note on quadratic forms

Received February 18, 1997 / Revised version received October 1, 1997
Published online June 11, 1999

Abstract. We extend an interesting theorem of Yuan [12] for two quadratic forms to three matrices. Let C_{1}, C_{2}, C_{3} be three symmetric matrices in $\Re^{n \times n}$, if $\max \left\{x^{T} C_{1} x, x^{T} C_{2} x, x^{T} C_{3} x\right\} \geq 0$ for all $x \in \mathfrak{R}^{n}$, it is proved that there exist $t_{i} \geq 0(i=1,2,3)$ such that $\sum_{i=1}^{3} t_{i}=1$ and $\sum_{i=1}^{3} t_{i} C_{i}$ has at most one negative eigenvalue.

Key words. quadratic forms - convex combination - matrix perturbation

1. Introduction

A very interesting result about two quadratic forms was given by Yuan [12]. It reads as follows:

Theorem 1. Let $C_{1}, C_{2} \in \Re^{n \times n}$ be two symmetric matrices and A and B be two closed sets in \Re^{n} such that

$$
\begin{equation*}
A \cup B=\mathfrak{R}^{n} . \tag{1}
\end{equation*}
$$

If we have

$$
\begin{equation*}
x^{T} C_{1} x \geq 0, x \in A, \quad x^{T} C_{2} x \geq 0, x \in B, \tag{2}
\end{equation*}
$$

then there exists a $t \in[0,1]$ such that the matrix

$$
\begin{equation*}
t C_{1}+(1-t) C_{2} \tag{3}
\end{equation*}
$$

is positive semi-definite.
The above theorem is very useful in the studying of optimal conditions for the two-ball trust region subproblem:

$$
\begin{array}{cl}
\min & g^{T} d+\frac{1}{2} d^{T} B d \\
\text { s.t. } & \left\|c+A^{T} d\right\| \leq \xi \\
& \|d\|_{2} \leq \Delta \tag{6}
\end{array}
$$

X. Chen, Y. Yuan: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational and Scientific/Engineering Computing, Chinese Academy of Sciences, POB 2719, Beijing 100080, China, e-mail: yyx@lsec.cc.ac.cn. This work was supported by Chinese NSF grants 19525101 and 19731010.
which is an important subproblem of some trust region algorithms for nonlinear constrained optimization. Problem (4)-(6) was first given by Celis, Dennis and Tapia [2], and it is also called CDT problem. More details about the CDT problem and its applications can be found in [2], [4], [8], [12] and [13].

Crouzeix et al. [3] pointed out that Yuan's result is actually an alternate theorem. They also extended Theorem 1 to a locally convex topological linear space. For any symmetric matrices C_{1} and C_{2}, Theorem 1 shows that

$$
\begin{equation*}
\max \left\{x^{T} C_{1} x, x^{T} C_{2} x\right\} \geq 0 \tag{7}
\end{equation*}
$$

for all x, if and only if there exists a convex linear combination of C_{1} and C_{2} which is positiv semi-definite. The main object of this paper is to generalize this result from two matrices to three matrices. The two matrix case was also found very useful for analyzing global optimal conditions for the minimization of a quadratic function subject to one quadratic constraint (for example, see Moré [6]). As discussed by Peng and Yuan [7], the three matrix cas is closely related to the following problem

$$
\begin{align*}
\min & x^{T} C_{1} x \tag{8}\\
\text { s.t. } & x^{T} C_{2} x \leq 0, \tag{9}\\
& x^{T} C_{3} x \leq 0 . \tag{10}
\end{align*}
$$

An example was given by Crouzeix et al. [3] that Theorem 1 cannot be extended to more than two matrices and copositive matrices in a simple way. If $C_{i}(i=1,2,3)$ are symmetric matrices in $\Re^{n \times n}$, Peng and Yuan [7] showed that when 0 solves (8)-(10), there exists $(\alpha, \beta) \in \mathfrak{R}^{2}$, such that $C_{1}+\alpha C_{2}+\beta C_{3}$ has at most two negative eigenvalues. If $\alpha C_{2}+\beta C_{3}$ is indefinite for all $(\alpha, \beta) \in \mathfrak{R}^{2}((\alpha, \beta) \neq 0)$ and if the least eigenvalue of $C_{1}+\alpha_{0} C_{2}+\beta_{0} C_{3}$ is negative, where (α_{0}, β_{0}) maximizes the least eigenvalue of $C_{1}+\alpha C_{2}+\beta C_{3}$, it is shown by Peng and Yuan [7] that $C_{1}+\alpha_{0} C_{2}+\beta_{0} C_{3}$ has at most two negative eigenvalues and α_{0}, β_{0} must be greater than 0 .

In this paper, we first give a different proof for Theorem 1. Then we present a similar result for quadratic forms with special structure. Finally we present a result about three quadratic forms which is stronger than the results in [7].

Throughout the paper, we use $\operatorname{co}_{i=1}^{r}\left(C_{i}\right)$ to represent the convex linear combination of matrices C_{i}, i.e. $\operatorname{co}_{i=1}^{r}\left(C_{i}\right)=\left\{\sum_{i=1}^{\bar{r}} t_{i} C_{i} \mid \sum_{i=1}^{r} t_{i}=1, t_{i} \geq 0\right\} . C_{1}, C_{2}, C_{3}$ and C denote symmetric matrices in $\Re^{n \times n}$, and \Re_{+}^{n} denotes the nonnegative orthant of \Re^{n}. We write $C \geq 0$ if C is positive semi-definite, and $C>0$ if C is positive definite.

2. Results and their proofs

First we introduce an interesting result of Brickman [1] which will be used for our new proof of Theorem 1 and for establishing Lemma 3 which is needed in the proof of Theorem 3.

Lemma 1. Assume that C_{1}, C_{2} are two symmetric matrices in $\Re^{n \times n}$. Define

$$
\begin{aligned}
& \tilde{R}\left(C_{1}, C_{2}\right)=\left\{\left(x^{T} C_{1} x, x^{T} C_{2} x\right) \mid x \in \mathfrak{R}^{n}\right\} \\
& R\left(C_{1}, C_{2}\right)=\left\{\left(x^{T} C_{1} x, x^{T} C_{2} x\right) \mid x \in \mathfrak{R}^{n},\|x\|=1\right\} .
\end{aligned}
$$

Then $\tilde{R}\left(C_{1}, C_{2}\right)$ is a convex cone in \mathfrak{R}^{2}. If $n \neq 2$, then $R\left(C_{1}, C_{2}\right)$ is a convex set in \Re^{2}.
It should be noted that the condition $n \neq 2$ is indispensable. A simple counter example can be found in [1].

Unlike the detailed analysis of the least eigenvalue of the convex linear combination of C_{1} and C_{2} used in [12], we give a simpler proof for Theorem 1 (for $n \neq 2$) by applying Lemma 1 and the separating theorem.

Proof. Denote $\mathfrak{R}_{--}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0, x_{2}<0\right\}$. Since (1) and (2) is equivalent to $\max \left\{x^{T} C_{1} x, x^{T} C_{2} x\right\} \geq 0$ for every $x \in \mathfrak{R}^{n}$, then

$$
\begin{equation*}
\mathfrak{R}_{--}^{2} \cap \tilde{R}\left(C_{1}, C_{2}\right)=\emptyset, \tag{11}
\end{equation*}
$$

where $\tilde{R}\left(C_{1}, C_{2}\right)$ is defined in Lemma 1. By Lemma 1 and the separating theorem for convex cones, there exists $(\alpha, \beta) \in \mathfrak{R}^{2}((\alpha, \beta) \neq 0)$ such that

$$
\begin{equation*}
\inf \left\{\alpha x^{T} C_{1} x+\beta x^{T} C_{2} x\right\} \geq 0 \geq \sup \left\{\alpha x_{1}+\beta x_{2}\right\} \tag{12}
\end{equation*}
$$

for every $x \in \Re^{n}$ and $\left(x_{1}, x_{2}\right) \in \mathfrak{R}_{--}^{2}$. It is obvious that $\alpha \geq 0, \beta \geq 0$. From (12) we have $\alpha C_{1}+\beta C_{2} \geq 0$.

It is worthwile to note that Theorem 1 is also true when x is restricted in a subspace in \Re^{n}.

Crouzeix et al. [3] pointed out that Theorem 1 cannot be parallely extended to three matrices and they gave a nice counter example. In the following we give another example:

$$
C_{1}=\left(\begin{array}{rr}
1 & 0 \tag{13}\\
0 & -1
\end{array}\right), \quad C_{2}=\left(\begin{array}{ll}
-1 & 0.5 \\
0.5 & 0
\end{array}\right), C_{3}=\left(\begin{array}{ll}
-1 & -0.5 \\
-0.5 & 0
\end{array}\right) .
$$

It is easy to see that $\max \left\{x^{T} C_{1} x, x^{T} C_{2} x, x^{T} C_{3} x\right\} \geq 0$. But for any convex combination $C=t_{1} C_{1}+t_{2} C_{2}+t_{3} C_{3}$, we have $c_{22}<0$, if $t_{1}>0$, and $c_{11}=-1$, if $t_{1}=0$, where $c_{i j}$ denotes the i-th row, j-th column element of matrix C. Therefore for every $C \in \operatorname{co}\left(C_{1}, C_{2}, C_{3}\right), C$ cannot be positiv semi-definite.

For the special case when all matrices are diagonal, we can easily generalize Theorem 1 .

Theorem 2. Let r be any positive integer. If $C_{i}(i=1,2, \ldots, r)$ are all diagonal matrices in $\mathfrak{R}^{n \times n}$ and $\max _{1 \leq i \leq r}\left\{x^{T} C_{i} x\right\} \geq 0$ for every $x \in \mathfrak{R}^{n}$, then there exists a $C \in \operatorname{co}_{i=1}^{r}\left(C_{i}\right)$ such that C is positive semi-definite.

Proof. Let $C_{i}=\operatorname{diag}\left(c_{11}^{(i)}, \ldots, c_{n n}^{(i)}\right)$. It follows from our assumptions that:

$$
\begin{equation*}
\max _{1 \leq i \leq r}\left\{\sum_{j=1}^{n} c_{j j}^{(i)} x_{j}^{2}\right\} \geq 0 \tag{14}
\end{equation*}
$$

for $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathfrak{R}^{n}$. That is to say the linear inequality system:

$$
\begin{gather*}
\sum_{j=1}^{n} c_{j j}^{(i)} y_{j}<0, \quad i=1, \ldots, r \tag{15}\\
y \geq 0 \tag{16}
\end{gather*}
$$

has no solution. By Theorem 21.1 in [9] we can show that there exists a nonzero $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathfrak{R}_{+}^{r}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i} c_{j j}^{(i)} \geq 0, \quad j=1, \ldots, n, \tag{17}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i} C_{i} \geq 0 \tag{18}
\end{equation*}
$$

Then it follows what we need.

Though Theorem 1 cannot be parallely extended to three matrices, we will show that there exists a $C \in \operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$ such that C has at most one negative eigenvalue if

$$
\begin{equation*}
\max \left\{x^{T} C_{1} x, x^{T} C_{2} x, x^{T} C_{3} x\right\} \geq 0, \forall x \in \Re^{n} \tag{19}
\end{equation*}
$$

If

$$
\begin{equation*}
\max \left\{x^{T} C_{2} x, x^{T} C_{3} x\right\} \geq 0, \forall x \in \mathfrak{R}^{n} \tag{20}
\end{equation*}
$$

it follows from Theorem 1 that there exists $C \in \operatorname{co}\left(C_{2}, C_{3}\right)$ such that C is positive semi-definite. Because $\operatorname{co}\left(C_{2}, C_{3}\right) \subset \operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$, we only need to study under the assumption that (20) fails. This assumption and (19) imply that the following problem

$$
\begin{align*}
\min & x^{T} C_{1} x \tag{21}\\
\text { s.t. } & x^{T} C_{2} x<0, \tag{22}\\
& x^{T} C_{3} x<0, \tag{23}
\end{align*}
$$

has optimal objective value 0 . It should be noted that (19) does not guarantee a zero solution for problem (8)-(10). For example, if $C_{i}(i=1,2,3)$ are given by (13). We can see that (19) holds, but problem (8)-(10) is unbounded. First we establish a lemma which shows that we can focus our attentions to problem (8)-(10).

Lemma 2. If (19) holds and $x^{T} C_{i} x \leq 0$ for $i=1,2,3$, then either there is a convex linear combination of C_{1}, C_{2} and C_{3} which has at most one negative eigenvalue or $x^{T} C_{i} x=0$ for all i.

Proof. If the lemma is not true, there exists $x_{0} \in \Re^{n}$ such that

$$
\begin{align*}
& x_{0}^{T} C_{1} x_{0}<0, \tag{24}\\
& x_{0}^{T} C_{2} x_{0} \leq 0, \tag{25}\\
& x_{0}^{T} C_{3} x_{0} \leq 0 . \tag{26}
\end{align*}
$$

It follows from (19) that either (25) or (26) holds as an equality. If $x_{0}^{T} C_{3} x_{0}<0$ then $x_{0}^{T} C_{2} x_{0}=0$. Therefore, x_{0} is a local minimizer of $x^{T} C_{2} x$, as (19) indicates $x^{T} C_{2} x \geq 0$ for all x close to x_{0}. Thus $C_{2} x_{0}=0$ and $\left(x_{0}+t d\right)^{T} C_{2}\left(x_{0}+t d\right)=t^{2} d^{T} C_{2} d$ for all $d \in \Re^{n}$, which implies that C_{2} is positive semi-definite. This contradicts our assumptions. Similarly it is impossible to have $x_{0}^{T} C_{2} x_{0}<0$. Thus it follows for (24)-(26) that

$$
\begin{equation*}
x_{0}^{T} C_{1} x_{0}<0, x_{0}^{T} C_{2} x_{0}=x_{0}^{T} C_{3} x_{0}=0 . \tag{27}
\end{equation*}
$$

If $C_{2} x_{0}$ and $C_{3} x_{0}$ are linearly independent, then there exists an x sufficiently close to x_{0} such that

$$
\begin{equation*}
x^{T} C_{1} x<0, x^{T} C_{2} x<0, x^{T} C_{3} x<0, \tag{28}
\end{equation*}
$$

which contradicts (19). Thus $C_{2} x_{0}$ and $C_{3} x_{0}$ must be linearly dependent, which shows that there exists an $n-1$ dimensional subspace S_{n-1} such that $C_{2} x_{0} \perp S_{n-1}$ and $C_{3} x_{0} \perp S_{n-1}$. Therefore for all $d \in S_{n-1}$ we have

$$
\begin{align*}
& \left(x_{0}+t d\right)^{T} C_{2}\left(x_{0}+t d\right)=t^{2} d^{T} C_{2} d, \tag{29}\\
& \left(x_{0}+t d\right)^{T} C_{3}\left(x_{0}+t d\right)=t^{2} d^{T} C_{3} d . \tag{30}
\end{align*}
$$

(19), (27), (29) and (30) imply that

$$
\begin{equation*}
\max \left\{d^{T} C_{2} d, d^{T} C_{3} d\right\} \geq 0, \quad \forall d \in S_{n-1} \tag{31}
\end{equation*}
$$

Applying Theorem 1 in subspace S_{n-1} yields that there exists a matrix in $\operatorname{co}\left(C_{2}, C_{3}\right)$ having at most one negative eigenvalue, which contradicts the assumption. The contradictions prove the lemma.

The above lemma implies that if (19) holds and if every matrix in $\operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$ has more than one negative eigenvalue, then

$$
\begin{equation*}
\max \left\{x^{T} C_{1} x, x^{T} C_{2} x, x^{T} C_{3} x\right\} \leq 0 \tag{32}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
x^{T} C_{1} x=x^{T} C_{2} x=x^{T} C_{3} x=0 . \tag{33}
\end{equation*}
$$

Therefore, we only need to study the case when 0 solves problem (8)-(10).
We will need the following Lemmas 3, 4, 6, 7 and 8 to obtain Theorem 3 which shows that there exists a matrix in $\operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$ which has at most one negative eigenvalue, if 0 solves problem (8)-(10).

Lemma 3. Assume that $C_{1}, C_{2} \in \Re^{n \times n}$ are symmetric and $n \geq 3$, then there exist $\alpha, \beta \in \mathfrak{R}$ satisfying $\alpha^{2}+\beta^{2}>0$ such that $\alpha C_{1}+\beta C_{2}$ is positive definite if and only if $N_{C_{1}} \cap N_{C_{2}}=\{0\}$, where $N_{Q}=\left\{x \mid x^{T} Q x=0\right\}$.

Proof. By the definition of $R\left(C_{1}, C_{2}\right)$ in Lemma 1, $N_{C_{1}} \cap N_{C_{2}}=\{0\}$ if and only if $0 \notin R\left(C_{1}, C_{2}\right)$. Because $n \geq 3, R\left(C_{1}, C_{2}\right)$ is a convex set in \Re^{2} by Lemma 1 . Moreover, it is obvious that $R\left(C_{1}, C_{2}\right)$ is closed. It follows from the separating theorem for closed convex sets that $0 \notin R\left(C_{1}, C_{2}\right)$ if and only if there exists $(\alpha, \beta) \in \mathfrak{R}^{2}$, such that $\alpha x^{T} C_{1} x+\beta x^{T} C_{2} x>0$, for every $x \in \Re^{n}$, i.e. $\alpha C_{1}+\beta C_{2}$ is positive definite in \mathfrak{R}^{n}.

Remark 1. It is easy to see the above lemma is true for $n=1$. But it fails for $n=2$. Let

$$
C_{1}=\binom{0-1}{-1-1}, \quad C_{2}=\left(\begin{array}{ll}
1 & 1 \tag{34}\\
1 & 0
\end{array}\right),
$$

it is easy to verify that $N_{C_{1}} \cap N_{C_{2}}=\{0\}$. While for any $(\alpha, \beta) \in \mathfrak{R}^{2}, \alpha C_{1}+\beta C_{2}$ cannot be positive definite. Moreover, Lemma 3 is also true if x is restricted in a subspace in \Re^{n} as long as the dimension of the subspace is not 2 .

Our analysis also depends on the following theorem, which is given by Moré [6].
Lemma 4. If C_{1} and C_{2} are two symmetric matrices in $\mathfrak{R}^{n \times n}$, then $C_{1}+\alpha C_{2}$ is positive definite in \Re^{n} for some $\alpha \in \Re$ if and only if

$$
\begin{equation*}
x^{T} C_{1} x>0, \forall 0 \neq x \in \mathfrak{R}^{n}, x^{T} C_{2} x=0 . \tag{35}
\end{equation*}
$$

It should be noted that the lemma does not depend on the dimension of the linear space and it is true if x is restricted in any subspace in \Re^{n}.

In the next three lemmas, we consider the problem of eigenvalue changes when a matrix is perturbed. Lemmas 6 and 7 will be used in the proof of Theorem 3. We give Lemma 5 and its proof because one can use the same techniques to prove Lemmas 6 and 7 whos proofs are omitted. Lemma 5 shows that if a given eigenvalue cannot be increased for all perturbation along a certain direction, then the peturbation matrix cannot be positive definite in the subspace spanned by eigenvectors related to the given eigenvalue.

Lemma 5. Assume that $\lambda_{k}(\alpha)$ is the k-th largest eigenvalue of $C_{1}+\alpha C_{2}$ and $\lambda_{k}(\alpha)$ has a local minimum at α_{0}. Then C_{2} is neither positive definite nor negative definite on any subspace $\mathcal{X} \supset \mathcal{X}_{k}$, where C_{1}, C_{2} are two symmetric matrices in $\mathfrak{R}^{n \times n}, \mathcal{X}_{k}$ denotes the subspace spanned by the eigenvectors of $C_{1}+\alpha_{0} C_{2}$ related to $\lambda_{k}\left(\alpha_{0}\right)$.

Proof. If the lemma is not true, without loss of generality, we assume:

$$
\begin{align*}
& C_{1}+\alpha_{0} C_{2}=\operatorname{diag}\left(D_{1}, \lambda_{k}\left(\alpha_{0}\right) I_{r}, D_{2}\right) \tag{36}\\
& D_{1}=\operatorname{diag}\left(d_{1}, \ldots, d_{r_{1}}\right) \tag{37}\\
& D_{2}=\operatorname{diag}\left(d_{r_{2}+1}, \ldots, d_{n}\right) \tag{38}\\
& d_{n} \leq \ldots \leq d_{r_{2}+1}<\lambda_{k}\left(\alpha_{0}\right)<d_{r_{1}} \leq \ldots \leq d_{1} \tag{39}\\
& r_{1}+r=r_{2}, r_{2} \geq k \tag{40}
\end{align*}
$$

and C_{2} is positive definite in \mathcal{X}_{k}. Thus there exists a $\varepsilon>0$ such that

$$
\begin{equation*}
x^{T} C_{2} x>\varepsilon, \quad \forall x \in \mathcal{X}_{k, 1} \tag{41}
\end{equation*}
$$

where $\mathcal{X}_{k, 1}=\left\{x \mid x \in \mathcal{X}_{k},\|x\|=1\right\}$. Hence there exists an open neighborhood of $\mathcal{X}_{k, 1}$, say U, such that

$$
\begin{equation*}
x^{T} C_{2} x>\varepsilon, \forall x \in U . \tag{42}
\end{equation*}
$$

It is easy to show that there exists a $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
x^{T}\left(C_{1}+\alpha_{0} C_{2}\right) x \geq \lambda_{k}\left(\alpha_{0}\right)+\varepsilon_{0} \tag{43}
\end{equation*}
$$

for all $x \in \operatorname{span}\left\{e_{r_{2}+1}, \ldots, e_{n}\right\}^{\perp} \backslash U$ satisfying $\|x\|=1$. Because

$$
\begin{equation*}
n-k+1>\operatorname{dim}\left(\operatorname{span}\left\{e_{r_{2}+1}, \ldots, e_{n}\right\}\right), \tag{44}
\end{equation*}
$$

then for any subspace \mathcal{X} with dimension $n-k+1$, there exists

$$
\begin{equation*}
v \in \mathcal{X},\|v\|=1, v \in \operatorname{span}\left\{e_{r_{2}+1}, \ldots, e_{n}\right\}^{\perp} . \tag{45}
\end{equation*}
$$

Therefore by the famous Courant-Fischer theorem (see [10]), there exists a $v \in \mathfrak{R}^{n}$ satisfying (45) such that

$$
\begin{align*}
\lambda_{k}\left(\alpha_{0}+\alpha\right) & =\min _{\operatorname{dim}(\mathcal{X})=n-k+1} \max _{x \in \mathcal{X},\|x\|_{2}=1} x^{T}\left(C_{1}+\alpha_{0} C_{2}\right) x+\alpha x^{T} C_{2} x \\
& \geq v^{T}\left(C_{1}+\alpha_{0} C_{2}\right) v+\alpha v^{T} C_{2} v . \tag{46}
\end{align*}
$$

If $v \in U$, (45) and (42) give that

$$
\begin{equation*}
v^{T}\left(C_{1}+\alpha_{0} C_{2}\right) v \geq \lambda_{k}\left(\alpha_{0}\right), v^{T} C_{2} v>\varepsilon . \tag{47}
\end{equation*}
$$

If $v \notin U$, it follows from (43) that

$$
\begin{equation*}
v^{T}\left(C_{1}+\left(\alpha_{0}+\alpha\right) C_{2}\right) v \geq \lambda_{k}\left(\alpha_{0}\right)+\varepsilon_{0} / 2 \tag{48}
\end{equation*}
$$

for all sufficiently small $\alpha>0$. Now (46)-(48) imply that $\lambda_{k}\left(\alpha_{0}+\alpha\right)>\lambda_{k}\left(\alpha_{0}\right)$ for sufficiently small $\alpha>0$, which contradicts our assumption. Thus we complete our proof.

Remark 2. It is easy to see from our proof that if $\lambda_{k}\left(\alpha_{0}\right)$ is a one sided local maximum, $\lambda_{k}\left(\alpha_{0}\right) \geq \lambda_{k}(\alpha)$, for $\alpha \in\left(\alpha_{0}, \alpha_{0}+\varepsilon\right)(\varepsilon>0)$, then C_{2} cannot be positive definite in \mathcal{X}. Similarly one can prove that if $\lambda_{k}\left(\alpha_{0}\right) \geq \lambda_{k}(\alpha)$, for $\alpha \in\left(\alpha_{0}-\varepsilon, \alpha_{0}\right)(\varepsilon>0)$, then C_{2} cannot be negative definite in \mathcal{X}.

The following two lemmas are generalizations of the above lemma from one parameter to two parameters. Their proofs are more complicated and are omitted because basically they follow the same approach of the proof of Lemma 5.

Lemma 6. Assume $\lambda_{k}(\alpha, \beta)$ is the k-th largest eigenvalue of $C_{1}+\alpha C_{2}+\beta C_{3}$ and $\lambda_{k}\left(\alpha_{0}, \beta_{0}\right)$ is a local maximum. Then $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in subspace $\mathcal{X} \supset \mathcal{X}_{k}$ for $(\alpha, \beta) \in \mathfrak{R}^{2}$, where C_{1}, C_{2}, C_{3} are symmetric matrices in $\Re^{n \times n}$, \mathcal{X}_{k} denotes the subspace spanned by the eigenvectors of $C_{1}+\alpha_{0} C_{2}+\beta_{0} C_{3}$ related to $\lambda_{k}\left(\alpha_{0}, \beta_{0}\right)$.

Remark 3. Similarly to Remark 2, for $C_{1}+\alpha C_{2}+\beta C_{3}$, if $\lambda_{k}\left(\alpha_{0}, \beta_{0}\right) \geq \lambda_{k}(\alpha, \beta)$ for all $(\alpha, \beta) \in N_{\varepsilon}\left(\alpha_{0}, \beta_{0}\right)$, and $\alpha \geq \alpha_{0}, \beta \geq \beta_{0}$, then we can show that for $(\alpha, \beta) \in \mathfrak{R}_{+}^{2}$, $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X}. Similarly if $\lambda_{k}\left(\alpha_{0}, \beta_{0}\right) \geq \lambda_{k}(\alpha, \beta)$ for $(\alpha, \beta) \in N_{\varepsilon}\left(\alpha_{0}, \beta_{0}\right)$, and $\beta \geq \beta_{0}$, then $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X}. Where $N_{\varepsilon}\left(\alpha_{0}, \beta_{0}\right)$ denotes a ball in \Re^{2} centered at $\left(\alpha_{0}, \beta_{0}\right)$ with a radius ε.

Lemma 7. Assume that λ_{k} is the k-th largest eigenvalue of the symmetric matrix C_{1} and $\lambda_{i}=\lambda_{k}\left(i=r_{1}+1, \ldots, r_{2}\right)$, where $r_{2}>r_{1}$ are two nonnegative integers. Let \mathcal{X}_{k} be the subspace spanned by the eigenvectors of C_{1} related to λ_{k}. Denote $\lambda_{k}(\alpha)$ the k-th eigenvalue of matrix $C_{1}+\alpha C_{2}$. Then we have that
(1) If C_{2} is indefinite in \mathcal{X}_{k}, then $\lambda_{r_{1}+1}(\alpha)>\lambda_{r_{1}+1}, \lambda_{r_{2}}(\alpha)<\lambda_{r_{2}}$ when α is small enough and $\alpha>0$;
(2) If C_{2} is positive semi-definite in \mathcal{X}_{k} and $C_{2} \neq 0$ in \mathcal{X}_{k}, then $\lambda_{i}(\alpha) \geq \lambda_{i}(i=$ $\left.r_{1}+1, \ldots, r_{2}\right)$ when α is small enough and $\alpha>0$. Moreover, $\lambda_{r_{1}+1}(\alpha)>\lambda_{r_{1}+1}$.

To establish our main result, we also need the following lemma.
Lemma 8. If for every $C \in \operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$, C has at least two negative eigenvalues. Then $\lambda_{n-1}(\alpha, \beta)$ attains its maximum in \mathfrak{R}_{+}^{2}, where $\lambda_{n-1}(\alpha, \beta)$ is defined as in Lemma 6.

Proof. By the assumption, $\bar{\lambda}_{n-1}(\alpha, \beta)<0$, for all $\alpha^{2}+\beta^{2}=1$ satisfying $\alpha \geq 0, \beta \geq 0$, where $\bar{\lambda}_{n-1}(\alpha, \beta)$ denotes the $(n-1)$-largest eigenvalue of $\alpha C_{2}+\beta C_{3}$.

Due to the continuity of $\bar{\lambda}_{n-1}(\alpha, \beta)$,

$$
\begin{equation*}
\bar{\lambda}_{n-1}=\max _{\alpha^{2}+\beta^{2}=1, \alpha \geq 0, \beta \geq 0} \bar{\lambda}_{n-1}(\alpha, \beta)<0 . \tag{49}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
\lambda_{n-1}(\alpha, \beta) & \leq \bar{\lambda}_{n-1}(\alpha, \beta)+\left\|C_{1}\right\|_{2} \\
& \leq \bar{\lambda}_{n-1} \sqrt{\alpha^{2}+\beta^{2}}+\left\|C_{1}\right\|_{2}, \tag{50}
\end{align*}
$$

which, together with (49), shows that $\lambda_{n-1}(\alpha, \beta) \rightarrow-\infty$ as $\alpha^{2}+\beta^{2} \rightarrow \infty(\alpha \geq 0$, $\beta \geq 0)$. Therefore there exists $\left(\alpha_{0}, \beta_{0}\right) \in \Re_{+}^{2}$ such that $\lambda_{n-1}\left(\alpha_{0}, \beta_{0}\right)$ maximizes $\lambda_{n-1}(\alpha, \beta)$.

With the above results, we can show an important theorem for our main result in the following.

Theorem 3. If 0 solves the problem (8)-(10), then there exists a matrix $C \in$ $\operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$, such that C has at most one negative eigenvalue.

Proof. If the theorem is not true, there exist C_{1}, C_{2}, C_{3} such that 0 solves (8)-(10), and every matrix in $\operatorname{co}\left(C_{1}, C_{2}, C_{3}\right)$ has at least two negative eigenvalues. By Lemma 8 , assume $\left(\alpha_{0}, \beta_{0}\right) \in \mathfrak{R}_{+}^{2}$ such that $\lambda_{n-1}\left(\alpha_{0}, \beta_{0}\right)$ maximizes $\lambda_{n-1}(\alpha, \beta)$ in \Re_{+}^{2}, where $\lambda_{n-1}(\alpha, \beta)$ is defined in Lemma 6. Define

$$
\begin{equation*}
\mathcal{X}=\operatorname{span}\left\{x \mid\left(C_{1}+\alpha_{0} C_{2}+\beta_{0} C_{3}\right) x=\lambda_{i} x, \lambda_{i}<0\right\} . \tag{51}
\end{equation*}
$$

We will discuss three cases according to the values of α_{0}, β_{0}.
Case 1. $\alpha_{0}=\beta_{0}=0$.
It follows from Remark 3 that $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X} for every $\alpha \geq 0, \beta \geq 0$. Therefore there exists $0 \neq x_{0} \in \mathcal{X}$ satisfying $x_{0}^{T} C_{2} x_{0} \leq 0, x_{0}^{T} C_{3} x_{0} \leq 0$. Otherwise $x^{T} C_{3} x>0$ for $0 \neq x \in \mathcal{X}, x^{T} C_{2} x \leq 0$, then there exists $\alpha \in \mathfrak{R}$ such that $\alpha C_{2}+C_{3}>0$ in \mathcal{X} by Lemma 4. The first sentence of this paragraph implies that $\alpha<0$, thus $x^{T} C_{2} x \leq 0$ for every $x \in \mathcal{X}, x^{T} C_{3} x \leq 0$, which gives a contradiction. The definition of \mathcal{X} and $\alpha_{0}=\beta_{0}=0$ give that

$$
\begin{equation*}
x_{0}^{T} C_{1} x_{0}=x_{0}^{T}\left(C_{1}+\alpha_{0} C_{2}+\beta_{0} C_{3}\right) x_{0}<0 \tag{52}
\end{equation*}
$$

which contradicts the assumption that 0 solves (8)-(10).
Case 2. $\alpha_{0}+\beta_{0}>0, \alpha_{0} \beta_{0}=0$.
Without loss of generality, assume $\alpha_{0}>0, \beta_{0}=0$. It follows from Remark 3 that $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X} for all $(\alpha, \beta) \in \mathfrak{R}^{2}$ with $\beta \geq 0$. If $x^{T} C_{3} x>0$ for $0 \neq x \in \mathcal{X}, x^{T} C_{2} x=0$. Then there exists $\alpha \in \Re$ such that $\alpha C_{2}+C_{3}>0$ in \mathcal{X} by Lemma 4, which gives a contradiction. Therefore there exists $0 \neq x_{0} \in \mathcal{X}$, such that $x_{0}^{T} C_{2} x_{0}=0, x_{0}^{T} C_{3} x_{0} \leq 0$. Thus (52) holds, which contradicts our assumption.

Case 3. $\alpha_{0}>0, \beta_{0}>0$.
It follows from Lemma 6 that $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X} for every $(\alpha, \beta) \in \mathfrak{R}^{2}$. If $\operatorname{dim}(\mathcal{X}) \geq 3$, it follows from Lemma 3 that there exists $x_{0} \in \mathcal{X}$ such that $x_{0}^{T} C_{2} x_{0}=x_{0}^{T} C_{3} x_{0}=0$, which yields (52). This is a contradiction. Therefore we can assume that $\operatorname{dim}(\mathcal{X})=2$.

If $\operatorname{dim}\left(\mathcal{X}_{n-1}\right)=1$ (where \mathcal{X}_{k} is defined in Lemma 6). Since $\alpha C_{2}+\beta C_{3}$ cannot be positive definite in \mathcal{X}_{n-1} for every $(\alpha, \beta) \in \mathfrak{R}^{2}$ by Lemma $6, C_{2}, C_{3}$ must be equal to 0 in \mathcal{X}_{n-1}, which yields (52) for every $x_{0} \in \mathcal{X}_{n-1}$. This is a contradiction.

If $\operatorname{dim}\left(\mathcal{X}_{n-1}\right)=2$, i.e. $\mathcal{X}_{n-1}=\mathcal{X}$, then $\lambda_{n}\left(\alpha_{0}, \beta_{0}\right)=\lambda_{n-1}\left(\alpha_{0}, \beta_{0}\right)$ and $\left(\alpha_{0}, \beta_{0}\right)$ maximizes $\lambda_{n-1}(\alpha, \beta), \lambda_{n}(\alpha, \beta)$ in \mathfrak{R}_{+}^{2} simultaneously. If there exists $(\alpha, \beta) \in \mathfrak{R}^{2}$ such that $\alpha C_{2}+\beta C_{3}$ is indefinite in $\mathcal{X},\left(\alpha_{0}, \beta_{0}\right)$ cannot maximize $\lambda_{n-1}(\alpha, \beta), \lambda_{n}(\alpha, \beta)$ in \Re_{+}^{2} simultaneously by (1) of Lemma 7. Since $\alpha C_{2}+\beta C_{3}$ cannot be either positive definite or indefinite in \mathcal{X} for every $(\alpha, \beta) \in \mathfrak{R}^{2}, \alpha C_{2}+\beta C_{3}$ must be either positive semi-definite or negative semi-definite in \mathcal{X} for $(\alpha, \beta) \in \mathfrak{R}^{2}$, then $\alpha C_{2}+\beta C_{3}$ must be equal to 0 in \mathcal{X} for every $(\alpha, \beta) \in \mathfrak{R}^{2}$ by (2) of Lemma 7. Therefore C_{2} and C_{3} are equal to 0 in \mathcal{X}. It then follows that (52) holds for every $x_{0} \in \Re^{n}$, which gives a contradiction.

Thus the proof is completed.

Now we have obtained our main theorem, which is stronger than the results in [7].
Theorem 4. Let C_{1}, C_{2}, C_{3} be three symmetric matrices in $\mathfrak{R}^{n \times n}$. If

$$
\begin{equation*}
\max \left\{x^{T} C_{1} x, x^{T} C_{2} x, x^{T} C_{3} x\right\} \geq 0, \quad \text { for every } x \in \mathfrak{R}^{n} \tag{53}
\end{equation*}
$$

then there exists a matrix $C=\sum_{i=1}^{3} t_{i} C_{i}\left(\sum_{i=1}^{3} t_{i}=1, t_{i} \geq 0, i=1,2,3\right)$, such that C has at most one negative eigenvalue.

Proof. It follows obviously from Lemma 2 and Theorem 3.

Theorem 5. Let $C_{i}(i=1,2,3)$ be three symmetric matrices in $\Re^{n \times n}$. Then

$$
\begin{equation*}
\max _{1 \leq r \leq 3}\left\{v^{T}\left(C_{i} \oplus C_{i}\right) v\right\} \geq 0, \forall v \in \Re^{2 n}, \tag{54}
\end{equation*}
$$

if and only if there exists $C \in \operatorname{co}_{i=1}^{3}\left(C_{i}\right)$ such that $C \geq 0$ in \Re^{n}, where $X \oplus Y$ denotes the direct sum:

$$
\left(\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right) .
$$

Proof. We only need to verify the "only if " part. It follows from Theorem 4 that there exists a $D \in \operatorname{co}_{i=1}^{3}\left(C_{i} \oplus C_{i}\right)$ such that D has at most one negative eigenvalue. Due to the special structure of D, the multiplicity of every eigenvalue must be even. Therefore D must be positive semi-definite. It follows the conclusion stated in theorem.

In fact, [1] pointed out that $\tilde{W}\left(C_{1}, C_{2}, C_{3}\right)=\left\{y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathfrak{R}^{3} \mid y_{i}=v^{T}\left(C_{i} \oplus\right.\right.$ $\left.C_{i}\right) v, i=1,2,3$, for $\left.v \in \mathfrak{R}^{2 n}\right\}$ is a convex cone in \mathfrak{R}^{3}, so one can also use separating theorem for convex sets to prove the above theorem.

A natural conjecture for multi-quadratic forms is as follows: if

$$
\begin{equation*}
\max _{1 \leq i \leq r}\left\{x^{T} C_{i} x\right\} \geq 0, \forall x \in \mathfrak{R}^{n \times n} \tag{55}
\end{equation*}
$$

then there exists a matrix $C \in \operatorname{co}_{i=1}^{r}\left(C_{i}\right)$ such that C has at most $r-2$ negative eigenvalues. Theorem 1 and Theorem 4 are the cases when $r=2$ and $r=3$, respectively. Whether the conjecture is true for $r>3$ is still unknown.

References

1. Brickman, L. (1961): On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61-66
2. Celis, M.R., Dennis, J.E., Tapia, R.A. (1985): A trust region algorithm for nonlinear equality constrained optimization. In: Boggs, P.T., Byrd, R.H., Schnabel, R.B., eds., Numerical Optimization, pp. 71-82. SIAM, Philadelphia
3. Crouzeix, J.P., Martínez-Legaz, J.E., Seeger, A. (1995): An alternative theorem for quadratic forms and extensions. Linear Algebra Appl. 215, 121-134
4. Heinkenschloss, M. (1994): On the solution of a two ball trust region subproblem. Math. Program. 64, 249-276
5. Martínez-Legaz, J.E., Seeger, A. (1994): Yuan's Alternative theorem and the maximization of the minimum eigenvalue. J. Optim. Theory Appl. 82, 159-167
6. Moré, J.J. (1993): Generalization of the trust region problem. Optim. Methods Software 2, 189-209
7. Peng, J., Yuan, Y. (1997): Optimality conditions for the minimization of a quadratic with two quadratic constraints. SIAM J. Optim. 7, 574-594
8. Powell, M.J.D., Yuan, Y. (1991): A trust region algorithm for equality constrained optimization. Math. Program. 49, 189-211
9. Rockafellar, T. (1970): Convex Analysis. Princeton University Press
10. Sun, J. (1987): Matrix Perturbation Analysis (in Chinese). Science Press, Beijing
11. Uhlig, F. (1979): A recurring theorem about pairs of quadratic forms and extensions: A survey. Linear Algebra Appl. 25, 219-237
12. Yuan, Y. (1990): On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53-63
13. Yuan, Y. (1991): A dual algorithm for minimizing a quadratic function with two quadratic constraints. J. Comput. Math. 9, 348-359
