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Introduction

Recent years have witnessed phenomenal growth of successful deployments of innovative pricing

strategies in a variety of industries. For instance, no company underscores the impact of the

Internet on product pricing strategies more than Dell Computers. The price of a product is not

fixed on Dell’s Web site; it may change significantly over time. Of course, Dell is not alone in its

use of sophisticated pricing strategies. Indeed, scores of retail and manufacturing companies have

started exploring dynamic pricing to improve their operations and ultimately their bottom line.

Several factors contribute to the phenomenal growth of dynamic pricing. First, the develop-

ment of sophisticated information technologies greatly facilitates the collection and communication

of customer data. Second, costs associated with changing prices have been significantly reduced

again due to the development of information technologies. Third, active academic research provides

analytical models and tools for price optimization. Fourth, decision support systems for customer

data analysis and price optimization have been developed and successfully implemented in a number

of industries.

The purpose of this chapter is to survey academic research on price optimization models

in which inventory replenishment plays a critical role. Our emphasis is on integrated produc-
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tion/inventory and pricing models that have the potential to be used for decision support at both

the operational and the tactical levels. We also review strategic models on supply chain competi-

tion, coordination and cooperation built upon these operational and tactical inventory and pricing

models.

This chapter is not the first survey of this kind. In fact, several notable survey articles appeared

since the publication of the seminal paper by Whitin (1955) who analyzes an EOQ model and a

newsvendor model both with price dependent demand. Among them, Eliashberg & Steinberg

(1991) review the literature up to year 1991 on the interface of operations and marketing with

an emphasis on integrated inventory and pricing models. Three recent papers, Elmaghraby &

Keskinocak (2003), Yano & Gilbert (2003) and Chan et al. (2004), survey the related literature

up to year 2004 from operations research and management science perspective. Elmaghraby &

Keskinocak (2003) focus on a few key papers on dynamic pricing in the presence of inventory

considerations. Chan et al. (2004) provide a comprehensive review of coordinated pricing and

inventory models including markdown and clearance pricing. Our review is more aligned with Yano

& Gilbert (2003) in which inventory replenishment is critical. However, we do not survey EOQ-type

models and deterministic models emphasizing demand smoothing (as a result of convex production

cost) which are comprehensively surveyed in Yano & Gilbert (2003). Neither are models involving

initial inventory decisions in conjunction with markdown pricing decisions reviewed in Elmaghraby

& Keskinocak (2003) and Chan et al. (2004). On the other hand and more importantly, we cover

many recent papers which appear after the publication of the three surveys. Our intention is not

to provide a comprehensive review but rather to highlight key up-to-date developments and their

historical roots.

The organization of this chapter is as follows. In the next section, we present commonly

used demand models, which is followed by a survey of deterministic periodic review inventory and

pricing models. We then present stochastic models distinguishing between single period models,

multi-period models with convex ordering costs and multi-period models with concave ordering

costs. Built upon the inventory and pricing models presented in the previous sections, we then

review models on supply chain competition, coordination and cooperation. Finally, we provide

some concluding remarks and thoughts on future research.
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Demand Models

To make optimal pricing decisions, it is pivotal to know the volume of a product that customers

are willing to purchase at a specific price. The relationship between the volume and price gives rise

to a demand model. Depending on the scenario, the demand of a product can depend on many

variables other than price such as quality, brand name and competitor’s prices. Here, however, we

restrict our discussion to demand models in which price is the only variable.

Economic theory provides us with basic demand models derived from the classical rational

theory of consumer choice (we refer to Van Ryzin, this volume and Chapter 7 in Talluri & Van Ryzin,

2004 as well as the reference therein for more details). From this theory, it is typical to assume that

the demand of a product is a decreasing function of its current price and revenue is concave as a

function of price. Some commonly used deterministic demand functions include the linear demand

d(p) = b − ap for p ∈ [0, b/a] (a > 0 and b ≥ 0), the exponential demand d(p) = eb−ap (a > 0

and b > 0), the iso-price-elastic demand1 d(p) = ap−b (a > 0 and b > 1), and the Logit demand

d(p) = N e−ap

1+e−ap which is the product of the market size N and the probability that a customer

with a coefficient of price sensitivity a buys at price p.

We now present demand models for multiple products whose demands depend on prices of all

products. Let p = (p1, p2, . . . , pn) be the price vector of n products and d(p) = (d1(p), d2(p), . . . , dn(pn))

be the associated demand vector. As is consistent with demand models for a single product, we

often assume that ∂di(p)
∂pi

≤ 0, which implies that the demand of product i is non-increasing in its

own price. The sign of ∂di(p)
∂pj

(i 6= j) depends on whether products i and j are complements or

substitutes. In the former case, ∂di(p)
∂pj

≤ 0 while in the latter case, ∂di(p)
∂pj

≥ 0.

Some specific multi-product demand models can be derived by extending demand functions

of a single product. For instance, the linear demand model for multiple products, is given by

d(p) = b + Ap, where b = (b1, b2, . . . , bn) is the vector of coefficients and A = [aij ] is an n × n

matrix of price sensitivity coefficients with aii < 0 and aij ≤ 0 or aij ≥ 0 (i 6= j) for complements or

substitutes respectively. The exponential demand model is a composite of the exponential function

and linear functions, given by di(p) = ebi+AT
i p, i = 1, 2, . . . , n. The iso-price-elastic demand model

1The price elasticity of demand is the relative change in demand in response to a relative change in price. It is

defined for a demand function d(p) as e(p) = − pd
′(p)
d(p)

.
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can be represented as di(p) = bip
−ai1
1 p−ai22 . . . p−ainn , i = 1, 2, . . . , n, where aij defines the cross price

elasticity between products i and j. Finally, the Logit demand is given by di(p) = N e−aipi

1+
∑n
j=1 e

−ajpj

which is the product of the market size N and the probability that a customer chooses product j

as a function of the price vector p (the probability is derived from the commonly used Multinomial

Logit model).

In stochastic settings, the demand of a product is often represented as a function of the price

p and a random noise ε independent of p denoted by d(p, ε). Sometimes it is important to specify

the format that the random noise ε enters the demand function. If the demand is a deterministic

function of price p, d(p), plus the random noise ε (usually normalized to have zero mean) , i.e.,

d(p, ε) = d(p)+ ε, it is called an additive demand. If the demand is a deterministic function of price

p, d(p), multiplied by the random noise ε ( assumed to be nonnegative and usually normalized to

have unit mean), i.e., d(p, ε) = d(p)ε, it is referred to as a multiplicative demand. More general

demand functions of the following forms d(p, ε) = d1(p)ε + d2(p) or d(p, ε) = d1(p)ε1 + ε2 (where

ε1 ≥ 0 and ε2 are two random variables) are also used in the inventory and pricing literature.

Stochastic multi-product demand models can be also defined correspondingly.

Observe that for additive demand, the demand variance is independent of price while the

coefficient of variation (the ratio of standard deviation and mean) is dependent of price. In contrast,

for multiplicative demand, the coefficient of variation does not depend on price while the variance

does. In single product settings with decreasing expected demand d(p), higher price leads to higher

uncertainty for additive demand but lower uncertainty for multiplicative demand.

The above demand models derived from economic theory assume that the demand of a product

only depends on its current price. This assumption, appropriate to model impulsive purchasing, is

unreasonable when consumers actively react to firms’ dynamic pricing strategies, as demonstrated

by plenty of empirical evidence.Modeling consumer behavior to explain and predict how individuals

react to dynamic pricing strategies has been a very important research topic in the marketing liter-

ature (see Monroe, 2003). It has also received considerable attention in the operations management

community in recent years (see Aviv and Vulcano, this volume for a review). Instead of providing

a detailed review of the literature on consumer behavior models, we present in the next section one

class of well-studied consumer behavioral pricing models in the marketing literature, the so-called

reference price model, which has recently been incorporated into integrated inventory and pricing
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models.

Periodic Review Deterministic Models

In this section, we survey periodic review inventory and pricing models within deterministic settings.

We first present a general modeling framework for a single product. Specifically, consider a firm that

makes replenishment and pricing decisions of a single product over a finite planning horizon with

T periods. At the beginning of period t (t = 1, 2, . . . , T ), the firm decides on its order quantity xt,

which incurs a fixed ordering cost kt (charged only if xt > 0 and independent of the order quantity)

and a variable ordering cost ct per unit. In addition, an upper bound qt may also be imposed on

the order quantity xt. At the same time, the firm also determines its selling price pt. Demand of

period t is assumed to be a deterministic function of the current period selling price pt, denoted as

dt(pt). For simplicity, we assume that no backorder is allowed 2 and leftover inventory is carried

over from period t to the next period incurring an inventory holding cost ht per unit. The firm’s

objective is to find a sequence of order quantities xt and prices pt so as to maximize the total profit

over the planning horizon.

Upon denoting a pricing plan p = (p1, p2, . . . , pT ) and its related demand sequence d(p) =

(d1(p1), d2(p2), . . . , dT (pT )), a mathematical model for the deterministic inventory and pricing prob-

lem is:
Max

∑T
t=1 ptdt(pt)− C(d(p))

Subject to pt ∈ [p
t
, pt], t = 1, 2, . . . , T,

(1)

where a lower bound p
t

and an upper bound pt on the selling price pt are imposed to prevent low

profit margin and unreasonable high price respectively. In the objective function of the above prob-

lem, the first term is the total revenue, and the second term C(d(p)) is the minimum ordering and

inventory holding cost over the planning horizon for a given pricing plan p, which can be obtained
2Models with backorders can be handled following similar idea.
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by solving the following classical capacitated economic lot sizing model: for d = (d1, d2, . . . , dT ),

C(d) = Min
∑T

t=1 ktzt + ctxt + htIt

Subject to It = It−1 + xt − dt, t = 1, 2, . . . , T

I0 = 0

xt ≤ qtzt, t = 1, 2, . . . , T

zt ∈ {0, 1}, t = 1, 2, . . . , T

It, xt ≥ 0, t = 1, 2, . . . , T,

(2)

where the binary variable zt indicates whether an order is placed or not at period t and the variable

It is the inventory level at the end of period t. In addition, the first constraint is the inventory

balance equation, the second one states that we start with zero inventory, the third one is the

capacity constraint (in case of no capacity on order quantity one can simply replace qt with an

upper bound on the total demand from periods t to T ), and finally It ≥ 0 implies that no backorder

is allowed.

The major focus of this literature is on designing efficient algorithms for finding optimal

solutions to problem (1) and its extensions by exploiting their structures. To illustrate the basic

ideas involved, we sketch algorithms to solve problem (1) under different assumptions.

We first focus on settings with no capacity constraint. The key is to observe that without

capacity constraint, there is an optimal ordering plan for problem (2) which has the so-called zero-

inventory-ordering (ZIO) property, i.e., xtIt−1 = 0 or equivalently no order is placed whenever the

inventory level is positive. To see this, consider an ordering plan which specifies for a period, say

t, with a positive initial inventory level It−1, an order xt to be placed. Let i be the ordering period

immediately before period t. We can either shift the entire order placed at period t to period i or

shift an order quantity of It−1 units from period i to period t. In the first option, no order is place at

period t and the resulting cost change is (cit−ct)xt, while in the second option, the initial inventory

level at period t is zero and the resulting cost change −(cit − ct)It−1, where cit = ci +
∑t−1

l=i hl is

the marginal cost of satisfying period t’s demand by an order placed at period i. Clearly one of

the options leads to an ordering plan with a cost no more than that of the original plan. The same

process is repeated on the plan with the lowest cost until we end up with a plan with the ZIO

property in at most T − 1 steps.

It is clear that for an ordering plan with the ZIO property, it suffices to specify the ordering
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periods. Specifically, if periods i and j (i < j) are two consecutive ordering periods in such an

ordering plan, the ZIO property implies that the demand at period t (i ≤ t < j) is filled by the

order placed at period i only and thus the marginal cost of satisfying period t’s demand is given

by cit. The associated optimal price for period t with i ≤ t < j can then be derived by finding the

highest profit of period t:

vit = Max ptdt(pt)− citpt

Subject to pt ∈ [p
t
, pt].

(3)

In the case with no fixed ordering costs, it is straightforward to identify all ordering periods

tl recursively by letting t1 = 1 and tl+1 = min{T + 1,min{t : t ∈ (tl, T ], ct ≤ ctlt}} for l ≥ 1.

In the case with fixed ordering costs, it is not sufficient to compare the marginal costs. However,

the ZIO property allows us to construct an equivalent longest path problem in an acyclic network

G = (V,E) with the node set V = {1, 2, . . . , T + 1} and the arc set E = {(i, j) : 1 ≤ i < j ≤ T + 1}.

In the construction, an arc (i, j) means that the demands from periods i up to j − 1 are served by

the order placed at period i. The length assigned to arc (i, j) is
∑j−1

t=i vit − ki, i.e., the total profit

from periods i to j − 1 with the prices determined by solving problem (3) for t = i, . . . , j − 1. One

can show that a longest path from node 1 to node T +1 in the network G gives an optimal ordering

plan with the ZIO property whose ordering periods exactly correspond to the nodes on the longest

path, and the associated optimal prices are derived through problem (3). The algorithm involves

solving T (T + 1)/2 subproblems with the same structure as (3) and then finding a longest path in

the acyclic network G.

One way to find a longest path in the acyclic network G is a forward-type algorithm which

actually derives longest paths from node 1 to all nodes. Here is the sketch of the idea. For a

given node t (t = 1, 2, . . . , T ), once we have the longest paths from node 1 to nodes 1, 2, . . . , t− 1, a

longest path from node 1 to node t is the one with the longest length among t−1 options: following

the longest path from node 1 to node τ and then arc (τ, t), τ = 1, 2, . . . , t− 1. The computational

complexity of the forward-type algorithm is O(T 2), i.e., there exists a constant ρ > 0 such that the

algorithm solves the problem in no more than ρT 2 elementary operations (additions, multiplications

and comparisons)3.

Wagner & Whitin (1958a) appear to be the first to incorporate the pricing decision into the
3We refer to Ahuja et al. (1993) for more details on solving longest (shortest) path problems in acyclic networks.
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now classical economic lot sizing model without capacity constraint (also commonly referred to as

the Wagner-Whitin model; see Wagner & Whitin, 1958b). They recognize the ZIO property and

sketch a forward-type algorithm similar to the one described here. They also suggest to use the

planning horizon property (i.e., if for a problem with t periods an order is placed at period t, then

all periods prior to t can be ignored in determining the optimal policy for future periods) to simplify

the computation. These results are parallel to the ones in the Wagner-Whitin model (see Wagner

& Whitin, 1958b)4. Thomas (1970) analyzes a model similar to Wagner & Whitin (1958a) and

illustrates explicitly that an optimal price at period t can be identified, independent of other periods’

prices, by solving the single variable optimization problem (3) if demand of period t is satisfied by an

order placed at period i. Geunes et al. (2006) consider several extensions by allowing for multiple

price-demand curves and piecewise linear concave ordering costs and illustrate these extensions

can be handled easily by adapting the algorithm sketched here without substantially increasing

the computational complexity. They also present an equivalent integer program formulation for

problem (1) whose linear programming relaxation does not have an integrality gap5 under the

assumption that the revenue at each period is a piecewise linear (with finite pieces) and concave

function in terms of the satisfied demand.

We now focus on problem (1) with capacity constraints. We start with the case with no fixed

ordering costs. Assume that the demand function dt(pt) is strictly decreasing in the selling price

pt, which implies that there is a one-to-one correspondence between the demand and the selling

price at period t. Thus, solving problem (1) is equivalent to determining a sequence of demands

that gives the maximum profit, and in this case, problem (1) can be formulated as a min-cost

network flow problem6. If, in addition, the revenue curves are assumed to be concave, it can be
4Interestingly, Wagner & Whitin (1958a) focusing on the economic lot sizing model with price-dependent demand

precede Wagner & Whitin (1958b) which analyzes the economic lot sizing model without pricing decisions; see

Wagner (2004) for a recollection of the background. In addition, surprisingly, Wagner & Whitin (1958a) do not refer

to Whitin (1955), which, analyzing the newsvendor model with price-dependent demand, appears to be the first

attempt incorporating pricing decisions into inventory models.
5Similar integer program formulations for economic lot sizing models without pricing decisions are powerful in

designing efficient algorithms for models with multiple products (see Pochet & Wolsey, 2006).
6We first construct a directed network G = (V,E), in which the node set V = {0, 1, . . . , T, T + 1} and the arc set

E = {(t, t + 1) : t = 1, 2, . . . , T − 1} ∪ {(0, t), (t, T + 1) : t = 1, 2, . . . , T} ∪ {(T + 1, 0)}. The flow on arc (0, t) (t =

1, 2, . . . , T ), denoted by xt, belongs to [0, qt] and incurs a linear cost ctxt. The flow on arc (t, t+1) (t = 1, 2, . . . , T−1),

denoted by It, is nonnegative and incurs a linear cost htIt. The flow on arc (t, T + 1) (t = 1, 2, . . . , T ), denoted by
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solved efficiently by standard algorithms for min-cost network flow problems with convex cost (see

Ahuja et al., 1993). It can also be solved by an intuitive and interesting greedy algorithm. Assuming

integer-valued inventory levels, order quantities and demand, the greedy algorithm works as follows:

starting with zero demand, at each iteration, identify a period and increase its demand by one unit

if it respects capacity constraints and gives the highest profit increase among all possible periods;

stop the process if no further improvement is possible. The greedy algorithm is proposed by Biller

et al. (2005), who also present computational experiments suggesting that it is possible to achieve

significant benefit with few price changes.

The capacitated inventory and pricing model with fixed ordering costs is not significantly

different from the capacitated economic lot sizing (CELS) model (2) (see Geunes et al., 2006 for

the model with piecewise linear concave revenue functions, Deng & Yano, 2006 and Geunes et al.,

2009 for the model with general concave revenue functions – all are with respect to the satisfied

demand). Optimal ordering plans may not have the ZIO property anymore for the capacitated

models. Instead, it can be shown that there exists an optimal ordering plan consisting of a series

of capacity constrained production sequences. That is, we can partition the planning horizon so

that each member of the partition (called a production sequence) consists of a series of consecutive

periods that starts and ends with zero inventory level, and holds positive inventory in between, and

at each period of the production sequence, we either produce nothing or to the full capacity, except

for at most one period (referred to as the fractional production period) at which one can produce

a quantity strictly between zero and the full capacity. To prove this statement, observe that model

(2) is a concave minimization problem with linear constraints and thus attains optimality at some

extreme point, which exactly corresponds to an ordering plan consisting of a series of capacity

constrained production sequences.

We can determine the optimal prices associated with any given production sequence indepen-

dent of other production sequences. To simplify our presentation, assume that all inventory holding

costs are zero (note that this can be assumed without loss of generality since we can reformulate

problem (1) by replacing inventory variables It by
∑t

l=1(xl − dl) and rearranging terms). Under

dt, belongs to the interval [dt(p̄t), dt(p
t
)] and incurs a cost −dtgt(dt), where gt(·) is the inverse function of dt(·). The

flow on arc (T + 1, 0) is nonnegative and does not incur any cost. With this construction, problem (1) is equivalent

to finding a circulation in the network G with a minimum cost.
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this assumption, the key observation is that at optimality the marginal revenue (with respect to

the satisfied demand) at each period within a production sequence is essentially the same (we say

“essentially” because exceptions happen when we take care of the boundary conditions on prices)

and we can look at three different cases: (a) if the fractional production period is specified, the

optimal price at each period can be easily determined by setting its marginal revenue equal to the

variable production cost of the fractional production period; (b) if there is no fractional production

period but there is a period, called a fractional demand period, in which the price does not attain

the bound constraints, the marginal revenue at each period equals the marginal revenue at the

fractional demand period, and if in addition we know the total production quantity of the produc-

tion sequence, we can then determine the optimal prices; (c) if there is no fractional production

period nor fractional demand period, we can determine whether the optimal prices are at their

lower bounds or upper bounds by comparing the marginal revenues at these bounds. If we have

equal capacities qt at all periods, we can find the optimal production plans like what we do for

the CELS problem for all cases (a)-(c) and thus solve problem problem (1) in polynomial time.

Of course, in case (b), we first need to determine optimal price vector candidates. However, the

number of price vector candidates is equal to the number of possible total production quantities

which is no more than the number of periods of the production sequence. If the capacities qt are

time dependent, even the CELS problem is NP-hard (see Florian & Morton, 1971; Florian et al.,

1980 for the CELS model with equal and unequal capacities respectively).

The models analyzed above assume that prices can be freely changed from a period to the

next. However for certain products like catalog goods, firms may want to determine a price at the

beginning of the selling season and maintain the same price throughout the whole planning horizon.

We can use problem (1)-(2) to model such a setting by simply adding constraints p1 = . . . = pT

and end up with the so-called joint inventory and static pricing model. A heuristics for solving

the model is the alternating coordinates minimization (ACM) type algorithm. That is, for a given

price (and hence a given demand process) find an optimal ordering plan by solving an economic

lot sizing problem; then for this ordering plan, find an associated optimal price using the approach

we sketched earlier. The ACM algorithm alternates between these two steps until no further

improvement is possible.

Kunreuther & Schrage (1973) were the first to propose and analyze the joint inventory and
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static pricing problem with no capacity constraint. They assume that the demand at period t takes

the form dt(p) = bt + atd(p) for some nonnegative coefficients at, bt, in which the function d(p) is

a non-increasing differentiable function. They propose to apply the ACM algorithm starting from

a lower bound p and a upper bound p̄ of price separately. Let p∗l and p∗u be the corresponding

terminating prices after a finite number of steps. They prove that their approach does not skip any

optimal solution in [p, p∗l ] and [p∗u, p] (i.e., the profit of a newly generated price is always no less than

the profit of any price between this newly generated price and the price generated in the previous

step) and thus an optimal price lies in the interval [p∗l , p
∗
u]. van den Heuvel & Wagelmans (2006)

propose to restart the approach in Kunreuther & Schrage (1973) whenever there are unexplored

intervals. They argue that the minimum total ordering and inventory holding cost is a piecewise

linear concave function of the price effect d(p) with at most O(T 2) linear pieces and their algorithm

involves solving O(T 2) economic lot sizing problems each of which corresponds to a linear piece,

which implies that the joint inventory and static pricing problem with no capacity constraint can

be solved in polynomial time. The capacitated counterpart of Kunreuther and Shrage’s model is

analyzed in Geunes et al. (2009) (in addition to the capacitated inventory and pricing model with

dynamic pricing).

Gilbert (1999) considers a special case of the model proposed by Kunreuther & Schrage (1973)

with the assumption that the cost parameters ct, ht and kt are time independent and the demand

takes the form dt(p) = atd(p). A key observation from these assumptions is that given the number

of set-ups, say n, the minimum ordering and inventory holding cost (even though the number of

set-ups is given, we still need to identify the ordering periods) is a linear function of the price effect

d(p), nK + γnd(p), where the coefficient γn is independent of p and can be derived by solving a

simple dynamic program in O(T 2) time. Since there are T possible candidates for the number of

set-ups, Gilbert (1999) shows that his model can be solved in O(T 3) time under the additional

assumption that the function d(·) has an inverse p(d) and the revenue function dp(d) is concave.

A predominant assumption made in the existing inventory and pricing literature is that price

adjustment is costless. Yet, various empirical studies illustrate that price adjustment costs do exist

and play a crucial role in shaping firms’ pricing strategies. For instance, Levy et al. (1997) report

that price adjustment may generate enormous costs for major retailer chains, and take up as much

as 40% of the reported profits for some of these chains. A few papers that take into account price
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adjustment cost include Chen & Hu (2008) and Chen et al. (2008), which analyze a stochastic

model and will be reviewed in the next section.

Chen & Hu (2008) assume that a cost of changing price tags, independent of the magnitude

of the price change, is charged if price at a period is different from its previous period. As both

fixed ordering cost and price adjustment cost are taken into account, their model is much more

complicated. Still, under the assumption of no capacity constraint, they develop exact algorithms

for finding the optimal order quantities and selling prices. The idea is to partition the planning

horizon such that each member of the partition consists of consecutive periods with a constant

price. The total profit is then appropriately allocated to each member of the partition, and for

each member they solve a joint inventory and static pricing problem to find a single constant

price maximizing its allocated profit. Based on this result, Chen & Hu (2008) construct an acyclic

network so that solving their inventory and pricing model with price adjustment cost is equivalent

to finding a longest path in the acyclic network.

A few papers start to relax the assumption that demand at a period depends only on the

current period’s price. In the deterministic setting, Ahn et al. (2007) study an inventory and

pricing model in which the ordering cost is linear and the demand at a period depends on the

prices of the current period and previous periods. Specifically, they assume that at each period,

new customers enter the market and a fraction of them may stay for certain fixed periods. The

amount of new customers is a linear function of the current period’s price. This model allows them

to capture the size of customer segment for a given valuation. If the price drops down to a level

below the valuation of a customer in the market, the customer makes a purchase and leaves the

market. The total demand at a period is then represented as a function of the prices of its current

period as well as its previous periods. The authors develop effective heuristics for their optimization

problem. When there is no capacity constraint and customers stay for at most one more period in

addition to the period when they enter the market, they derive closed-form solutions for the case

with stationary parameters and develop an efficient polynomial time algorithm for the case with

non-stationary parameters.

Chen et al. (2009a) propose and analyze a deterministic finite horizon coordinated pricing and

inventory model in which demand functions are specified by a class of reference price models. In

such models, it argues that consumers develop price expectations, referred to as reference prices,
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and use them to judge the purchase price of a product (see Mazumdar et al., 2005 for a review).

Among many different reference price models, a memory-based model, in which reference price is

the weighted average of a product’s own past prices, is commonly used and empirically validated on

scanner panel data for a variety of products (see Greenleaf, 1995). Specifically, in an exponential-

smoothing memory-based model, the reference price at period t, rt is determined as: rt = αrt−1 +

(1− α)pt−1, where pt−1 is the previous period price and α ∈ [0, 1] is the smoothing factor.

The demand at period t, taking into account the effect of reference price, can be modeled as a

kinked demand curve, namely dt(pt, rt) = bt − atpt + f(rt − pt) (see Fibich et al., 2003; Greenleaf,

1995; Kopalle et al., 1996). Here at and bt are some given positive constants while f(u) = δu for

u > 0 and f(u) = γu for u < 0 with 0 ≤ δ ≤ γ. The definition of f implies that the effect of rt− pt

on demand is asymmetric and consumers are loss averse, i.e., consumers are more sensitive to loss

(pt > rt) than gain (pt < rt). Such a demand function is not only empirically validated but also

supported by Kahneman & Tversky (1979)’s prospect theory (see Mazumdar et al., 2005 for more

discussion and Popescu & Wu, 2007 and Nasiry & Popescu, 2008 for extensions of the reference

models).

The revenue function ptdt(pt, rt) may not be jointly concave in pt and rt. Nevertheless, Chen

et al. (2009a) develop strongly polynomial time algorithms for the cases with no fixed ordering

costs under some technical conditions and propose a heuristic for the general case with an error

bound estimation. Their numerical study illustrates that incorporating reference price effect into

integrated inventory and pricing models can have a significant impact on firms’ profits. In addition,

the more reference price effect contributing to the demand, the larger the benefit of pricing and

inventory integration.

All the above papers focus on a single product. Gilbert (2000) considers a multi-product

inventory and pricing model in which there is a joint production capacity for all products and

fixed ordering cost is negligible. Assuming that the revenue of a product is concave in demand

intensities, the author develops an algorithm to find the optimal solution by exploiting the special

problem structure, which unfortunately may not run in polynomial time. Hall et al. (2003) develop

an inventory and pricing model for products of a category with joint fixed ordering costs in which

demand of a product depends on the prices of all products in the category. They develop a dynamic

programming formulation to solve their model and demonstrate the benefits obtained via a category
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management approach.

Stochastic Models

In this section, we focus on integrated inventory and pricing models with stochastic demand. We

will first review single period models, which are appropriate for products with long production/order

lead times but short selling seasons, and then move to multi-period models in which replenishment

is possible in the planning horizon.

Single Period Models

A single period inventory and pricing model with stochastic demand is an extension of the classical

newsvendor model and is thus often referred to as a newsvendor model with price dependent

demand. In this model, at the beginning of the period, an order with a quantity of x units is placed

incurring a per-unit cost c. At the same time, a selling price p is decided. During the period,

a stochastic price dependent demand, denoted as d(p, ε) with ε being a random perturbation, is

realized. If the order quantity x is larger than the realized demand d(p, ε), a per-unit holding cost

h is charged for excess inventory (if h < 0, then it corresponds to the salvage value). On the

other hand, if the realized demand d(p, ε) is larger than the order quantity, excess demand is lost

incurring a unit penalty cost b. The objective is to decide on the order quantity x and the selling

price p so that the expected profit is maximized. Upon denoting x+ = max(x, 0), the newsvendor

model with price dependent demand is formulated as follows:

Max
x≥0,p∈[p,p]

pE[min(d(p, ε), x)]− cx− E[h(x− d(p, ε))+ + b(d(p, ε)− x)+], (4)

where the first term is the expected revenue, the second term is the ordering cost, and the last term

is the expected inventory holding cost and lost sales cost.

To simplify our presentation, we use d(p, ε) = d1(p)ε+d2(p) (referred to as the mixture demand

model), where d1(p) and d2(p) are two deterministic functions of price and ε is a nonnegative random

variable. Note that when d1(p) = 1, the mixture demand model is the additive demand model,

and when d2(p) = 0, it is the multiplicative demand model. Let d(p) = d1(p)E[ε] + d2(p) be the

expected demand for a given p and R(p) = (p − c)d(p), the profit function of the deterministic
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counterpart of the newsvendor model with price dependent demand. Define z = x−d2(p)
d1(p) , which can

be interpreted as the stocking factor representing a surrogate for safety stock factor, the number of

standard deviation that stocking quantity deviates from expected demand (see Petruzzi & Dada,

1999). Problem (4) is equivalently reformulated as

Max
z,p

φ(z, p) = R(p)− (p− c)d1(p)u(z)− d1(p)v(z), (5)

where u(z) = E[ε] − E[min(z, ε)] and v(z) = (c + h)z + bE[ε] − (c + b + h)E[min(z, ε)]. It is clear

that u(z) ≥ 0 and v(z) ≥ 0 for all z. Assume that the cumulative distribution function of ε, F (·),

is continuous. Under this assumption, there is a unique solution z, denoted by z∗(p), maximizing

φ(z, p) for a given p. In fact, z∗(p) = F−1( p+b−cp+b+h) is the optimal solution for a corresponding

newsvendor model. Let π(p) = φ(z∗(p), p) be the induced expected profit function. The optimal

price can then be solved by maximizing π(p). Unfortunately, the profit function π(p) may not be

concave or quasi-concave.

Thus, one of the major focuses in the literature concerns structural results of the optimization

problem (4), namely the existence and uniqueness of the optimal solutions and concavity or quasi-

concavity of the expected profit functions, and comparative statics analysis. We first consider the

deterministic counterpart. Note that a stationary point of R(p) satisfies

p(1− 1
e(p)

) = c.

Recall that e(p) = −pd′(p)/d(p) is the price elasticity of the expected demand. If the expected

demand d(p) has an increasing price elasticity, which includes linear demand and concave demand,

then R(p) has a unique stationary point and thus is quasi-concave in [c, p̄]. The newsvendor

model with price dependent demand can also be handled by analyzing the stationary point of the

induced expected profit function π(p). Since the derivation is rather tedious, we simply present the

results (more details can be found in Yao et al., 2006). Essentially, if the expected demand has an

increasing price elasticity and the random variable ε has an increasing generalized failure rate for

the multiplicative demand case or an increasing failure rate for the additive demand case7, then

π(p) has a unique stationary point and therefore is quasi-concave in [c, p̄].
7Let f(·) be the density of the cumulative demand distribution F (·). The distribution has an increasing (gener-

alized) failure rate if its failure rate function f(ξ)
1−F (ξ)

(or correspondingly its generalized failure rate function ξf(ξ)
1−F (ξ)

)

is increasing. This includes several commonly used distributions such as uniform, (truncated) Normal, exponential,

Gamma distributions.
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Another major focus of the literature concerns the relation between stochastic model and

its deterministic counterpart. Interestingly, the relation of the optimal price in a newsvendor

model with price dependent demand (referred to optimal risky price) and the optimal price of its

deterministic counterpart (a price maximizing R(p) and referred to as the optimal riskless price)

depends on how uncertainty is incorporated into the demand function. Specifically, if the demand

is additive, i.e., d(p, ε) = d(p) + ε, then the optimal risky price is no more than the optimal riskless

price. On the other hand, if the demand is multiplicative, i.e., d(p, ε) = d(p)ε, then the opposite is

true, namely the optimal risky price is no less than the optimal riskless price.

We now sketch the analysis. Assume that R(p) and π(p) are quasi-concave and have unique

stationary points in [c, p̄]. The optimal riskless price p0 and the optimal risky price p∗ are given by

R′(p0) = 0 and π′(p∗) = 0 respectively. From the envelope theorem,

π′(p) =
∂φ(z, p)
∂p

|z=z∗(p).

Let z∗ = z∗(p∗). We have that

0 = π′(p∗) = R′(p∗)(1− u(z∗)w(p∗))−R(p∗)u(z∗)w′(p∗)− d′1(p∗)v(z∗),

where w(p) = d1(p)
d1(p)E[ε]+d2(p) . Therefore,

R′(p∗)(1− u(z∗)w(p∗)) = R(p∗)u(z∗)w′(p∗) + d′1(p∗)v(z∗).

Note that 1− u(z∗)w(p∗) > 0.

If both d1(p) and w(p) are decreasing, then R′(p∗) ≤ 0 and the quasi-concavity of R(p) implies

that p∗ ≥ p0. On the other hand, if both d1(p) and w(p) are increasing, then R′(p∗) ≥ 0 and the

quasi-concavity of R(p) implies that p∗ ≤ p0. As a consequence, we have p∗ ≥ p0 for the additive

demand model in which d1(p) = 1 and d2(p) is decreasing and p∗ ≤ p0 for the multiplicative demand

model in which d2(p) = 0 and d1(p) is decreasing.

To provide some intuition to the interesting comparison between the additive demand and the

multiplicative demand, observe that price provides an opportunity to reduce the risk of overstocking

and understocking as a result of demand uncertainty. Thus, it seems reasonable to choose a price

to reduce both measures of demand uncertainty if possible: the demand variance d2
1(p)σ2 and

coefficient of variation w(p)σ = d1(p)σ
d1(p)E[ε]+d2(p) , where σ is the standard deviation of ε. If both
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measures are decreasing in price, one can expect the optimal risky price to be no less than the

optimal riskless price. On the other hand, if both measures are increasing in price, the opposite is

true.

The newsvendor model with price dependent demand was first proposed by Whitin (1955).

He also sketches a sequential procedure to calculate the optimal price (first compute the optimal

ordering quantity for a give price and then find the optimal solution of the induced expected profit

function).

Papers that touch upon conditions for the existence and uniqueness of the optimal solution and

concavity properties of the expected profit include Zabel (1970) (multiplicative demand), Young

(1978) (mixture demand), Polatoglu (1991) (general demand), Petruzzi & Dada (1999) (both addi-

tive and multiplicative demand), Yao et al. (2006) (both additive and multiplicative demand), Chen

et al. (2006) (additive demand), Song et al. (2009) (multiplicative demand) and Kocabiykoglu &

Popescu (2009) (general demand). Among them, Yao et al. (2006) provide a nice summary of dif-

ferent conditions in many papers and also derive the conditions presented here. Chen et al. (2006)

provide conditions for the quasi-concavity of the single period induced expected profit as a function

of the order-up-to level for the additive demand case while Song et al. (2009) derive conditions for

the concavity of the single period induced expected profit as a function of the order-up-to level for

the multiplicative demand case. These conditions, to be discussed in details in the next subsection

on multi-period stochastic models, involve assumptions on the expected demand and the failure

rate function of the underlying random variable. Roughly speaking, they impose conditions that

are slightly stronger than the concavity of the expected demand and assume that the underlying

random variable satisfies properties closely related to the increasing failure rate requirement.

Recognizing that existing results and techniques depend heavily on how uncertainty is in-

corporated in the demand model, Kocabiykoglu & Popescu (2009) attempt to propose a unified

framework for general demand by introducing a new concept called the elasticity of lost sales. Let

q(p, x) be the probability that the demand d(p, ε) exceeds the inventory level x for a given p and

x. The elasticity of lost sales is defined for a selling p and inventory level x as −p∂q(p,x)
∂p /q(p, x).

Kocabiykoglu & Popescu (2009) illustrate that the concavity and submodularity of the expected

profit and monotonicity of the optimal solutions are characterized by the monotonicity or bounds

on the elasticity of lost sales, which are satisfied by most demand models analyzed in the literature.
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A different demand model is proposed in Raz & Porteus (2006), in which the stochastic demand

is specified by several fractiles. These fractiles are represented as piecewise linear functions of the

selling price (with the same breakpoints for all fractiles). They argue that such demand models are

tractable and allow them to capture certain settings in which additive or multiplicative demand is

not appropriate, for instance, settings in which the lowest demand variability comes at either very

high or very low prices or settings in which one has a good understanding of the market demand

for a middle range of prices. They also illustrate that the optimal price may not be a monotone

function of the ordering cost in contrast to most single period inventory and pricing models.

The relation between the optimal riskless price and the optimal risky price was first illustrated

in Mills (1959) for the additive demand case. The multiplicative demand case was proven by Karlin

& Carr (1962). They also extend their single period model to an infinite horizon setting, in which

a single constant price is specified at the beginning of the planning horizon, and prove that the

optimal price lies between the optimal riskless price and the optimal risky price (both for a single

period) if demand is multiplicative with a uniformly distributed perturbation or demand is additive.

Hempenius (1970) studies a problem similar to the one in Mills (1959) with an additive de-

mand and obtains the same result regarding the optimal risky and riskless prices. The author also

investigates how ordering and pricing decisions depend on the variance of the additive random per-

turbation. In addition, models taking into account risk aversion (using a mean-variance utility) and

additive price-dependent random perturbation are proposed (most results are derived for specific

demand distributions and sometimes numerically).

The comparison of the optimal riskless and risky prices for the mixture demand model pre-

sented here is carried out in Young (1978). Young (1979) extends this demand model by introducing

a new parameter b in the function d1(p), which the author argues represents competitiveness. The

author performs comparative statics analysis of the optimal price, expected sales and average in-

ventory and shortage costs with respect to the parameter b and illustrates uncertainty may lead to

results different from its deterministic counterpart.

The intuition explaining the observation of the optimal riskless and risky prices under different

demand models is offered in Zabel (1972) and Petruzzi & Dada (1999). The latter paper introduce

a new price benchmark, referred to as the base price. For a given value of z, the base price is defined
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as the price maximizing the profit from expected sales, i.e., the optimal solution of the problem

Max p(p− c)(d1(p)E[min(z, ε)] + d2(p)).

Petruzzi & Dada (1999) illustrate that the optimal risky price can be interpreted as the sum

of the base price and a (nonnegative) premium for both the additive and multiplicative cases.

Interestingly, in the additive demand case, the premium is zero since for a given z the expected

understocking and overstocking are independent of the price p.

All the above papers assume that unsatisfied demand is lost. Simchi-Levi et al. (2005) analyze

a single period inventory and pricing model in which unsatisfied demand is filled through an emer-

gency order with a cost higher than the regular ordering cost c. In this case, the expected profit

function is well-behaved and existence and uniqueness can be warranted under general assumptions.

Simchi-Levi et al. (2005) prove that for the multiplicative demand case, the optimal risky price is

no less than the optimal riskless price, which is consistent with the lost sales models. However, for

the additive demand case, the optimal risky price equals the optimal riskless price.

Most papers assume that demand depends only on price but not a firm’s inventory level. Dana

& Petruzzi (2001) depart from this assumption by modeling customers’ choice explicitly in view

of product availability and their outside options, which leads to stochastic price and inventory

dependent demand. They illustrate that by internalizing the inventory effect on demand, the firm

would order more, set a higher fill rate and earn higher expected profit.

Several papers incorporate risk aversion into single period inventory and pricing models.

Among them, Leland (1972) develops a model of an expected utility maximizing firm facing random

demand whose relation with price is specified as an implicit function. Depending on whether the

ordering and pricing decisions are made before or after the realization of the underlying uncer-

tainty, Leland (1972) analyzes four models with different postponement strategies and compares

risk averse models with their risk neutral counterparts.

Agrawal & Seshadri (2000) analyze a model similar to the one in Simchi-Levi et al. (2005).

However, they assume that the decision maker is risk averse and use expected utility as the risk

measure. They prove that for the multiplicative demand case, the risk averse decision maker sets

a higher price and orders less compared with its risk neutral counterpart, while for the additive

demand case, the risk averse decision maker sets a lower price. A different risk averse model is
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analyzed in Chen et al. (2009b), in which risk is measured by the conditional value-at-risk, a risk

measure commonly used in finance literature. Focusing on the lost sales model, they derive results

regarding optimal risky price and riskless price that are consistent with risk neutral models. They

also illustrate that the more risk averse the decision maker is, the smaller the optimal price will

be (for both additive and multiplicative demand case), and the smaller the ordering quantity will

be (for multiplicative demand case). A different and yet related model is proposed in Lau & Lau

(1988) in which the objective is to maximize the probability of attaining a target profile.

Research on multi-product models is limited. This is not very surprising given the analytical

complexity even for single product models. Aydin & Porteus (2008) further demonstrate the an-

alytical complexity through a single period inventory and pricing problem with multiple products

under price-based substitution and lost sales assumptions. They assume that a product’s demand

is a deterministic function of the prices with a multiplicative random perturbation, in which the de-

terministic functions are given by the attraction model from the marketing literature. Specifically,

the demand for product i is given by di(p) = vi(pi)
v0+

∑n
j=1 vj(pj)

εi, where n is the number of prod-

ucts, v0 is a positive scalar and for i = 1, 2, · · · , N , vi(pi) are strictly decreasing in pi and εi are

identically and independently distributed nonnegative random variables with an increasing failure

rate cumulative distribution function. Aydin & Porteus (2008) show that the objective function is

not necessarily jointly quasi-concave in prices even for deterministic demand. Interestingly, under

some technical conditions on the functions vi, i = 1, 2, . . . , N , they prove that their model admits

a unique solution to the first order optimality condition and thus the solution is optimal.

Finally, we mention several papers that compare different postponement strategies in single

period inventory and pricing models. van Mieghem & Dada (1999) analyze two stage decision mod-

els (under monopoly, duopoly, or oligopoly with perfect competition) involving capacity, inventory

and pricing decisions of a single product, Bish & Wang (2004) and Chod & Rudi (2005) study

resource investment in settings with flexible resources and responsive price, and Tomlin & Wang

(2008) focus on a co-production system with two products.
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Multi-period Models with Convex Ordering Costs

In this and the next subsections, we review stochastic inventory and pricing models with multiple

replenishment opportunities. The focus is on characterizing the structure of the optimal policies

that provides important managerial insights and facilitates efficient computation. We first present

a general model and then review relevant papers on models with convex ordering costs in this

subsection and on models with concave ordering costs in the next subsection.

The sequence of events of the multi-period stochastic model is similar to its deterministic

counterpart presented in the previous section. That is, at the beginning of period t (t = 1, 2, . . . , T ),

the firm decides on its order quantity and selling price for period t. Demand in period t is assumed

to be a stochastic function of the current period selling price pt, denoted as dt(pt, εt), and is realized

after the ordering and pricing decision for period t is made. Let xt be the inventory level at the

beginning of period t, just before placing an order. Similarly, yt is the inventory level at the

beginning of period t after placing an order. For tractability, order lead time is assumed to be

zero.Thus, the ordering cost is a function of the order quantity yt − xt and denoted as Ct(yt − xt).

Since demand is stochastic, it is unlikely that all demands can be filled immediately from

on hand inventory. In this case, unsatisfied demand is assumed to be either backlogged or lost;

both the backlogging model and the lost sales model are commonly used in the literature. In the

backlogging model, the selling price for the backlogged demand is the price in the period at which

the demand occurs. Let x be the inventory level carried over from period t to period t + 1. A

cost ht(x) is incurred at the end of period t which represents inventory holding cost when x > 0

and backorder cost or lost sale penalty cost if x < 0 depending on whether unsatisfied demand is

backlogged or lost. ht(x) is usually assumed to be convex.

The objective is to decide on ordering and pricing policies to maximize total expected profit

over the entire planning horizon. That is, to choose yt and pt to maximize

E

[
T∑
t=1

−Ct(yt − xt)− ht(yt − dt(pt, εt)) + ptdt(pt, εt)

]
, (6)

where xt+1 = ψ(yt − dt(pt, εt)). Here, ψ(x) = x for the backlogging model and ψ(x) = max(x, 0)

for the lost sales model.

We denote by vt(x) the maximum expected profit starting from the beginning of time period
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t with inventory level x to the end of the planning horizon (vt(x) is referred to as the profit-to-go

function). We write a recursion of vt(x) as a dynamic program as follows. For t = T, T − 1, . . . , 1,

vt(x) = Max y≥x,p
t
≤p≤p̄t −Ct(y−x)−E[ht(y−dt(p, εt))]+E[p(y−ψ(y−dt(p, εt)))]+E[vt+1(ψ(y−dt(p, εt)))],

(7)

where the first three terms represent the ordering cost, the expected inventory holding and back-

logging (or lost sales penalty) cost and the expected revenue incurred at period t respectively, and

the last term is the profit-to-go function. We assume for simplicity that vT+1(x) = 0, that is, at

the end of the planning horizon, no cost is incurred for lost sales and no salvage value is imposed

on leftover inventory.

In this subsection, we assume that the ordering cost functions Ct(·) are convex, which im-

plies that the marginal purchasing cost increases as one orders more. Under this assumption, the

literature mainly focuses on developing conditions under which the so-called base-stock list-price

type policy is optimal. In a base-stock list-price policy, at each period there is a base-stock level

such that an order is placed to raise the inventory level to the base-stock level and a list price is

charged if the initial inventory level is below the base-stock level, otherwise no order is placed and

a discount is offered. In addition, the higher the initial inventory level, the deeper the discount.

When the ordering cost functions are linear, a base-stock list-price policy is optimal under various

technical conditions on demand functions and random perturbations.

When the ordering cost functions are general convex functions, such a simple policy is usually

not optimal. However, an extended base-stock list-price policy is optimal under various technical

conditions on demand functions and random perturbations. In such a policy, at each period there

exists a critical point, say x∗, such that no order is placed when the initial inventory level x at the

beginning of this period is above x∗, while for x below x∗, the order-up-to level y∗(x) is increasing

in x; the price p∗(y∗(x)) depends on x only through the order-up-to level y∗(x) and is decreasing in

x. Here the critical point, the order quantity and the order-up-to level are usually time dependent.

The extended base-stock list-price policy can be refined when the ordering cost functions are convex

and piecewise-linear.

A typical approach to prove the optimality of the base-stock list-price type policy is to ar-

gue that certain concavity properties on the value functions vt can be preserved under dynamic

programming recursions. To illustrate the idea, consider the case in which any unfilled demand is
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backlogged and the expected demands are linear in prices. In this case, single period expected profit

functions are concave. If vt+1(·) is concave, then problem (7) has a concave objective function with

linear constraints and thus vt(x) remains concave. One can also show that the objective function

is supermodular in (x, y,−p) and the feasible set is a lattice. Thus, the optimal order-up-to level

y∗(x) is increasing in x while the the optimal price p∗(y∗(x)) is decreasing in x. That is, the optimal

policy follows the extended base-stock list-price policy, which reduces to the base-stock list-price

policy for linear ordering costs. The same structural policy remains optimal if the demand functions

have the forms d(p)ε1 + ε2 with ε1 and ε2 being two random perturbations and at each period the

expected revenue is a concave function of the expected demand. The idea is to reformulate prob-

lem (7) by replacing the price variable with a new variable representing the expected demand (for

this purpose we assume that there is a one-to-one correspondence between price and its associated

expected demand).

Problem (7) with linear ordering costs and backlogged demand is analyzed in Federgruen

& Heching (1999). They use the mixture demand model dt(p, εt) = d1,t(p)εt + d2,t(p). They

further assume that one period expected inventory holding and backlogging cost is jointly convex

in inventory level and selling price and illustrate that this assumption is satisfied if d1,t(p) and

d2,t(p) are linear in p. They prove that a base-stock list-price policy is optimal. Several extensions

are discussed. In one extension, price is only allowed to markdown. In this case, again the optimal

policy is given by a base stock list price policy with the base stock level dependent on the price of

the previous period. They consider another extension in which capacity constraints are imposed

for ordering quantities and prove that a modified base stock list price policy is optimal. In such

a policy, at each period, when the initial inventory level is below the base stock level, an order

would be made to raise the inventory level to the base stock level if possible. Otherwise a full

capacity would be ordered. Federgruen & Heching (1999) further prove that similar structural

results can be extended to models with emergency orders (instead of backlogging) and to infinite

horizon models under both the discounted profit and long run average profit criteria. However,

models with nonzero lead time for ordering impose a significant challenge, for which they propose

heuristics.

Federgruen & Heching (1999) develop an efficient value iteration method to compute optimal

policies. Based on data collected from specialty retailer of high end women’s apparel, they conduct
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an extensive numerical study to demonstrate the benefits of dynamic pricing strategies over static

strategies and the impact of demand uncertainty and price elasticities on optimal policies and their

corresponding profits and observe that dynamic pricing strategies may bring significant benefits

even in a stationary environment.

Problem (7) with lost sales is more complicated. Indeed, strong technical conditions on both

the expected demands and the distributions of the random perturbations are usually needed for the

concavity of the single period expected profit. Mills (1962) recognizes the need and the difficulty

of extending the single period model in Mills (1959) to multi-period settings and develops a single

period approximation.

Miercort (1968) analyzes problem (7) with linear ordering costs. The expected demand is

assumed to be decreasing, convex and twice differentiable in price. Under some strong conditions

on the demand density functions to ensure the concavity of the single period expected profit,

Miercort (1968) proves that a base stock list price policy is optimal.

Ernst (1970) assumes that all costs are linear, demand is additive and linear in price in problem

(7). In addition, the distribution of the underlying additive random variable belongs to the class of

Pólya frequency functions of order 2 (PF2), which includes common distributions such as uniform,

normal and truncated normal as special cases. With additional assumptions on system parameters,

the author proves that the optimal policy is unique and follows a base-stock list-price policy 8.

Ernst (1970) extends the results to infinite horizon models, conducts sensitivity analysis of the

optimal parameters and compares the optimal policies of the model with uncertain demand and its

deterministic counterpart.

Zabel (1972), motivated by observations made from a simulation study in Nevins (1966) on

multi-period inventory and pricing models, analyzes a special case of the general model (6) with

stationary problem parameters under the assumption that the ordering cost is convex, the inventory

holding cost is linear and unsatisfied demand is lost without incurring a penalty cost. The author

demonstrates the difficulty of extending the uniqueness properties of optimal solutions from a single

period model in Zabel (1970) to multi-period settings. Focusing on an additive demand model in
8Ernst (1970) pays special attention to the possibility of having negative values derived from additive demand

models and illustrates that a list price policy may fail to be optimal if the additive demand model results in negative

values at the optimal policy.
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which the expected demand is concave in the selling price and the underlying random variable is

exponentially or uniformly distributed and imposing some additional technical conditions, Zabel

(1972) argues that the profit-to-go function vt(x) is concave and proves that the extended base-stock

list-price policy is optimal and in addition the optimal order quantity is decreasing in x. The author

also makes intra-period comparison of the optimal policy parameters and performs comparative

statics analysis. For instance, Zabel (1972) proves that the critical point x∗t is increasing over time

and the optimal order-up-to level y∗t , the optimal order quantity q∗t and the optimal price p∗t are

all decreasing in the unit holding cost for x below x∗t .

Focusing on additive demand, Thowsen (1975) proposes a model similar to Zabel (1972) with

linear ordering cost. The author assumes that unsatisfied demand can be partially backlogged

which makes the lost sales and full backlogging cases as two extreme cases in a unified model, and

a fraction of inventory may deteriorate from one period to the next. Some assumptions on cost

and expected demand are also imposed, which essentially require that there is no motive to hold

inventory, stock out and backlog demand, the inventory system is profitable and the price constraint

will not be binding (i.e., not attain its upper bound). Under these assumptions, Thowsen (1975)

identifies conditions under which a base-stock list-price policy is optimal.

As acknowledged by Thowsen (1975), these conditions are hard to verify in general. However,

they are satisfied in two settings. The first is the backlogging case with convex inventory holding

and backlogging cost and concave expected demand (as a function of price). The second setting is

the partial backlogging case as well as the lost sales case with convex inventory holding, linear stock

out cost, linear expected demand and a PF2 distribution for the additive random perturbation. In

these two settings, the profit-to-go function vt(x) is shown to be concave. The author also allows

revenue to be collected several periods after demand occurs or is satisfied (customers still pay the

price of the period at which their demand occurs) and proves that the same structural results hold

under similar conditions.

Chan et al. (2006) study a multi-period joint pricing and production model under a general,

non-stationary stochastic demand function with a discrete menu of prices. In their model, the

available production capacity is limited and unmet demand is lost. They also allow discretionary

sales, that is, inventory may be set aside to satisfy future demand even if some present demand is

lost. They analyze and compare delayed production strategies (in which pricing is determined up
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front while production is determined at the beginning of each period) and delayed pricing strategies

(in which production is determined up front while pricing is determined at the beginning of each

period). Chan et al. (2006) describe policies and effective heuristics for the strategies based on

deterministic approximations. Their computational study illustrates that delayed production is

usually better than delayed pricing except sometimes when capacity is tight.

Almost all papers in the inventory and pricing literature assume that the yield is certain. One

exception is Li & Zheng (2006) who analyze a model similar to Federgruen & Heching (1999) but

with additive demand and stochastic proportional yield (i.e., the received quantity equals the order

quantity multiplied by a nonnegative random variable). Similar to inventory models with random

yield but without pricing decisions (see, for instance, Zipkin, 2000), they prove that the extended

base-stock list-price policy is optimal and in addition the optimal order quantity is a decreasing

function of the initial inventory level. They further study the operational effects of uncertain yield

and prove that, in the single-period case, the critical number is independent of the yield variability,

while in the multi-period case, it is higher in a system with uncertain yield than in the one with

certain yield. Moreover, the system with uncertain yield always charges a higher price.

Allon & Zeevi (2009) develop a model that integrates capacity investment (or disinvestment),

production (inventory), and price decisions. In their model, at the beginning of each period, a

capacity adjustment is first determined, which is then followed by the production and pricing deci-

sions. Demand is additive with expectation linear in price, and unsatisfied demand is backlogged.

Inventory holding and backlogging cost is assumed to be convex in leftover inventory level. All

other costs, including ordering cost, and capacity investment cost and disinvestment cost, are lin-

ear. They prove that the capacity decision follows the so called target interval policy. In such

a policy, at each period, there exists two numbers L and U with L ≤ U such that the following

action is taken: invest and raise capacity to L if the initial capacity level is lower than L; disinvest

and decrease capacity to U if the initial capacity level is higher than U ; otherwise keep the current

capacity level. In their model, the two numbers L and U may depend on time and initial inventory

level. The optimal production and pricing decision follows the modified base-stock list-price policy

with the policy parameters dependent on capacity level. They also consider a different case in which

inventory cannot be carried over from one period to the next and price can only be marked down.

In this case, they prove that the optimal capacity decision takes the form of price dependent target
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inventory policy and the two target parameters are non-increasing in price level of the previous

period.

Qi (2010) analyzes an integrated inventory and pricing model with supply capacity uncertainty

and linear ordering cost. She illustrates that the base-stock list-price policy is not optimal even

under deterministic demand. Assuming additive demand, she proves that in the optimal policy,

there exists a reorder point such that an order is placed when the inventory level is below the

reorder point, and the optimal order and price are chosen to achieve a constant target safety stock.

Boyaci & Ozer (2009) consider pricing strategy in acquiring demand information to plan for

capacity. They study the joint benefit of acquiring information for capacity planning through

advance selling and revenue management of installed capacity through dynamic pricing.

Similar to Chen & Hu (2008), Chen et al. (2008) incorporate price adjustment costs into an

integrated inventory and pricing model but with stochastic demand. Their model is similar to

the one analyzed in Federgruen & Heching (1999), except that at each period, a price adjustment

cost is incurred if the current period price is different from the price of the previous period, which

may involve a fixed component independent of the magnitude of the price change and a variable

component proportional to the magnitude of the price change. Acknowledging the complexity of

the general model, Chen et al. (2008) analyze two special cases: a model without fixed ordering

cost and fixed price adjustment cost and a model with fixed price adjustment cost and no inventory

carryover. For each case, they characterize the structure of the optimal policy.

For the model without fixed ordering cost and fixed price adjustment cost, Chen et al. (2008)

prove that the optimal inventory policy follows a base-stock-type policy, in which the base-stock

level is a non-increasing function of the price in the previous period, whereas the optimal price fol-

lows a target interval policy, in which the two target parameters are non-increasing functions of the

initial inventory level. For the model with fixed price-change costs and no inventory carryover, Chen

et al. (2008) employ the concepts of k-concavity and symmetric k-concavity to provide a character-

ization of the structure of the optimal pricing policy for their model which allows for markdown,

markup or bi-directional price changes. For the general problem, they develop an intuitive heuristic

policy to manage inventory and set selling prices. Compared with the optimal policy, which is likely

to be very complicated, their heuristic policy is amenable to practical implementation. In addition,

their numerical study demonstrates that it is quite effective.
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A few works start to incorporate reference price effects into stochastic inventory and pricing

models. In this case, the dynamic program (7) has to be augmented to include the reference price

as a state variable in addition to the inventory level, which significantly complicates the analysis

of the problem. Indeed, the single period expected profit is not a concave function in general.

Focusing on additive demand, Gimpl-Heersink (2008) proves that a reference price dependent base-

stock list-price policy is optimal under general assumptions for a single period setting and under

more restrictive assumptions for a two period setting. Their numerical study illustrates that with

the presence of reference price effects, the integrated inventory and pricing model brings consider-

able benefits over a procedure that determines price decisions and ordering decisions sequentially.

By introducing a transformation technique, Chen & Zhang (2009b) prove that a reference price-

dependent base-stock policy is optimal in multi-period settings with both additive and multiplica-

tive demands. They also analyze the convergence of the price trajectory in the infinite horizon

setting and characterize the limit. Guler et al. (2010) analyzes a similar model where customers

are loss-averse or loss-neutral with relative difference reference effects and provide conditions under

which a state-dependent order-up-to policy is optimal.

Chen & Zhang (2010) introduce a stochastic term in reference price evolution dynamics to

capture possible modeling errors. They derive an explicit solution for the optimal steady-state

price in a continuous time model and illustrate that the optimal steady-state price in the setting

with stochastic reference price dynamics is always higher than the corresponding price in the setting

without stochasticity.

All the above models assume that inventory is managed at a single location. Federgruen &

Heching (2002) extend their earlier work in Federgruen & Heching (1999) to a distribution system

with a distribution center serving several retailer stores. At the beginning of each period, the

distribution center, which does not hold any inventory, will place an order which will then be

allocated to the retailer stores after an order lead time and an allocation lead time. At the same

time, a single price across all retailer stores is determined. Federgruen & Heching (2002) present

a tractable approximation of the stochastic model, which admits an optimal policy with a simple

structure, and carry out an extensive computational study to illustrate the benefits of dynamic

pricing strategies under a variety of different system parameters.

A few papers analyze multiple products in the stochastic setting. Zhu & Thonemann (2009)
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extend the model in Federgruen & Heching (1999) to the case with two substitutable products in

which demand of each product depends linearly on the prices of both products. They prove that the

optimal inventory policy behaves similarly to the base-stock policy for the one-product problem:

when the starting inventory levels of both products are low, the optimal decision is to order both

products; when the starting inventory levels of both products are high, the optimal decision is not

to order; when one product has a high starting inventory level and the other has a low starting

inventory level, the optimal decision is to order only the product with the low inventory level.

In addition, the inventory policy of one period is given by a base stock policy in which the base

stock level is non-increasing in the initial inventory level of another product. They also provide a

characterization of the optimal pricing and illustrate that in their model, the base-stock list-price

policy, which is optimal for the single period model in Federgruen & Heching (1999), may fail to

be optimal.

Ceryan et al. (2009) extend the model in Zhu & Thonemann (2009) by incorporating both

dedicated and flexible production capacities for the two substitutable products. They characterize

the structure of the optimal production and pricing decisions and explore the effects of various

problem parameters on the optimal policy. Song & Xue (2007) analyze a model with multiple

substitutable products with more general demand functions. They provide a characterization of

the structure of the optimal policy and develop an algorithm to compute it. By developing a

preservation result of submodularity property under an optimization operation in two dimensional

space, Chen et al. (2010b) characterize the structure of the optimal production and pricing policy

for models with either two complementary products or two substitutable products. In the case

with two substitutable products, they provide refined structural property and significantly simplify

some of the proofs in Zhu & Thonemann (2009), Ceryan et al. (2009) and Song & Xue (2007).

Multi-period Models with Concave Ordering Costs

In the previous subsection we assume that the ordering cost is either convex or linear. However,

in some practical settings, the ordering cost can be concave, as a result of economies of scale or

incremental discounts provided by suppliers. Such cost structures impose a significant challenge for

multi-period models because the value functions vt(x) are not concave anymore and base-stock list-

price policies are not optimal either. The literature mainly focuses on developing conditions under
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which an (s, S,p) type policy is optimal when the ordering cost involves a fixed cost component

representing economies of scale and a variable cost component. In an (s, S,p) policy, inventory is

managed based on an (s, S) policy: if the inventory level at the beginning of period t is below the

reorder point, st, an order is placed to raise the inventory level to the order-up-to level, St; otherwise,

no order is placed. The selling price of the product depends (not necessarily monotonically) on the

initial inventory level at the beginning of the period.

Interestingly, the structural results and the analysis depend heavily on how uncertainty is

incorporated into demand models. Consider problem (7) in which the ordering cost includes both

a fixed cost independent of the order quantity and a variable cost proportional to the quantity and

unsatisfied demand is backlogged. Assume that for any period t, the demand function satisfies

dt(pt, εt) = ε1tdt(pt) + ε2t, where the random perturbations, εt = (ε1t, ε2t), are independent across

time satisfying ε1t ≥ 0, E{ε1t} = 1 and E{ε2t} = 0. Furthermore, the function dt(p) is continuous

and strictly decreasing and the expected revenue dpt(d) is concave in the expected demand d at

period t, where pt(d) is the inverse function of dt(p) 9.

When the demand process is additive, i.e., ε1t = 1, one can show that at an optimal policy,

the higher the inventory level at the beginning of time period t, the higher the expected inventory

level at the end of period t. Though the value function vt(x) is not concave, this result allows one

to show by induction that vt(x) is a k-concave10 function of x and the optimality of an (s, S,p)

policy follows directly from k-concavity.

Unfortunately, the (s, S,p) policy is not necessarily optimal for general demand models. To

characterize the optimal policy in this case, a new concept, symmetric k-concavity11 is needed.
9Since d = E{dt(pt, εt)} = dt(pt), the expected revenue can be represented as dpt(d).

10The concept of k-convexity is introduced by Scarf (1960) to analyze stochastic inventory models with fixed

ordering cost. A definition of k-convexity, equivalent to the original one proposed by Scarf, is as follows: a real-valued

function f is called k-convex for k ≥ 0, if for any x0 ≤ x1 and λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + λk.

A function f is k-concave if −f is k-convex.
11A real-valued function f is called symmetric k-convex for k ≥ 0, if for any x0, x1 and λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + max{λ, 1− λ}k.

A function f is called symmetric k-concave if −f is symmetric k-convex.
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It can be shown that for general demand processes, even though vt(x) may fail to be k-concave,

it is symmetric k-concave and consequently an (s, S,A,p) policy is optimal. In such a policy,

the optimal inventory strategy at period t is characterized by two parameters (st, St) and a set

At ∈ [st, (st+St)/2], possibly empty depending on the problem instance. When the inventory level

xt at the beginning of period t is less than st or xt ∈ At, an order of size St−xt is made. Otherwise,

no order is placed. Price depends on the initial inventory level at the beginning of the period.

The above model was first analyzed by Thomas (1974). Although a counterexample is con-

structed to show that an (s, S,p) policy may fail to be optimal when prices are restricted to a

discrete set, the author conjectures that an (s, S,p) policy is optimal under fairly general condi-

tions if prices in an interval are under consideration.

Chen & Simchi-Levi (2004a) prove that the (s, S,p) policy postulated by Thomas (1974) is

indeed optimal when the demand process is additive and construct an example which shows that

the value function vt(x) may not be k-concave and an (s, S,p) policy may fail to be optimal when

the demand process is multiplicative. The concept of symmetric k-concavity12 and the (s, S,A,p)

policy are introduced in Chen & Simchi-Levi (2004a) for the multiplicative demand case. Although

an (s, S,A,p) policy may not be optimal in settings with general demand, surprisingly, Chen &

Simchi-Levi (2004b) show by employing the concept of symmetric k-concavity that a stationary

(s, S,p) policy is optimal for the infinite horizon model under either the discounted profit or the

average profit criterion. This optimality result also holds under the average profit criterion if the

single period maximum expected profit function, Q(x) = maxp∈[p,p] π(x, p), is quasi-concave, where

π(x, p) is the single period expected profit for a given inventory level x and price p. However, they

demonstrate through one example that if prices are restricted to take values from a discrete set, a

stationary (s, S,p) policy may not be optimal anymore.

Yin & Rajaram (2007) present a generalization of the model in Chen & Simchi-Levi (2004a) to

allow for Markovian modulated demand. For Chen and Simchi-Levi’s infinite horizon model with

the average profit criterion, Feng & Chen (2004) prove that the structure of the optimal policy

holds under slightly relaxed demand assumptions and develop an efficient algorithm to find the
12Building upon the concepts of k-convexity and symmetric k-convexity, Ye & Duenyas (2007) propose the so-called

(k, q)-convexity, which finds application for capacity investment problems with two-sided fixed-capacity adjustment

costs (see Ye & Duenyas, 2007) and stochastic cash balance problems with fixed costs (see Chen & Simchi-Levi, 2009).
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parameters of the optimal policies. On the other hand, Zhang & Fu (2005) derive sample path

derivatives that can be used in a gradient-based algorithm for determining the optimal stationary

(s, S,p) policy parameters in a simulation-based optimization procedure.

Focusing on additive demand, Chen et al. (2010c) analyze problem (7) with concave piecewise-

linear ordering cost. Under the assumption that the additive random perturbation follows a positive

Pólya or uniform distribution, they prove that the value functions vt(x) belong to the class of quasi-

k-concave functions13 by establishing a new preservation property of quasi-k-concavity, which says

that under mild technical conditions, maxd[α(d)+β(y−d)] is quasi-K-concave if the one-dimensional

functions α(·) and β(·) are concave and quasi-K-concave respectively. Quasi-k-concavity of the

value functions implies that a generalized (s, S,p) policy is optimal. In such a policy, inventory

is managed based on a generalized (s, S) policy. That is, there is a sequence of reorder points si

and order-up-to levels Si (both are increasing in i) such that if the starting inventory level is lower

than the reorder point si but higher than si+1, an order is placed to raise its inventory level to Si.

The optimal price is set according to the inventory level after replenishment. For the special case

with two suppliers, one with only variable cost while the other with both fixed and variable costs,

they prove that the (refined) generalized (s, S,p) policy is still optimal when the additive random

component in the demand function has a strongly unimodal density.

Polatoglu & Sahin (2000) analyze problem (7) with lost sales. They show that an (s, S,p)

policy is not optimal in general and provide some conditions for the optimality of an (s, S,p)

policy, which unfortunately may be hard to verify.

In an attempt to attack lost sales models, Chen et al. (2006) make the following assumptions:

first, demand is additive, and in the additive demand process d(p) + β, the expected demand d(p)

is decreasing and concave in p, and 3d
′′

+ pd
′′′ ≤ 0 for p ∈ [c, p], where c is the variable ordering

cost and p is the upper bound imposed on p; second, the failure rate function of the underlying

random variable β with probability density function f and cumulative distribution function F ,

r(u) = f(u)/(1 − F (u)), satisfies r′(u) + [r(u)]2 > 0 for u in the support of β; third, all cost and

demand parameters are stationary; fourth, both the inventory holding cost and the stock out cost
13A one-dimensional function f is quasi-k-concave if for any x1 ≤ x2 and λ ∈ [0, 1], f((1 − λ)x1 + λx2) ≥

min{f(x1), f(x2) − k}. It was introduced by Porteus (1971) to analyze stochastic inventory models with concave

ordering costs.
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are linear, and the salvage value at the end of the planning horizon is equal to the variable ordering

cost. Under these assumptions, they prove that an (s, S,p) policy is optimal for their multi-period

model. They also illustrate the difficulty of extending their approach to models with a salvage value

different from the variable ordering cost and to models with multiplicative demand.

Huh & Janakiraman (2008) propose an alternate approach to prove the optimality of an

(s, S,p) for problem (6) with stationary cost and demand parameters. In their model, the demand

takes a more general form: d(p, ε), where d(p, ε) is monotone and concave in p for almost every

value of the underlying uncertainty ε (their demand actually allows for other decisions that may

influence demand). They impose two conditions on the single period expected profit function

π(x, p). Let y∗ be the maximal point of the single period maximum expected profit Q(x). Their

first condition requires that Q(x) is quasi-concave, and their second condition requires that for

any y∗ ≤ y1 < y2 and any given price p2, there exists a price p1 such that π(y1, p1) ≥ π(y2, p2)

and ψ(y1 − d(p1, ε)) ≤ max{y∗, ψ(y2 − d(p2, ε))} for any realization of ε, where ψ(x) = x for the

backlogging case and ψ(x) = max(x, 0) for the lost sales case as defined earlier. Roughly speaking,

their first condition implies that the closer the inventory level (after ordering) is to y∗, the higher

profit the system can generate in a single period, and their second condition implies that if one starts

with a better inventory position (i.e., an inventory position closer to y∗), one can generate more

expected profit at the current period and end up at a better inventory position at the beginning of

the following period (i.e., an inventory position closer to y∗ or smaller than y∗ so that the inventory

level can be raised to y∗ with one order) simultaneously.

Under the above two conditions, Huh & Janakiraman (2008) prove that a stationary (s, S,p)

policy is optimal for the infinite horizon version of problem (6) under the discounted profit criterion

(their approach does not work for the infinite horizon model under the average profit criterion).

With a third condition, which requires that for any y2 < y1 ≤ y∗ and any given price p2, there

exists a price p1 such that π(y1, p1) ≥ π(y2, p2) and ψ(y1 − d(p1, ε)) ≥ ψ(y2 − d(p2, ε)) for any

realization of ε, they prove that an (s, S,p) policy is optimal for the finite horizon problem (6)

with stationary input data. For the backlogging model, they prove that the joint concavity of the

single period expected profit π(x, p) implies that first two conditions, and present an assumption

that gives rise to the three conditions in the additive demand case. For the lost sales model, they

prove that the assumptions made in Chen et al. (2006) are sufficient for the three conditions.
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Building upon the approach in Huh & Janakiraman (2008), Song et al. (2009) analyze problem

(7) with stationary input data and multiplicative demand d(p)ε. They assume that the expected

demand d(p) satisfies the following conditions: first, d(p) is strictly decreasing and has an increasing

elasticity −pd′(p)d(p); second, d(p)/d′(p) is monotone and concave; third, p+ d(p)/d′(p) is strictly

increasing. In addition, the underlying random variable ε has an increasing failure rate. Under

these assumptions, they prove that the first two conditions in Huh & Janakiraman (2008) hold

and thus a stationary (s, S,p) policy is optimal for the infinite horizon model under the discounted

profit criterion. With additional work, they prove that an (s, S,A,p) policy, optimal for the finite

horizon model with backlogging in Chen & Simchi-Levi (2004a), is also optimal for their finite

horizon model with lost sales and stationary input data.

All the above papers assume a risk neutral decision maker. Chen et al. (2007b) propose a

general framework for incorporating risk aversion in multi-period inventory (and pricing) models,

while Chen & Sun (2007) consider a corresponding infinite horizon model. They show that the

structure of the optimal policy for a decision maker with additive exponential utility functions is

almost identical to the structure of the optimal risk neutral inventory (and pricing) policies, and

demonstrate computationally that the optimal policy is relatively insensitive to small changes in the

decision maker’s level of risk aversion. Interestingly, since the additivity property of the expectation

operator cannot be extended to risk averse setting (involving certainty equivalent operator), the

proof approaches in Chen & Simchi-Levi (2004b) and Huh & Janakiraman (2008), built upon

additivity of the expectation operator, may not be extended to analyze their infinite horizon risk

averse model and thus they take a different approach to prove the optimality of the stationary

(s, S,p) policy.

Several papers analyze continuous review models with fixed ordering cost. Under the unit

demand assumption (i.e., each arrival requests a single unit item), Feng & Chen (2002) prove that

the optimal policy has a simple structure under the infinite horizon long run average profit criterion.

Chen & Simchi-Levi (2006) subsequently generalize their model and results to allow for more

general demand functions and prove that an (s, S,p) policy and a stationary (s, S,p) are optimal

respectively for the finite horizon case and the infinite horizon case under both the discounted

profit and average profit criteria. In the infinite horizon case with average profit criterion, Chen

& Simchi-Levi (2006) prove that the optimal price is a unimodal function of the inventory level.
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Finally, for the same model, Chao & Zhou (2006) develop efficient computational procedures to

find the parameters of the optimal policy.

It is worthwhile to mention several other papers whose focus is not on characterizing the

structure of optimal policies. Chen et al. (2010a) present an inventory and pricing model with

demand modeled as a diffusion process and quantify the profit improvement of dynamic pricing

over static pricing. Other related work includes Lodish (1980) who develops an integrated inventory

and pricing model and Subrahmanyan & Shoemaker (1996) who develop an integrated inventory and

pricing model with demand learning through Bayesian updating. Without focusing on the structure

of the optimal policies, both papers propose to solve their models by brute force backward dynamic

programming. Additional papers on demand learning include Petruzzi & Dada (2002), Aviv &

Pazgal (2005) and Zhang & Chen (2006).

Supply Chain Competition, Coordination and Cooperation

The research on decentralized supply chain systems received significant amount of attention in

the past decade and remains an active area. One stream of this research employs concepts and

methodologies from noncooperative game theory to analyze equilibrium behavior of the supply

chain and supply chain coordination. As the literature on these topics is rapidly growing, we do

not intend to provide a comprehensive review. Instead, our focus is mainly on decentralized supply

chain models (mostly with demand uncertainty) that are either built upon or closely related to the

integrated inventory and pricing models reviewed in the previous sections. For more comprehensive

recent surveys on decentralized supply chain models, we refer to Cachon (2003) and several chapters

in Tayur et al. (1998). We also refer to Kaya & Ozer (2010) in this handbook for a tutorial on supply

chain contracts. Another, more recent and less extensive stream of research employs concepts and

methodologies from cooperative game theory to analyze the stability and formation of coalitions

in supply chain settings. We review several papers on this stream in which inventory and pricing

decisions play an important role.

Levitan & Shubik (1971) provide a duopoly model with two symmetric firms competing on

inventory and price. Even though a pure strategy Nash equilibrium may not exist in a deterministic

model with capacity constraints, they illustrate through an example that it may be restored when
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demand is stochastic and inventory carrying cost is introduced. Since they model explicitly price-

outs (i.e., a firm is driven out of the market) and customer switching in case of stock-outs , their

demand model is very complicated, which prevents them from deriving conditions for the existence

of a pure strategy Nash equilibrium.

Marvel & Peck (1995) consider a single period model consisting of a manufacturer and a retailer

who orders from the manufacturer and makes a pricing decision. Demand is characterized by two

independent random variables: the number of customers and customers’ valuation of the product.

A customer with a valuation no less than the retailer’s price will purchase one unit. They illustrate

that the attractiveness of a return policy to the manufacturer depends crucially on the nature of the

demand uncertainty. Specifically, return policies benefit the manufacturer if the only uncertainty

is over the number of customers. On the other hand, it would induce retailer prices too high to be

beneficial for the manufacturer if the only uncertainty is over customers’ valuation.

Kandel (1996) studies the allocation of responsibility of unsold inventories in a setting with a

manufacturer and a retailer. The author demonstrates that contract choice may depend on (among

several other factors) whether the selling price is a decision variable and who is responsible for

making the pricing decision. For instance, when the retailer decides the selling price, it is possible

to show that in cases with sufficiently high price elasticity, the manufacturer prefers no return

policy, while the opposite is true when the price elasticity is not too high.

Emmons & Gilbert (1998) consider a similar setting but assume that the retailer faces a

(stochastic) multiplicative price-dependent demand. They illustrate that under the assumption

of a linear expected demand and uniformly distributed multiplicative random perturbation, there

exists a return policy which leads to higher profits for both the manufacturer and the retailer.

Chen et al. (2007a) study a setting in which the manufacturer provides a rebate to end cus-

tomers of the retailer. Building upon the multiplicative demand model with an iso-price-elastic

expected demand, they characterize the impact of a manufacturer rebate on the expected profits of

both the manufacturer and the retailer. They show that unless all of the customers claim the re-

bate, the rebate always benefits the manufacturer, while an “instant rebate”, where every customer

redeems the rebate on the spot, does not necessarily benefit the manufacturer.
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Granot & Yin (2005) analyze a model similar to the one in Emmons & Gilbert (1998). They

show that for a zero salvage value and some expected demand functions, return policies may not

benefit the manufacturer. They also investigate the impact of return policies on the supply chain.

In a similar setting, Granot & Yin (2008) analyze the effect of price and order postponement on

the equilibrium values of the contract parameters and profits, while Granot & Yin (2007) allow

the manufacturer and the retailer to commit to contract parameters (wholesale price, retail price,

buy back price and order quantity) sequentially and alternately, and investigate its effect on the

equilibrium profits of the channel and its members.

Cachon & Lariviere (2005) discuss different contracts in single period supply chain settings

involving a supplier and a single retailer or competing retailers facing price-dependent demand

among many other things. In the case with a single price-setting retailer, they point out that

many contracts that coordinate supply chains with a price-fixed retailer may fail to coordinate the

supply chain. However, the revenue sharing contract (in which the supplier requires a percentage

of realized revenue from the retailer) continues to coordinate the supply chain and is equivalent to

the linear price-discount sharing scheme proposed by Bernstein & Federgruen (2005).

Li & Atkins (2002) study the coordination of production and marketing within a firm. As-

suming linear additive demand, they make the following observations under linear transfer price:

(a) if production commits to a service level14 instead of an inventory level, both production and

marketing are better off; (b) the same improvement can be achieved if marketing is at a dominant

position (in the sense that it is leader in a Stackelberg game between production and marketing).

In addition, they propose to coordinate the firm through a quantity discount contract coupled with

a buy back policy.

Bernstein & Federgruen (2005) analyze a decentralized supply chain system with a single

supplier serving multiple retailers in a single period setting. Each retailer faces a single period

problem similar to the ones presented in the single period stochastic models subsection with lost

sales and multiplicative demand. They consider both the noncompeting retailer case in which

each retailer’s demand depends only on its own price and the competing retailer case in which

the retailers offer substitutable products and thus each retailer’s demand depends on its own price
14If demand is given by d(p) + ε and the order quantity is y, Li & Atkins (2002) use z = y−d(p) to measure service

level. Also recall that z is referred to as the safety stock factor in Petruzzi & Dada (1999).
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and the prices of all other retailers. Since they assume linear production cost for the supplier,

it is clear that in the first case, the noncompeting retailers are independent of each other and

the qualitative results for a supply chain with a supplier and a retailer can be directly extended

to the case with multiple noncompeting retailers. In their second case with competing retailers,

Bernstein & Federgruen (2005) assume that the logarithm of a retailer’s expected demand function

has increasing differences in its own price and each of the prices of the other retailers. Under this

assumption, the retailer game when wholesale prices and buy-back rates are constant belongs to a

class of well-understood games, the log-supermodular game, and thus admits a pure strategy Nash

equilibrium. In both cases, Bernstein & Federgruen (2005) propose contracts that coordinate the

supply chain, i.e., the expected profit of the decentralized system under the contract is the same

as the maximum expected profit achievable in a centralized supply chain.

Ray et al. (2005) study centralized and decentralized supply chains in which a retailer, facing

arriving customers with an additive price-dependent rate, makes replenishment from a distributor

following a local base-stock policy, who in turn orders from an outside manufacturer again using

a local base-stock policy. In their decentralized model, the distributor and the retailer play a

Stackelberg game with the distributor as the leader setting its wholesale price and base-stock

level. Ray et al. (2005) investigate the impact of price sensitivity, demand uncertainty and delivery

time variability on the decisions of the distributor and the retailer under both the centralized and

decentralized settings.

Wang et al. (2004) analyze consignment contracts with revenue sharing in a single period

setting in which the manufacturer and the retailer play a Stackelberg game but with the retailer

as the leader in setting the percentage of realized revenues shared with the manufacturer. The

manufacturer will then decide on the selling price and delivery quantity for the retailer and maintain

the ownership of the stock. Wang (2006) extends the model in Wang et al. (2004) to a setting with

multiple manufacturers producing and selling perfectly complementary products (i.e. products that

are always sold together) to the market through a common retailer under an identical consignment

contract with revenue sharing.

Kirman & Sobel (1974) appear to be the first to analyze a periodic review infinite horizon

model with competing firms facing stochastic demands. They assume that unsatisfied demand

is backlogged and all costs (ordering, inventory holding, backlogging) are linear. Their principal
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result is to show that a pure strategy Nash equilibrium with a stationary base-stock level15 for the

infinite horizon game is specified by a pure strategy Nash equilibrium of a corresponding single

stage game16. The existence of this equilibrium is guaranteed under certain technical conditions

imposed on the expected single period expected profit (as a function of the order quantity and the

selling price). Bernstein & Federgruen (2004a) consider a periodic review infinite horizon model

with competing retailers similar to Kirman & Sobel (1974) with multiplicative demand. Under

some technical conditions, they show that the corresponding single stage game is log-supermodular

and thus a pure strategy Nash equilibrium exists, which in turn specifies a pure strategy Nash

equilibrium of the infinite horizon game in which each retailer adopts a stationary base-stock

policy together with a stationary price. They also perform comparative statics analysis regarding

the impact of several system parameters on the equilibrium strategy and its associated expected

profits.

Bernstein & Federgruen (2004b) develop a periodic review infinite horizon general equilibrium

model with price and service competition in which service level of a firm is measured by its fill

rate – the fraction of demand filled from on-hand inventory. They assume that demand of each

firm is multiplicative and propose various forms of the expected demand as a function of firms’

prices and service levels. Three different competition scenarios are analyzed: (a) price competition

with exogenous service levels; (b) simultaneous price and service-level competition; (c) two stage

competition in which each firm first sets a service level and then chooses a dynamic pricing and

inventory policy. The supply chain coordination under price and service competition is addressed

in Bernstein & Federgruen (2007).

Competition models incorporating economies of scale in the operational costs and time depen-

dent demand functions and cost parameters are limited and challenging. Federgruen & Meissner

(2009) study a setting with multiple competing retailers each of which faces a joint inventory and

static pricing problem similar to the one in Kunreuther & Schrage (1973). At each period, each
15Kirman & Sobel (1974) do not articulate the pricing strategies of the firms, which presumably are mixed strategies.

Bernstein & Federgruen (2004a) comment that Kirman and Sobel’s characterization of the mixed strategy equilibrium

requires a modification.
16Kirman & Sobel (1974) argue that all their results can be extended to the lost sales model by observing that a

lost sales model can be equivalently converted to a backlogging model by granting a credit for each backlogged unit.

This observation unfortunately is not true when prices are also decisions variables.
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retailer’s demand is a function of the prices of all retailers set at the beginning of the planning

horizon. They develop close approximations to the profit functions. In addition, they prove that

under mild conditions the price competition game under these approximate profit functions has a

pure strategy Nash equilibrium and with slightly stronger conditions, it has a unique equilibrium,

which is the limit of the tatônnement scheme starting from any initial price vector.

Several papers consider centralized and decentralized two-echelon distribution systems with a

supplier serving a network of retailers, each of which faces an EOQ-type of setting with a constant

price-dependent demand rate (i.e., each retailer places orders to satisfy a constant and continu-

ous demand flow while balancing fixed ordering costs and inventory holding costs). Chen et al.

(2001b) develop efficient algorithms to determine optimal pricing and replenishment strategies for

different channel structures. Boyacı & Gallego (2002) study the problem of coordinating pricing

and inventory replenishment policies in a supply chain consisting of one wholesaler and one or

more noncompeting retailers with deterministic price-sensitive demand and show that an optimal

solution for the centralized system can be interpreted as consignment selling. Chen et al. (2001a)

and Bernstein & Federgruen (2003) propose coordination mechanisms for the decentralized systems

with noncompeting retailers and competing retailers respectively. Bernstein et al. (2006) charac-

terize supply chain settings in which perfect coordination can be achieved with simple wholesale

pricing schemes and apply their results to decentralized distribution systems. For more EOQ-type

supply chain models, see Yano & Gilbert (2003).

All the above papers employ the concepts and methodologies from noncooperative game the-

ory, which basically assume that no binding agreements can be enforced. However, there are

numerous situations in which binding agreements, once reached, can be costlessly implemented.

Another branch of game theory, cooperative game theory, provides concepts and tools to analyze

these binding agreements and started to receive the attention from the operations management

community. We review two recent papers which apply concepts and methodologies from cooper-

ative game theory to study supply chain models involving inventory and pricing decisions. For a

comprehensive review of the applications of cooperative game theory to supply chain settings, we

refer to Nagarajan & Sosic (2008).

Chen (2009) considers a distribution system consisting of a set of noncompeting retailers, who

sell a single product. The demand of each retailer depends on its own selling price and a common
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random variable representing the market condition, referred to as a market signal. To take advan-

tage of economies of scale and risk pooling effects, the retailers may form a coalition by placing joint

orders before the realization of the market signal and allocating inventory among themselves after

the market signal is revealed. Given retailers’ interest in inventory centralization, it is critical that

they allocate the cost or share the benefit in such a way that no set of retailers gains more by de-

viating from the cooperation. Such cooperatively achieved allocations are called core allocations in

cooperative game theory. The existence of core allocations implies that the grand coalition (i.e., the

coalition with all retailers) is stable17. Chen (2009) shows that inventory centralization games with

price dependent demand have nonempty cores under very general assumptions regarding ordering

costs. Specifically, under the assumption that the ordering cost follows a general quantity discount

(which includes several commonly used discounts: incremental discounts, all-units discounts and

the less-than-truckload volume discount), he proves that an inventory centralization game in which

all retailers share a single common warehouse has a nonempty core when (a) the retailers pricing

decisions are made after the revelation of the market signal, or (b) the retailers have identical cost

parameters and their pricing decisions are made before the revelation of the market signal.

The model in Chen (2009) assumes each retailer’s demand is independent of other retailers’

prices. When this assumption is relaxed, it becomes tricky to define core allocations as the value

of a coalition depends on pricing decisions of retailers not in the coalition. In fact, in this case,

the retailers may prefer to form different price-setting cartels. Nagarajan & Sosic (2007) study the

dynamic alliance formation process for a system with multiple symmetric retailers competing on

(price) substitutable products. In their model, the retailers, facing a deterministic (or stochastic

additive) linear demand, make two stage decisions. In the first stage, the retailers form coalitions.

In the second stage, retailers in the same coalition agree on a single price to compete with the

prices of other coalitions. In the case with demand uncertainty, retailers in the same coalition are

assumed to make their own inventory decisions independently after the prices are set.

Nagarajan & Sosic (2007) apply two solution concepts from cooperative game theory, the

largest consistent set and the equilibrium process of coalition formation, to study the stability of
17Chen & Zhang (2007, 2009a) study core allocations of distribution systems respectively in a similar single period

stochastic setting and in a deterministic multi-period setting. Both papers assume concave ordering costs but do not

consider pricing decisions.
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coalition structures in a farsighted sense. They identify conditions under which certain coalition

structures are farsighted stable and investigate the impact of the market size, demand variability,

cost parameters and degree of substitutability on market structures.

Conclusions and Future Research

As can be seen from the above survey, many papers on integrated inventory and pricing models

appeared in the past few years. Some notable progress includes: (a) the conditions for the optimality

of an (s, S,p) policy for multi-period stochastic models with concave ordering costs have been

relaxed; (b) researchers started to explore integrated inventory and pricing models incorporating

customer behavior; (c) models that explicitly incorporate price adjustment costs started to receive

attention; (d) research on decentralized supply chain models with price dependent external demand

grew rapidly; (e) models analyzing the stability and formation of coalitions from the perspective of

cooperative game theory emerged.

Yet many important problems remain to be explored. First, our understanding of integrated

inventory and pricing models incorporating customer behavior is still very limited. The reference

price model presented earlier can be immediately integrated with existing inventory and pricing

models, which unfortunately aggravates the difficulty of the already complicated models. However,

given its strong empirical and theoretical support, it is definitely valuable to incorporate it into

production/inventory models. Of course, the reference price model only provides one illustrative

example. We believe that many more customers behavior models will be built and incorporated

into operational models.

Second, it remains a significant challenge to incorporate lead time into stochastic models. In-

deed, the zero lead time assumption is required for all the multi-period models reviewed here, which

severely limits their use and our understanding of the interaction between inventory and pricing

decisions in more general settings such as multi-echelon systems, assembly systems and distribu-

tion systems. By contrast for standard stochastic inventory control problems with backlogging,

structural results of the optimal policy for models with zero lead time can generally be extended

to models with deterministic lead time. The idea is to transfer a model with positive lead time to

one with a similar structure, but zero lead time (see Scarf, 1960). Unfortunately, this technique
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is not valid for inventory and pricing models with positive lead time because in this case, the two

decisions, the ordering decision and the pricing decision, will take effect at different times.

Third, more research on multi-product models is needed. In inventory models without pricing,

different products are linked together through joint fixed ordering costs and/or shared capacity

and/or correlated demand. In integrated inventory and pricing models, they may also be linked

together through cross price elasticities. These linkages greatly enrich the applicability of models.

On the other hand, they also impose enormous challenges in terms of collecting data as well as

analyzing and solving multi-period models.

Fourth, the structure of the optimal policy for the stochastic integrated inventory and pricing

model with both fixed ordering cost and fixed price adjustment cost is still open. Indeed, in

this case, unlike the model analyzed in Chen & Simchi-Levi (2004a), inventory level alone is not

enough to specify the profit-to-go function and the previous period price has to be incorporated.

As a result, we end up with a challenging dynamic program with two dimensional state space for

which the concept of symmetric k-convexity, important for integrated inventory and pricing models

without price adjustment cost or without inventory carryover, is unlikely to be applicable. Yet,

we believe that extensions of this concept (symmetric k-convexity) will prove powerful for two or

higher dimensional dynamic programs. In fact, a deep understanding of this problem will not only

allow the analysis of general integrated inventory and pricing models with costly price adjustment

but also shed new lights on another class of classical inventory models, namely the stochastic joint

replenishment problems, given the similarities of their structures. It is worthwhile pointing out

that the structure of the optimal policy of stochastic joint replenishment problems is essentially

unknown despite several decades of intensive research on inventory models.

Fifth, incorporating insights derived from decentralized supply chain models into decision

making may provide tremendous values in improving how organizations interact. Unfortunately,

limited research has been conducted on multi-period competition models. This is not surprising

given the complexity of inventory and pricing models. But, the tremendous progress that has been

achieved in the last few years will hopefully lead to new models that capture competition.

Finally, there are still significant gaps between academic research and industrial practice.

Several vendors such as JDA, Oracle and SAS provide both pricing optimization and inventory

management modules. However, we are not aware of any decision support system that truly inte-
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grates production/inventory and pricing decisions despite their potential impacts. Several factors

may contribute to this:

• The lack of efficient algorithms for general, multi-period, multi-product models, slow the

development of decision support systems. This is even true for single-product models because

of the distinctive features of these models: multi-period, uncertainty and economies of scale.

Indeed, even in deterministic settings, incorporating pricing decisions significantly increases

the computational complexity relative to pure inventory models.

• The existence of organizational barriers. That is, inventory decisions are typically the respon-

sibility of manufacturing, logistics or supply chain executives whereas pricing is controlled by

finance, sales and marketing;

• The lack of empirical data to help companies identify the appropriate demand-price function.

In some industries, such data can be collected through online experiments. In others, it is done

through customer market survey conducted before new products are released. Our experience

is that retailers typically apply multiplicative demand models while the automotive industry

applies linear, additive, demand models;

• Finally, the lack of experience in identifying when deterministic models are more appropriate

than stochastic models and vice versa.

Thus, while significant progress has been made on the integration of pricing and inventory

management, enormous challenges and opportunities remain.
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