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Abstract. For any function f from R to R, one can define a corresponding function on the
space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the
spectral decomposition. We show that this matrix-valued function inherits from f the properties of
continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continu-
ous differentiability, as well as (ρ-order) semismoothness. Our analysis uses results from nonsmooth
analysis as well as perturbation theory for the spectral decomposition of symmetric matrices. We
also apply our results to the semidefinite complementarity problem, addressing some basic issues in
the analysis of smoothing/semismooth Newton methods for solving this problem.
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1. Introduction. Let X denote the space of n× n block-diagonal real matrices
with m blocks of size n1, . . . , nm, respectively (the blocks are fixed). Thus, X is closed
under matrix addition x+ y, multiplication xy, transposition xT , and inversion x−1,
where x, y ∈ X . We endow X with the inner product and norm

〈x, y〉 := tr[xT y], ‖x‖ :=
√
〈x, x〉,

where x, y ∈ X and tr[·] denotes the matrix trace, i.e., tr[x] =
∑n

i=1 xii. [‖x‖ is the
Frobenius norm of x and “ := ” means “define”]. Let O denote the set of p ∈ X
that are orthogonal, i.e., pT = p−1. Let S denote the subspace comprising those
x ∈ X that are symmetric, i.e., xT = x. This is a subspace of R

n×n of dimension
n1(n1 + 1)/2 + · · ·+ nm(nm + 1)/2.

For any x ∈ S, its (repeated) eigenvalues λ1, . . . , λn are real and it admits a
spectral decomposition of the form

x = p diag[λ1, . . . , λn]p
T(1)

for some p ∈ O, where diag[λ1, . . . , λn] denotes the n×n diagonal matrix with its ith
diagonal entry λi. Then, for any function f : R → R, we can define a corresponding
function f

✷

: S → S [1], [13] by

f
✷

(x) := p diag[f(λ1), . . . , f(λn)]p
T .(2)
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It is known that f
✷

(x) is well defined (independent of the ordering of λ1, . . . , λn and
the choice of p) and belongs to S; see [1, Chap. V] and [13, sec. 6.2]. Moreover, a
result of Daleckii and Krein showed that if f is continuously differentiable, then f

✷

is
differentiable (in the Fréchet sense) and its Jacobian ∇f✷

(x) has a simple formula—
see [1, Thm. V.3.3]; also see Proposition 4.3. In fact, in this case f

✷

is continuously
differentiable—see [8, Lem. 4]; also see Proposition 4.4. Much of the studies on
f

✷

has focused on conditions for it to be operator monotone or operator convex—see
[1], [13], and the references cited in [1, pp. 150–151] for discussions. We note that [8]
swaps p and pT in (1)–(2), but this is only a difference in notation.

The above results show that f
✷

inherits smoothness properties from f . In this pa-
per, we make an analogous study for properties associated with nonsmooth functions.
In particular, we show that the properties of continuity, strict continuity, Lipschitz
continuity, directional differentiability, differentiability, continuous differentiability,
and (ρ-order) semismoothness are each inherited by f

✷

from f (see Propositions 4.1,
4.2, 4.3, 4.4, 4.6, 4.8, and 4.10). Our ρ-order semismoothness result generalizes a re-
cent result of Sun and Sun [29] which considers the case of the absolute-value function
f(ξ) = |ξ| and shows that f

✷

(x) = (x2)1/2 is strongly semismooth. In the case where
f = g′ for some function g, our differentiability and continuous differentiability results
can also be inferred from a recent work of Lewis and Sendov [19] on twice differen-
tiability of spectral functions. Our proofs use a combination of results from matrix
analysis and nonsmooth analysis—in particular, perturbation results for spectral de-
composition [17, 28] and properties of the generalized gradient ∂f (in the Clarke sense)
[9, 26], as well as a lemma from [29]. The property of semismoothness, as introduced
by Mifflin [20] for functionals and scalar-valued functions and further extended by Qi
and Sun [23] for vector-valued functions, is of particular interest due to the key role it
plays in the superlinear convergence analysis of certain generalized Newton methods
[14, 21, 23]. In section 5, we formulate the semidefinite complementarity problem
(SDCP) as a nonsmooth equation

H(x, y) = 0,

where H : S × S → S × S is a certain semismooth function. This facilitates the
development of nonsmooth Newton methods for solving the SDCP—a contrast to
existing smoothing or differentiable merit function approaches [8, 27, 30, 32]. We show
that H, together with the Chen–Mangasarian class of smoothing functions studied in
[8], satisfies the Jacobian Consistence Property introduced in [6]. This paves a way for
extending some smoothing methods for nonlinear complementarity problems (NCPs),
such as those studied by Chen, Qi, and Sun [6] and later by Kanzow and Pieper [16],
to the SDCP. Final remarks are given in section 6.

Our notations are, for the most part, consistent with those used in [8, 30]. If
F : S → S is differentiable (in the Fréchet sense) at x ∈ S, we denote by ∇F (x) the
Jacobian of F at x ∈ S, viewed as a linear mapping from S to S. Throughout, ‖ · ‖
denotes the Frobenius norm for matrices and the 2-norm for vectors. For any linear
mappingM : S → S, we denote its operator norm ‖|M‖| := max‖x‖=1 ‖Mx‖. For any
x ∈ S, we denote by xij the (i, j)th entry of x. We use ◦ to denote the Hardamard
product, i.e.,

x ◦ y = [xijyij ]
n
i,j=1.

For any x ∈ S and scalar γ > 0, we denote the γ-ball around x by B(x, γ) := {y ∈
S | ‖y− x‖ ≤ γ}. We write z = O(α) (respectively, z = o(α)), with α ∈ R and z ∈ S,
to mean ‖z‖/|α| is uniformly bounded (respectively, tends to zero) as α→ 0.
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2. Basic properties. In this section, we review some basic properties of vector-
valued functions. These properties are continuity, (local) Lipschitz continuity, direc-
tional differentiability, continuous differentiability, as well as (ρ-order) semismooth-
ness. We note that S is a vector space of dimension n1(n1+1)/2+ · · ·+nm(nm+1)/2,
so these properties apply to the symmetric-matrix-valued function f

✷

defined by (1)–
(2). In what follows, we consider a function/mapping F : R

k → R

.

We say F is continuous at x ∈ R
k if

F (y)→ F (x) as y → x;

and F is continuous if F is continuous at every x ∈ R
k. F is strictly continuous (also

called “locally Lipschitz continuous”) at x ∈ R
k [26, Chap. 9] if there exist scalars

κ > 0 and δ > 0 such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
k with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ R
k. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. Define the
function lipF : R

k → [0,∞] by

lipF (x) := lim sup
y,z→x

y �=z

‖F (y)− F (z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF (x) is finite.
We say F is directionally differentiable at x ∈ R

k if

F ′(x;h) := lim
t→0+

F (x+ th)− F (x)
t

exists ∀h ∈ R
k;

and F is directionally differentiable if F is directionally differentiable at every x ∈ R
k.

F is differentiable (in the Fréchet sense) at x ∈ R
k if there exists a linear mapping

∇F (x) : R
k → R


 such that

F (x+ h)− F (x)−∇F (x)h = o(‖h‖).

We say that F is continuously differentiable if F is differentiable at every x ∈ R
k and

∇F is continuous.
If F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s

theorem—see [9] and [26, sec. 9J]. Then the generalized Jacobian ∂F (x) of F at x
(in the Clarke sense) can be defined as the convex hull of the generalized Jacobian
∂BF (x) (in the Bouligand sense), where

∂BF (x) :=

{
lim
xj→x

∇F (xj)∣∣F is differentiable at xj ∈ R
k

}
.

In [26, Chap. 9], the case of � = 1 is considered and the notations “∇̄” and “∂̄” are
used instead of, respectively, “∂B” and “∂.”

Assume F : R
k → R


 is strictly continuous. We say F is semismooth at x if F is
directionally differentiable at x and, for any V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = o(‖h‖).
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We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for
any V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = O(‖h‖1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth (re-
spectively, ρ-order semismooth) at every x ∈ R

k. We say F is strongly semismooth if
it is 1-order semismooth. Convex functions and piecewise continuously differentiable
functions are examples of semismooth functions. The composition of two (respectively,
ρ-order) semismooth functions is also a (respectively, ρ-order) semismooth function.
The property of semismoothness plays an important role in nonsmooth Newton meth-
ods [23] as well as in some smoothing methods mentioned in the previous section. For
extensive discussions of semismooth functions, see [10, 20, 23].

3. Perturbation results for symmetric matrices. In this section, we review
some useful perturbation results for the spectral decomposition of real symmetric
matrices. These results will be used in the next section to analyze properties of the
symmetric-matrix-valued function f

✷

given by (1)–(2). The main sources of reference
for the results are Chapter 2 of the book by Kato [17] and the book by Stewart and
Sun [28].

Let D denote the space of n×n real diagonal matrices with nonincreasing diagonal
entries. For each x ∈ S, define the two sets of orthonormal eigenvectors of x by

Ox := {p ∈ O| pTxp ∈ D}, Õx := {p ∈ O| pTxp is diagonal }.
Clearly, Ox and Õx are nonempty for each x ∈ S. The following key lemma, proved
in [8, Lem. 3] using results from [28, pp. 92 and 250], shows that Ox is locally upper
Lipschitzian with respect to x.

Lemma 3.1. For any x ∈ S, there exist scalars η > 0 and ε > 0 such that

min
p∈Ox

‖p− q‖ ≤ η‖x− y‖ ∀ y ∈ B(x, ε), ∀q ∈ Oy.(3)

We will also need the following perturbation result of Weyl for eigenvalues of
symmetric matrices—see [1, p. 63] and [12, p. 367].

Lemma 3.2. Let λ1 ≥ · · · ≥ λn be the eigenvalues of any x ∈ S and µ1 ≥ · · · ≥ µn
be the eigenvalues of any y ∈ S. Then

|λi − µi| ≤ ‖x− y‖ ∀ i = 1, . . . , n.

Lastly, for our differential analysis, we need the following classical result [25, Thm.
1] showing that, for any x ∈ S and any h ∈ S, the orthonormal eigenvectors of x+ th
may be chosen to be analytic in t. As is remarked in [17, p. 122], the existence of
such orthonormal eigenvectors depending smoothly on t is one of the most remarkable
results in the analytic perturbation theory for symmetric operators.

Lemma 3.3. For any x ∈ S and any h ∈ S, there exist p(t) ∈ Õx+th, t ∈ R,
whose entries are power series in t, convergent in a neighborhood of t = 0.

4. Continuity and differential properties of symmetric-matrix func-
tions. In this section, we use the results from section 3 to show that if f : R → R

has the property of continuity (respectively, strict continuity, Lipschitz continuity,
directional differentiability, semismoothness, ρ-order semismoothness), then so does
the symmetric-matrix-valued function f

✷

defined by (1)–(2). We begin with the con-
tinuity result below.

Proposition 4.1. For any f : R→ R, the following results hold:
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(a) f
✷

is continuous at an x ∈ S with eigenvalues λ1, . . . , λn if and only if f is
continuous at λ1, . . . , λn.

(b) f
✷

is continuous if and only if f is continuous.
Proof. (a) Fix any x ∈ S with eigenvalues λ1, . . . , λn. Assume without loss of

generality that λ1 ≥ · · · ≥ λn.
Suppose f is continuous at λ1, . . . , λn. By Lemma 3.1, there exist η > 0 and ε > 0

such that (3) holds. Then, for any y ∈ B(x, ε) and any q ∈ Oy, there exists p ∈ Ox

satisfying

‖p− q‖ ≤ η‖x− y‖.
Moreover,

qT yq = diag[µ1, . . . , µn], pTxp = diag[λ1, . . . , λn],

where µ1 ≥ · · · ≥ µn and λ1 ≥ · · · ≥ λn are the eigenvalues of y and x, respectively.
Since f is continuous and, by Lemma 3.2, |λi − µi| ≤ ‖x − y‖ for all i, we have
f(µi)→ f(λi) and ‖p− q‖ → 0 as y → x. Then (2) yields

f
✷

(x)− f✷

(y) = p diag[f(λ1), . . . , f(λn)]p
T − q diag[f(µ1), . . . , f(µn)]q

T

= p diag[f(λ1)− f(µ1), . . . , f(λn)− f(µn)]pT
+(p− q)diag[f(µ1), . . . , f(µn)]p

T + q diag[f(µ1), . . . , f(µn)](p− q)T
→ 0 as y → x.

Thus f
✷

is continuous at x.
Suppose instead f

✷

is continuous at x. Fix any p ∈ Ox. Then for each i ∈
{1, . . . , n}, p diag[λ1, . . . , µi, . . . , λn]p

T → x as µi → λi so that f
✷

(p diag[λ1, . . . , µi, . . . ,
λn]p

T ) → f
✷

(x) or, equivalently, f(µi) → f(λi). Thus f is continuous at λi for
i = 1, . . . , n.

(b) is an immediate consequence of (a).
For any λ = (λ1, . . . , λn)

T ∈ R
n, any h ∈ S, and any function f : R → R that is

directionally differentiable at λ1, . . . , λn, we denote by f
[1](λ;h) the n× n symmetric

matrix whose (i, j)th entry is

f [1](λ;h)ij :=



f(λi)− f(λj)
λi − λj hij if λi �= λj ,

f ′(λi;hij) if λi = λj .
(4)

By using Lemma 3.3, we have the directional differentiability result below.
Proposition 4.2. For any f : R→ R, the following results hold:
(a) f

✷

is directionally differentiable at an x ∈ S with eigenvalues λ1, . . . , λn if
and only if f is directionally differentiable at λ1, . . . , λn. Moreover, for any
nonzero h ∈ S,

(f
✷

)′(x;h) = p f [1](λ; pThp) pT(5)

for some p ∈ O such that (pThp)ij = 0 whenever λi = λj and i �= j.
(b) f

✷

is directionally differentiable if and only if f is directionally differentiable.
Proof. (a) Fix any x ∈ S. By Lemma 3.3, for any nonzero h ∈ S there exist

p(t) ∈ Õx(t), t ∈ R, whose entries are power series in t, convergent in a neighborhood
I of t = 0, where x(t) := x+ th. Then the corresponding eigenvalues

λi(t) := [p(t)Tx(t)p(t)]ii, i = 1, . . . , n,
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are also power series in t, convergent for t ∈ I, and satisfy

x(t) = p(t)diag[λ1(t), . . . , λn(t)]p(t)
T .(6)

Multiplying both sides of (6) by p(t)T from the left and then differentiating both sides
with respect to t using the product rule, we obtain

p′(t)Tx(t) + p(t)Tx′(t) = Λ′(t)p(t)T + Λ(t)p′(t)T ,

where Λ(t) := diag[λ1(t), . . . , λn(t)] and Λ′(t) := diag[λ′1(t), . . . , λ
′
n(t)]. Multiplying

both sides on the right by p(t) and using x′(t) = h, we arrive at

Λ′(t)− ĥ(t) = p̂(t)Λ(t)− Λ(t)p̂(t),

where ĥ(t) := p(t)Thp(t) and p̂(t) := p′(t)T p(t). This implies

ĥ(t)ii = λ
′
i(t), i = 1, . . . , n,(7)

ĥ(t)ij = p̂(t)ij(λi(t)− λj(t)) ∀i �= j.(8)

For simplicity, let

p := p(0), p′ := p′(0), p̂ := p̂(0),
λi := λi(0), λ′i := λ

′
i(0), i = 1, . . . , n.

Assume f is directionally differentiable at λ1, . . . , λn. Then we have from λi(t) =
λi + tλ

′
i + o(t) and the positive homogeneity property of f ′(λi; ·) the expansions

p(t) = p+ tp′ + o(t) and f(λi(t)) = f(λi) + tf
′(λi;λ′i) + o(t), i = 1, . . . , n.

Also, p(·) and p′(·) are continuous at t = 0 so that limt→0 ĥ(t) = p
Thp and limt→0 p̂(t) =

p̂. Using (2) and the above expansions, we then obtain

f
✷

(x+ th) = p(t)diag[f(λ1(t)), . . . , f(λn(t))]p(t)
T

= p diag[f(λ1), . . . , f(λn)]p
T + t

(
p diag[f ′(λ1;λ

′
1), . . . , f

′(λn;λ′n)]p
T
)

+ t
(
p′diag[f(λ1), . . . , f(λn)]p

T + p diag[f(λ1), . . . , f(λn)](p
′)T
)
+ o(t)

= f
✷

(x) + tp diag[f ′(λ1;λ
′
1), . . . , f

′(λn;λ′n)]p
T

+ tp
(
p̂Tdiag[f(λ1), . . . , f(λn)] + diag[f(λ1), . . . , f(λn)]p̂

)
pT + o(t)

= f
✷

(x) + tp diag[f ′(λ1;λ
′
1), . . . , f

′(λn;λ′n)]p
T

+ tp [(f(λi)− f(λj))p̂ij ]ni,j=1 p
T + o(t)

= f
✷

(x) + tp f [1](λ; pThp) pT + o(t),(9)

where the fourth equality follows from p(t)T p(t) = I so that p′(t)T p(t)+p(t)T p′(t) = 0,

implying p̂T = −p̂; the last equality follows from (7) so that λ′i = ĥ(0)ii = (pThp)ii
for i = 1, . . . , n, and from (8) so that p̂ij = (pThp)ij/(λi − λj) whenever λi �= λj and
(pThp)ij = 0 whenever λi = λj and i �= j. It follows from (9) that

(f
✷

)′(x;h) = lim
t→0+

f
✷

(x+ th)− f✷

(x)

t
= p f [1](λ; pThp) pT .

This proves (5).
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Suppose instead f
✷

is directionally differentiable at x with eigenvalues λ1, . . . , λn.
Fix any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T . For each i ∈ {1, . . . , n} and
each di ∈ R, let h := p diag[0, . . . , di, . . . , 0]p

T . Then, it is readily verified that
diag[0, . . . , f ′(λi; di), . . . , 0] = pT (f

✷

)′(x;h)p, so f ′(λi; di) is well defined.
(b) is an immediate consequence of (a).
We note that p in the formula for (f

✷

)′(x;h) depends on h as well as x. In fact,
the proof of Proposition 4.2 shows that a necessary condition for p(t) to comprise
orthonormal eigenvectors of x+ th that are differentiable at t = 0 is that (pThp)ij = 0
whenever λi = λj and i �= j, where p := p(0). In the case of f(·) = | · |, directional
differentiability of f

✷

has been shown by Sun and Sun [29, Lem. 4.8]. In addition,
they derived a formula for the directional derivative (f

✷

)′(x;h) that also involves
p ∈ Ox but with p independent of h.

For any λ = (λ1, . . . , λn)
T ∈ R

n and any function f : R→ R that is differentiable
at λ1, . . . , λn, we denote by f

[1](λ) the n×n symmetric matrix whose (i, j)th entry is

f [1](λ)ij =



f(λi)− f(λj)
λi − λj if λi �= λj ,

f ′(λi) if λi = λj .

f [1](λ) is called the first divided difference of f at λ [1, p. 123]. The next proposition,
based on Lemmas 3.1, 3.2, and the proof idea for Proposition 4.10, characterizes when
f

✷

is differentiable (in the Fréchet sense) at an x ∈ S. This characterization will be
needed for computing the generalized Jacobian of a strictly continuous f

✷

and for
analyzing semismooth property of f

✷

. We note that the proof idea of Proposition
4.2 cannot be used here because the p(t) constructed in that proof depends on h. In
particular, it is not known if ‖p′′(t)‖ is uniformly bounded in ‖h‖.

Proposition 4.3. For any f : R→ R, the following results hold:
(a) f

✷

is differentiable at an x ∈ S with eigenvalues λ1, . . . , λn if and only if f
is differentiable at λ1, . . . , λn. Moreover, ∇f✷

(x) is given by

∇f✷

(x)h = p(f [1](λ) ◦ (pThp))pT ∀h ∈ S(10)

for any p ∈ O satisfying x = p diag[λ1, . . . , λn]p
T , where λ = (λ1, . . . , λn)

T .
(b) f

✷

is differentiable if and only if f is differentiable.
Proof. (a) Fix any x ∈ S and let λ1, . . . , λn denote the eigenvalues of x.
It is known [1] that the right-hand side of (10) is independent of the choice of

p ∈ O satisfying pTxp = diag[λ1, . . . , λn]. This can be seen by noting that any two
such p are related by a right multiplication by a block diagonal o ∈ O whose diagonal
blocks correspond to the distinct eigenvalues of x, while the entries of f [1](λ) in each
of these diagonal blocks, as well as in each of the off-diagonal blocks, are equal.

Suppose f : R → R is differentiable at λ1, . . . , λn. We can without loss of gener-
ality assume that λ1 ≥ · · · ≥ λn. By Lemma 3.1, there exist scalars η > 0 and ε > 0
such that (3) holds. We will show that, for any h ∈ S with ‖h‖ ≤ ε, there exists
p ∈ Ox such that

f
✷

(x+ h)− f✷

(x)− p(c ◦ (pThp))pT = o(‖h‖),(11)

where c := f [1](λ) and o(·), O(·) depend on f and x only. This together with the
independence of the third term on p would show that f

✷

is differentiable at x and
∇f✷

(x) is given by (10) for any p ∈ O satisfying pTxp = diag[λ1, . . . , λn]. Let
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µ1 ≥ · · · ≥ µn denote the eigenvalues of x+h, and choose any q ∈ Ox+h. Then, there
exists p ∈ Ox satisfying

‖p− q‖ ≤ η‖h‖.

For simplicity, let r denote the left-hand side of (11), i.e.,

r := f
✷

(x+ h)− f✷

(x)− p(c ◦ (pThp))pT ,

and denote r̃ = pT rp and h̃ := pThp. Then we have from (2) that

r̃ = oT bo− a− c ◦ h̃,(12)

where for simplicity we also denote a := diag[f(λ1), . . . , f(λn)], b := diag[f(µ1), . . . , f(µn)],
and o := qT p.

Since diag[λ1, . . . , λn] = p
Txp = oTdiag[µ1, . . . , µn]o− h̃, we have

n∑
k=1

okiokjµk − h̃ij =
{
λi if i = j;
0 else,

i, j = 1, . . . , n.(13)

Since o = qT p = (q − p)T p+ I and ‖p− q‖ ≤ η‖h‖, it follows that

oij = O(‖h‖) ∀i �= j.(14)

Since p, q ∈ O, we have o ∈ O so that oT o = I. This implies

1 = o2ii +
∑
k �=i

o2ki = o
2
ii +O(‖h‖2), i = 1, . . . , n,(15)

0 = oiioij + ojiojj +
∑
k �=i,j

okiokj = oiioij + ojiojj +O(‖h‖2) ∀i �= j.(16)

We now show that r̃ = o(‖h‖) which, by ‖r‖ = ‖r̃‖, would prove (11). For any
i ∈ {1, . . . , n}, we have from (12) and (13) that

r̃ii =

n∑
k=1

o2kif(µk)− f(λi)− f ′(λi)h̃ii

=

n∑
k=1

o2kif(µk)− f(λi)− f ′(λi)
(
−λi +

n∑
k=1

o2kiµk

)

= o2iif(µi)− f(λi)− f ′(λi)(−λi + o2iiµi) +O(‖h‖2)
= (1 +O(‖h‖2))f(µi)− f(λi)− f ′(λi)(−λi + (1 +O(‖h‖2))µi) +O(‖h‖2)
= f(µi)− f(λi)− f ′(λi)(µi − λi) +O(‖h‖2),

where the third and fifth equalities use (14), (15), and the local boundedness of f .
Since f is differentiable at λ1, . . . , λn and Lemma 3.2 implies |µi − λi| ≤ ‖h‖, the
right-hand side is o(‖h‖). For any i, j ∈ {1, . . . , n} with i �= j, we have from (12) and
(13) that
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r̃ij =

n∑
k=1

okiokjf(µk)− cij h̃ij

=

n∑
k=1

okiokjf(µk)− cij
n∑

k=1

okiokjµk

= oiioijf(µi) + ojiojjf(µj)− cij(oiioijµi + ojiojjµj) +O(‖h‖2)
= (oiioij + ojiojj)f(µi) + ojiojj(f(µj)− f(µi))
− cij ((oiioij + ojiojj)µi + ojiojj(µj − µi)) +O(‖h‖2)

= ojiojj (f(µj)− f(µi)− cij(µj − µi)) +O(‖h‖2),
where the third and fifth equalities use (14), (16), and the local boundedness of f .
Thus, if λi = λj , the preceding relation together with (14) and |µi − λi| ≤ ‖h‖,
|µj − λj | ≤ ‖h‖ and the continuity of f at λi yields

r̃ij = o(‖h‖).
If λi �= λj , then cij = (f(λj)− f(λi))/(λj − λi) and the preceding relation yields

r̃ij = ojiojj

(
f(µj)− f(µi)− f(λj)− f(λi)

λj − λi (µj − µi)
)
+O(‖h‖2)

= ojiojj

(
f(µj)− f(µi)− (f(λj)− f(λi))

(
1 +

µj − µi − λj + λi
λj − λi

))
+O(‖h‖2).

This together with (14) and |µi − λi| ≤ ‖h‖, |µj − λj | ≤ ‖h‖ and the continuity of f
at λi and λj yields r̃ij = o(‖h‖).

Suppose f : R → R is not differentiable at λi for some i ∈ {1, . . . , n}. Then,
either f is not directionally differentiable at λi or, if it is, the right- and left-directional
derivatives of f at λi are unequal. In either case, this means there exist two sequences
of nonzero scalars tν and τν , ν = 1, 2, . . ., converging to zero, such that the limits

lim
ν→∞

f(λi + t
ν)− f(λi)
tν

, lim
ν→∞

f(λi + τ
ν)− f(λi)
τν

exist (possibly −∞ or ∞) and either are unequal or are both equal to ∞ or are
both equal to −∞. Consider any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T . Then,
letting h = pdiag[0, . . . , 1, . . . , 0]pT with the 1 being in the ith diagonal, we obtain
that x+ th = pdiag[λ1, . . . , λi + t, . . . , λn]p

T for all t ∈ R and hence

lim
ν→∞

f
✷

(x+ tνh)− f✷

(x)

tν
= p diag

[
0, . . . , 0, lim

ν→∞
f(λi + t

ν)− f(λi)
tν

, 0, . . . , 0

]
pT ,

lim
ν→∞

f
✷

(x+ τνh)− f✷

(x)

τν
= p diag

[
0, . . . , 0, lim

ν→∞
f(λi + τ

ν)− f(λi)
τν

, 0, . . . , 0

]
pT .

It follows that these two limits either are unequal or are both nonfinite. Thus f is
not differentiable at x.

(b) is an immediate consequence of (a).
Notice that the Jacobian formula (10) is independent of the choice of p and the

ordering of λ1, . . . , λn. This formula, together with the differentiability of f
✷

, has
been shown under the assumption that f is continuously differentiable—see Theorem
V.3.3 and p. 150 of [1]. Proposition 4.3(b) improves on this result by assuming only
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that f is differentiable. After obtaining Proposition 4.3, we learned of a closely related
recent result of Lewis and Sendov [19] on twice differentiability of spectral functions.
In particular, in the case where f = g′ for some differentiable g : R → R, applying
Theorem 3.3 in [19] to the spectral function

x �→ g(λ1) + · · ·+ g(λn),

where λ1, . . . , λn are the eigenvalues of x ∈ S in nonincreasing order, yields Proposi-
tion 4.3(a). For general f , however, Proposition 4.3(a) appears to be distinct from the
results in [19]. In particular, for any λ1, . . . , λn ∈ R, there exists a function f : R→ R

that is differentiable at λ1, . . . , λn and yet there is no differentiable function g : R→ R

satisfying g′ = f . One such f is

f(ξ) :=

{
(ξ − λ1)

2 if ξ ∈ {α1, α2, . . .};
0 else,

where α1, α2, . . . is any sequence of points in R\{λ1, . . . , λn} converging to λ1. Here f
is differentiable at λ1, . . . , λn, but the range of f is not an interval, so f cannot be the
derivative of a differentiable function. Specifically, a theorem of Darboux says that, for
any open interval I containing a closed interval [α, β] and any differentiable g : I → R,
either [g′(α), g′(β)] or [g′(β), g′(α)] is a subset of {g′(ξ)|α ≤ ξ ≤ β}. (This can be seen
by defining, for each η strictly between g′(α) and g′(β), the function h(ξ) := g(ξ)−ηξ.
Then h is differentiable on [α, β] and h′(α) = g′(α) − η, h′(β) = g′(β) − η have
opposite signs. Thus, h has an extremum at some ξ∗ in (α, β), implying h′(ξ∗) = 0 or,
equivalently, g′(ξ∗) = η.) In fact, any function that coincides with f in a neighborhood
of λ1 cannot be the derivative of a differentiable function. Also, we speculate that the
proof idea for Proposition 4.3(a) may be useful for second-or-higher order analysis of
spectral functions.

We next have the following continuous differentiability result based on [8, Lem.
4], which in turn was proven using Lemmas 3.1 and 3.2.

Proposition 4.4. For any f : R → R, the matrix function f
✷

is continuously
differentiable if and only if f is continuously differentiable.

Proof. The “if” direction was proven in [8, Lem. 4]. To see the “only if” di-
rection, suppose f

✷

is continuously differentiable. Then it follows from (10)and the
definition of f [1](·) that f ′(λ1) is well defined for all λ1 ∈ R. Moreover, ∇f✷

(diag[λ1, 0,
. . . , 0]) is continuous in λ1 or, equivalently, f ′(λ1) is continuous in λ1.

Similar to Proposition 4.3, it can be seen that, in the case where f = g′ for some
differentiable g, Proposition 4.4 is a special case of Theorem 4.2 in [19]. We next have
the following result of Rockafellar and Wets [26, Thm. 9.67] which we need to analyze
strict continuity and Lipschitz continuity of f

✷

.
Lemma 4.5. Suppose f : R

k → R is strictly continuous. Then there exist contin-
uously differentiable functions fν : R

k → R, ν = 1, 2, . . ., converging uniformly to f
on any compact set C in R

k and satisfying

‖|∇fν(x)‖| ≤ sup
x∈C

lipf(x) ∀x ∈ C, ∀ν.

Lemma 4.5 is slightly different from the original version given in [26, Thm. 9.67].
In particular, the second part of Lemma 4.5 is not contained in [26, Thm. 9.67], but
it is implicit in its proof. This second part is needed to show that strict continuity
and Lipschitz continuity are inherited by f

✷

from f . We note that the proof idea
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of Proposition 4.1 cannot be used because eigenvectors do not behave in a (locally)
Lipschitzian manner.

Proposition 4.6. For any f : R→ R, the following results hold:
(a) f

✷

is strictly continuous at an x ∈ S with eigenvalues λ1, . . . , λn if and only
if f is strictly continuous at λ1, . . . , λn.

(b) f
✷

is strictly continuous if and only if f is strictly continuous.
(c) f

✷

is Lipschitz continuous with constant κ if and only if f is Lipschitz con-
tinuous with constant κ.

Proof. (a) Fix any x ∈ S with eigenvalues λ1, . . . , λn.
Suppose f is strictly continuous at λ1, . . . , λn. Then, there exist scalars κi > 0

and δi > 0, i = 1, . . . , n, such that

|f(ξ)− f(ζ)| ≤ κi|ξ − ζ| ∀ξ, ζ ∈ [λi − δi, λi + δi]

for all i. Let f̃ : R→ R be the function that coincides with f on

C :=

n⋃
i=1

[λi − δi, λi + δi]

and, on R \C, is defined by linearly extrapolating f at the boundary points of C. In
other words, if ξ < ζ are two points in C such that (ξ, ζ) ⊆ R\C, then f̃(tξ+(1−t)ζ) =
tf(ξ)+ (1− t)f(ζ) for all t ∈ (0, 1). If ξ is a point in C such that (ξ,∞) ⊆ R\C, then
f̃(ζ) = f(ξ) for all ζ > ξ. Similarly, if ζ is a point in C such that (−∞, ζ) ⊆ R \ C,
then f̃(ξ) = f(ζ) for all ξ < ζ. By definition, f̃ is Lipschitz continuous, so there exists
a scalar κ > 0 such that lipf(ξ) ≤ κ for all ξ ∈ R. Since C is compact, by Lemma 4.5,
there exist continuously differentiable functions fν : R → R, ν = 1, 2, . . ., converging
uniformly to f̃ and satisfying

|(fν)′(ξ)| ≤ κ ∀ ξ ∈ C, ∀ν.(17)

Denote δ := mini=1,...,n δi. By Lemma 3.2, C contains all the eigenvalues of y ∈
B(x, δ). Moreover, for any w ∈ B(x, δ), any q ∈ O, and any µ = (µ1, . . . , µn)

T ∈ R
n

such that w = q diag[µ1, . . . , µn]q
T , we have

‖(fν)✷

(w)− f✷

(w)‖ = ‖q diag[fν(µ1), . . . , f
ν(µn)]q

T − q diag[f(µ1), . . . , f(µn)]q
T ‖

= ‖diag[fν(µ1)− f(µ1), . . . , f
ν(µn)− f(µn)]‖,

where the second equality uses qT q = I and properties of the Frobenius norm ‖ · ‖.
Since {fν}∞1 converges uniformly to f on C, this shows that {(fν)✷}∞1 converges
uniformly to f

✷

on B(x, δ). Moreover, it follows from (10) that, for all w ∈ B(x, δ)
and all ν, we have

‖|∇(fν)✷

(w)‖| = sup
‖h‖=1

‖∇(fν)✷

(w)h‖

= sup
‖h‖=1

‖q((fν)[1](µ) ◦ (qThq))qT ‖

= sup
‖h‖=1

‖(fν)[1](µ) ◦ (qThq)‖

≤ sup
‖h‖=1

κ‖qThq‖ = κ,(18)
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where the first inequality uses (17). Fix any y, z ∈ B(x, δ) with y �= z. Since {(fν)✷}∞1
converges uniformly to f

✷

on B(x, δ), then for any ε > 0 there exists an integer ν0
such that for all ν ≥ ν0 we have

‖(fν)✷

(w)− f✷

(w)‖ ≤ ε‖y − z‖ ∀w ∈ B(x, δ).
Since fν is continuously differentiable, then Proposition 4.4 shows that (fν)

✷

is con-
tinuously differentiable for all ν. Then, by (18) and the mean-value theorem for
continuously differentiable functions, we have

‖f✷

(y)− f✷

(z)‖
= ‖f✷

(y)− (fν)
✷

(y) + (fν)
✷

(y)− (fν)
✷

(z) + (fν)
✷

(z)− f✷

(z)‖
≤ ‖f✷

(y)− (fν)
✷

(y)‖+ ‖(fν)✷

(y)− (fν)
✷

(z)‖+ ‖(fν)✷

(z)− f✷

(z)‖

≤ 2ε‖y − z‖+ ‖
∫ 1

0

∇(fν)✷

(z + τ(y − z))(y − z)dτ‖
≤ (κ+ 2ε)‖y − z‖.

Since y, z ∈ B(x, δ) and ε is arbitrary, this yields

‖f✷

(y)− f✷

(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ B(x, δ).(19)

Thus f
✷

is strictly continuous at x.
Suppose instead that f

✷

is strictly continuous at x. Then, there exist scalars κ > 0
and δ > 0 such that (19) holds. Choose any p ∈ O satisfying x = p diag[λ1, . . . , λn]p

T .
For any i ∈ {1, . . . , n} and any ψ, ζ ∈ [λi − δ, λi + δ], let

y := p diag[λ1, . . . , λi−1, ψ, λi+1, . . . , λn]p
T ,

z := p diag[λ1, . . . , λi−1, ζ, λi+1, . . . , λn]p
T .

Then, ‖y − x‖ = |ψ − λi| ≤ δ and ‖z − x‖ = |ζ − λi| ≤ δ, so it follows from (2) and
(19) that

|f(ψ)− f(ζ)| = ‖f✷

(y)− f✷

(z)‖
≤ κ‖y − z‖
= κ|ψ − ζ|.

This shows that f is strictly continuous at λi for i = 1, . . . , n.
(b) is an immediate consequence of (a).
(c) Suppose f is Lipschitz continuous with constant κ. Then lipf(ξ) ≤ κ for all

ξ ∈ R. Fix any x ∈ S with eigenvalues λ1, . . . , λn. For any scalar δ > 0, define the
compact set C in R by

C :=

n⋃
i=1

[λi − δ, λi + δ].

Then, as in the proof of (a), we obtain that (19) holds. Since the choice of δ > 0 was
arbitrary and κ is independent of δ, this implies

‖f✷

(y)− f✷

(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ S.
Hence f

✷

is Lipschitz continuous with constant κ.
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Suppose instead that f
✷

is Lipschitz continuous with constant κ > 0. Then, for
any ξ, ζ ∈ R we have

|f(ξ)− f(ζ)| = ‖f✷

(diag[ξ, 0, . . . , 0])− f✷

(diag[ζ, 0, . . . , 0])‖
≤ κ‖diag[ξ, 0, . . . , 0]− diag[ζ, 0, . . . , 0]‖
= κ|ξ − ζ|,

so f is Lipschitz continuous with constant κ.
Suppose f : R→ R is strictly continuous. Then, by Proposition 4.6, f

✷

is strictly
continuous. Hence ∂Bf

✷

(x) is well defined for all x ∈ S. The following lemma studies
the structure of this generalized Jacobian.

Lemma 4.7. Let f : R → R be strictly continuous. Then, for any x ∈ S,
the generalized Jacobian ∂Bf

✷

(x) is well defined and nonempty. Moreover, for any
V ∈ ∂Bf✷

(x), we have

V h = p((pThp) ◦ c)pT ∀h ∈ S(20)

for some p ∈ Ox, c ∈ S, and λ1, . . . , λn ∈ R satisfying x = p diag[λ1, . . . , λn]p
T and

cij =
f(λi)− f(λj)
λi − λj whenever λi �= λj , cij ∈ ∂f(λi) whenever λi = λj .

(21)
Proof. Fix any V ∈ ∂Bf✷

(x). According to the definition of ∂Bf
✷

(x), there
exists a sequence {xk} ⊆ S converging to x such that f is differentiable at xk for all k
and limk→∞∇f✷

(xk) = V . Let λ1 ≥ · · · ≥ λn and λk1 ≥ · · · ≥ λkn be the eigenvalues
of x and xk, k = 1, 2, . . ., respectively. Choose any pk ∈ Oxk

. By Lemma 3.1, there
exist η and p̃k ∈ Ox satisfying

‖pk − p̃k‖ ≤ η‖x− xk‖
for all k sufficiently large. By passing to a subsequence if necessary, we assume that
this holds for all k and that pk converges. By Lemma 3.2, we have λki → λi for
i = 1, . . . , n. Denote λk = (λk1 , . . . , λ

k
n)

T . Then we have from Proposition 4.3 that f
is differentiable at λk1 , . . . , λ

k
n and

∇f✷

(xk)h = pk((p
T
k hpk) ◦ ck)pTk ∀h ∈ S,(22)

where we denote ck := f [1](λk). Thus,

ckij =

{
(f(λki )− f(λkj ))/(λki − λkj ) if λki �= λkj ;
f ′(λki ) if λki = λ

k
j .

(23)

Since f is strictly continuous, then {ckij} is bounded for all i, j. By passing to a

subsequence if necessary, we can assume that {ckij} converges to some cij ∈ R for all
i, j. For each i, we have

ckii = f
′(λki )→ cii ∈ ∂Bf(λi).

For each i �= j such that λi �= λj , we have λki �= λkj for all k sufficiently large and
hence

ckij =
f(λki )− f(λkj )
λki − λkj

→ cij =
f(λi)− f(λj)
λi − λj .
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For each i �= j such that λi = λj , if λ
k
i = λ

k
j for k along some subsequence, then

ckij = f
′(λki )→ cii ∈ ∂Bf(λi) ⊆ ∂f(λi);

if λki �= λkj for k along some subsequence, then a mean-value theorem of Lebourg [9,
Proposition 2.3.7], [26, Thm. 10.48] yields

ckij =
f(λki )− f(λkj )
λki − λkj

∈ ∂f(λ̂kij)

for some λ̂kij in the interval between λ
k
i and λ

k
j . Since f is strictly continuous so that ∂f

is upper semicontinuous [9, Proposition 2.1.5] or, equivalently, outer semicontinuous

[26, Proposition 8.7], this together with λ̂kij → λi = λj implies the limit of {ckij}
belongs to ∂f(λi). Thus, taking limits on both sides of (22) and using the above
results, we obtain (20) and (21) for some p ∈ Ox and c ∈ S, which are the limit of
{pk} and {f [1](λk)}, respectively. This proves the lemma.

Lemma 4.7 does not, however, provide a characterization of ∂Bf
✷

. It is an open
question whether such a (tractable) characterization can be found for any strictly
continuous f . In the special case where f is piecewise continuously differentiable
(e.g., f(·) = | · |) and, more generally, where the directional derivative of f has a
one-sided continuity property, a simple characterization of ∂Bf

✷

can be found as we
show below. In what follows we denote the right- and left-directional derivative of
f : R→ R by

f ′+(ξ) := lim
ζ→ξ+

f(ζ)− f(ξ)
ζ − ξ , f ′−(ξ) := lim

ζ→ξ−

f(ζ)− f(ξ)
ζ − ξ .

Proposition 4.8. Let f : R → R be a strictly continuous and directionally
differentiable function with the property that

lim
ζ,ν→ξσ

ζ �=ν

f(ζ)− f(ν)
ζ − ν = lim

ζ→ξσ

ζ∈Df

f ′(ζ) = f ′σ(ξ) ∀ξ ∈ R, σ ∈ {−,+},(24)

where Df := {ξ ∈ R|f is differentiable at ξ}. Then, for any x ∈ S, we have that
V ∈ ∂B f✷

(x) if and only if V has the form (20) for some p ∈ Ox and λ1, . . . , λn ∈ R

satisfying x = p diag[λ1, . . . , λn]p
T and c has the form

cij =




(f(λi)− f(λj))/(λi − λj) if λi �= λj,
f ′σi

(λi) if λi = λj and i ∈ αl, j ∈ β ∪ αν for some
l < ν,

f ′σj
(λj) if λi = λj and i ∈ β ∪ αl, j ∈ αν for some

l > ν,
(ωif

′
σi
(λi) + ωjf

′
σj
(λj))/(ωi + ωj) if λi = λj and i, j ∈ αl for some l,

f ′(λi) if λi = λj and i, j ∈ β
(25)
for some partition α1, . . . , α
, β of {1, . . . , n} (� ≥ 0) and some σi ∈ {−,+} and
ωi ∈ (0,∞) for i ∈ α1 ∪ · · · ∪ α
. (Implicit in (25) is the differentiability of f at λi,
i ∈ β.)

Proof. Consider any V ∈ ∂Bf✷

(x). By Lemma 4.7 and its proof, V has the form
(20) for some p ∈ Ox and λ1 ≥ · · · ≥ λn satisfying x = p diag[λ1, . . . , λn]p

T and with
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c being the cluster point of ck given by (23), k = 1, 2, . . . for some λk = (λk1 , . . . , λ
k
n)

T

converging to λ = (λ1, . . . , λn)
T . Moreover, f is differentiable at λk1 , . . . , λ

k
n for all k.

By passing to a subsequence if necessary, we can assume that, for each i ∈ {1, . . . , n},
either (i) λki > λi for all k or (ii) λ

k
i < λi for all k or (iii) λ

k
i = λi for all k. Denote

β := {i ∈ {1, . . . , n}|case (iii) holds for i}.

By further passing to a subsequence if necessary, we can assume that, for each i, j ∈
{1, . . . , n} \ β,

|λki − λi|
|λkj − λj |

has a limit ρij ∈ [0,∞] as k →∞.

Then, {1, . . . , n}\β may be partitioned into disjoint subsets α1, . . . , α
 for some � ≥ 0
such that

ρij ∈ (0,∞) whenever i, j ∈ αl for some l,
ρij =∞ whenever i ∈ αl, j ∈ αν for some l < ν.

Moreover, for each l ∈ {1, . . . , �} and each i ∈ αl, the quantity

ωki := |λki − λi|/

∑

j∈αl

|λkj − λj |



converges to a positive limit, which we denote by ωi. For each i ∈ {1, . . . , n} \ β, set
σi = + if case (i) holds for i and set σi = − if case (ii) holds for i. We now verify that
c has the form (25). For any i, j ∈ {1, . . . , n} with λi �= λj , this follows from (21).
For any i, j ∈ {1, . . . , n} with λi = λj , we consider the following disjoint cases.

Case 1. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = σj = +.
Then λki > λi and λ

k
j > λi for all k. If l = ν, it follows from (23) and (24) that

ckij→f ′+(λi) = (ωif
′
σi
(λi) + ωjf

′
σj
(λj))/(ωi + ωj) = cij ,

where the last equality uses (25). If l < ν, a similar argument shows that

ckij → f ′+(λi) = f
′
σi
(λi) = cij .

The remaining subcase of l > ν can be treated analogously.
Case 2. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = +, σj = −.

Then λki > λi and λ
k
j < λi for all k. If l = ν, it follows from (23) and (24) that

ckij =
f(λki )− f(λkj )
λki − λkj

=
ωki

ωki + ω
k
j

f(λki )− f(λi)
λki − λi

+
ωkj

ωki + ω
k
j

f(λkj )− f(λi)
λkj − λi

→ ωi
ωi + ωj

f ′+(λi) +
ωj

ωi + ωj
f ′−(λj)

= (ωif
′
σi
(λi) + ωjf

′
σj
(λj))/(ωi + ωj)

= cij ,
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where the last equality uses (25). If l < ν, a similar argument together with ρij =∞
shows that

ckij =
|λki − λi|

|λki − λi|+ |λkj − λj |
f(λki )− f(λi)
λki − λi

+
|λkj − λj |

|λki − λi|+ |λkj − λj |
f(λkj )− f(λi)
λkj − λi

→ f ′+(λi)
= cij .

The remaining subcase of l > ν can be treated analogously.
Case 3. Suppose i ∈ αl and j ∈ β for some l ∈ {1, . . . , �} and σi = +. Then

λki > λi and λ
k
j = λi for all k. It follows from (23) and (24) that

ckij =
f(λki )− f(λi)
λki − λi

→ f ′+(λi) = cij .

Case 4. Suppose i, j ∈ β. Then λki = λkj = λi for all k and it follows from (23)
that f is differentiable at λi, i ∈ β, and

ckij = f
′(λi) = cij .

Case 5. Suppose i ∈ αl and j ∈ αν for some l, ν ∈ {1, . . . , �} and σi = σj = −.
This case is analogous to Case 1.

Case 6. Suppose i ∈ αl and j ∈ β for some l ∈ {1, . . . , �} and σi = −. This case
is analogous to Case 3.

Conversely, suppose that V has the form (20) for some p ∈ Ox and λ1, . . . , λn ∈
R satisfying x = p diag[λ1, . . . , λn]p

T and c has the form (25) for some partition
α1, . . . , α
, β of {1, . . . , n} (� ≥ 0) and some σi ∈ {−,+} and ωi ∈ (0,∞) for i ∈
α1∪· · ·∪α
. For each i ∈ β, set dki := 0 for k = 1, 2, . . . . For each i ∈ αl, l ∈ {1, . . . , �},
let δki = ωi(1/2)

kl if σi = + and let δki = −ωi(1/2)kl if σi = −, k = 1, 2, . . . . Since f
is strictly continuous, by Rademacher’s theorem (see [26, Thm. 9.60]), Df is dense in
R. Thus, for each i ∈ α1 ∪ · · · ∪ α
 and each index k, there exists dki ∈ R satisfying

λi + d
k
i ∈ Df and |dki − δki | ≤ |δki |2.

Let λki := λi + d
k
i for all i. Then, by Proposition 4.3, f

✷

is differentiable at

xk := p diag[λk1 , . . . , λ
k
n]p

T

for all k and

∇f✷

(xk)h = p(ck ◦ (pThp))pT ∀h ∈ S,

where ck is given by (23). Also, the definition of dk1 , . . . , d
k
n yields

dki → 0 ∀i, |dki |
|dkj |

→ ωi
ωj
∀i, j ∈ αl, l = 1, . . . , �,

|dki |
|dkj |

→ ∞ ∀i ∈ αl, j ∈ αν , l < ν,

and σi = + implies dki > 0 for all k and σi = − implies dki < 0 for all k. Then, it is
straightforward to verify that xk → x and ck → c, implying

∇f✷

(xk)h→ p(c ◦ (pThp))pT = V h ∀h ∈ S.
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This shows that V ∈ ∂Bf✷

(x).

Notice that a V of the form (20) is invertible if and only all entries of c are
nonzero. Also, notice that the p in the formula (20) depends on V ; i.e., two elements
of ∂Bf

✷

(x) may have different p in their formulas. Thus ∂f
✷

(x), being the convex
hull of ∂Bf

✷

(x), has a rather complicated structure.

The following lemma, proven by Sun and Sun [29, Thm. 3.6] using the definition
of generalized Jacobian,1 enables one to study the semismooth property of f

✷

by
examining only those points x ∈ S where f

✷

is differentiable and thus work only with
the Jacobian of f

✷

, rather than the generalized Jacobian.

Lemma 4.9. Suppose F : S → S is strictly continuous and directionally differ-
entiable in a neighborhood of x ∈ S. Then, for any 0 < ρ < ∞, the following two
statements (where O(·) depends on F and x only) are equivalent:

(a) For any h ∈ S and any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

(b) For any h ∈ S such that F is differentiable at x+ h,

F (x+ h)− F (x)−∇F (x+ h)h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

By using Lemmas 3.1, 3.2, and 4.9 and Propositions 4.2, 4.3, and 4.6, we are now
ready to state and prove the last result of this section. The proof is motivated by and
in some sense generalizes the proof of Lemma 4.12 in [29], though it is also simpler.
The proof idea was also used for proving Proposition 4.3, with the main difference
being that here x+ h is diagonalized rather than x.

Proposition 4.10. For any f : R→ R, the matrix function f
✷

is semismooth if
and only if f is semismooth. If f : R → R is ρ-order semismooth (0 < ρ <∞), then
f

✷

is min{1, ρ}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and directionally
differentiable. By Propositions 4.2 and 4.6, f

✷

is strictly continuous and directionally
differentiable. Let D := {x ∈ S|f✷

is differentiable at x}.
Fix any x ∈ S and let λ1 ≥ · · · ≥ λn denote the eigenvalues of x. By Lemma

3.1, there exist scalars η > 0 and ε > 0 such that (3) holds. By taking ε smaller if
necessary, we can assume that ε < (λi − λi+1)/2 whenever λi �= λi+1. We will show
that, for any h ∈ S with x+ h ∈ D and ‖h‖ ≤ ε, we have

f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h = o(‖h‖),(26)

where o(·) and O(·) depend on f and x only. Then, it follows from Lemma 4.9 that
f

✷

is semismooth at x. Since the choice of x ∈ S was arbitrary, f
✷

is semismooth.
Let µ1 ≥ · · · ≥ µn denote the eigenvalues of x+ h, and choose any q ∈ Ox+h. Then,
there exists p ∈ Ox satisfying

‖p− q‖ ≤ η‖h‖.

For simplicity, let r denote the left-hand side of (26), i.e.,

r := f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h,

1Sun and Sun did not consider the case of o(‖h‖), but their argument readily applies to this case.
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and denote r̃ = qT rq and h̃ := qThq. Since x + h ∈ D, Proposition 4.3 implies f is
differentiable at µ1, . . . , µn. Then we have from (2) and (10) that

r̃ = b− oTao− c ◦ h̃,(27)

where for simplicity we also denote a := diag[f(λ1), . . . , f(λn)], b := diag[f(µ1), . . . , f(µn)],
c := f [1](µ), and o := pT q.

Since diag[µ1, . . . , µn] = q
T (x+ h)q = oTdiag[λ1, . . . , λn]o+ h̃, we have

n∑
k=1

okiokjλk + h̃ij =

{
µi if i = j,
0 else,

i, j = 1, . . . , n.(28)

Since o = pT q = (p− q)T q + I and ‖p− q‖ ≤ η‖h‖, it follows that
oij = O(‖h‖) ∀i �= j.(29)

Since p, q ∈ O, we have o ∈ O so that oT o = I. This implies

1 = o2ii +
∑
k �=i

o2ki = o
2
ii +O(‖h‖2), i = 1, . . . , n,(30)

0 = oiioij + ojiojj +
∑
k �=i,j

okiokj = oiioij + ojiojj +O(‖h‖2) ∀i �= j.(31)

We now show that r̃ = o(‖h‖) which, by ‖r‖ = ‖r̃‖, would prove (26). For any
i ∈ {1, . . . , n}, we have from (27) and (28) that

r̃ii = f(µi)−
n∑

k=1

o2kif(λk)− f ′(µi)h̃ii

= f(µi)−
n∑

k=1

o2kif(λk)− f ′(µi)
(
µi −

n∑
k=1

o2kiλk

)

= f(µi)− o2iif(λi)− f ′(µi)(µi − o2iiλi) +O(‖h‖2)
= f(µi)− (1 +O(‖h‖2))f(λi)− f ′(µi)(µi − (1 +O(‖h‖2))λi) +O(‖h‖2)
= f(µi)− f(λi)− f ′(µi)(µi − λi) +O(‖h‖2),

where the third and fifth equalities use (29), (30), and the local boundedness of f and
f ′. Since f is semismooth and Lemma 3.2 implies |µi − λi| ≤ ‖h‖, then clearly the
right-hand side is of o(‖h‖). For any i, j ∈ {1, . . . , n} with i �= j, we have from (27)
and (28) that

r̃ij = −
n∑

k=1

okiokjf(λk)− cij h̃ij

= −
n∑

k=1

okiokjf(λk) + cij

n∑
k=1

okiokjλk

= −(oiioijf(λi) + ojiojjf(λj)) + cij(oiioijλi + ojiojjλj) +O(‖h‖2)
= − ((oiioij + ojiojj)f(λi) + ojiojj(f(λj)− f(λi)))
+ cij ((oiioij + ojiojj)λi + ojiojj(λj − λi)) +O(‖h‖2)

= −ojiojj (f(λj)− f(λi)− cij(λj − λi)) +O(‖h‖2),
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where the third and fifth equalities use (29), (31), and the local boundedness of f and
f ′. Thus, if λi = λj , the preceding relation yields

r̃ij = O(‖h‖2).

If λi �= λj , then Lemma 3.2 implies |µi − λi| ≤ ‖h‖ and |µj − λj | ≤ ‖h‖ so that
|µi−µj | = |λi−λj − (λi−µi)+ (λj −µj)| ≥ |λi−λj | − 2‖h‖ > 2ε− 2‖h‖ ≥ 0. Hence
µi �= µj , so cij = (f(µj)− f(µi))/(µj − µi) and the preceding relation yields

r̃ij = −ojiojj
(
f(λj)− f(λi)− f(µj)− f(µi)

µj − µi (λj − λi)
)
+O(‖h‖2)

= −ojiojj
(
f(λj)− f(λi)− (f(µj)− f(µi))

(
1 +

λj − λi − µj + µi
µj − µi

))
+O(‖h‖2)

= O(‖h‖2),

where the last equality uses (29) and the strict continuity of f at λi, λj , so that
f(µi)− f(λi) = O(|µi − λi|) = O(‖h‖) and f(µj)− f(λj) = O(|µj − λj |) = O(‖h‖).

Suppose f is ρ-order semismooth (0 < ρ < ∞). Then the preceding argument
shows that r̃ii = O(max{‖h‖1+ρ, ‖h‖2}) = O(‖h‖1+min{1,ρ}) for all i while we still
have r̃ij = O(‖h‖2) for all i �= j. This shows that f✷

is min{1, ρ}-order semismooth
at x. Since the choice of x ∈ S was arbitrary, f

✷

is min{1, ρ}-order semismooth.
Suppose f

✷

is semismooth. Then f
✷

is strictly continuous and directionally differ-
entiable. By Propositions 4.2 and 4.6, f is strictly continuous and directionally differ-
entiable. For any ξ ∈ R and any η ∈ R such that f is differentiable at ξ+η, Proposition
4.3 yields that f

✷

is differentiable at x+ h, where we denote x := diag[ξ, . . . , ξ] = ξI
and h := diag[η, . . . , η] = ηI. Since f

✷

is semismooth, it follows from Lemma 4.9 that

f
✷

(x+ h)− f✷

(x)−∇f✷

(x+ h)h = o(‖h‖),

which, by (2) and (10), is equivalent to

f(ξ + η)− f(ξ)− f ′(ξ + η)η = o(|η|).

Then Lemma 4.9 yields that f is semismooth.
We note that for each of the preceding global results there is a corresponding

local result. This can be seen from our proofs where, in order to show that a global
property of f is inherited by f

✷

, we first show that this property is locally inherited
from f by f

✷

. For example, we can show the following local analogue of Proposition
4.4: If f : R → R is continuously differentiable at each of the eigenvalues of x ∈ S,
then f

✷

is continuously differentiable at x and ∇f✷

(x) is given by (10).

5. Applications to the SDCP. In this section, we consider the semidefinite
complementarity problem (SDCP), which is to find, for a given function F : S → S,
an (x, y) ∈ S × S satisfying

x ∈ S+, y ∈ S+, 〈x, y〉 = 0, F (x)− y = 0,(32)

where S+ denotes the convex cone comprising those x ∈ S that are positive semidefi-
nite. We assume that F is continuously differentiable. The SDCP includes as a special
case the nonlinear complementarity problem (NCP), where n1 = · · · = nm = 1. It is
also connected to eigenvalue optimization [18]. There has been much interest in the
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numerical solution of the SDCP (32) using, e.g., the interior-point approach [27], the
merit function approach [30, 32], and the noninterior smoothing approach [8] (also see
references therein). We will consider a related approach of reformulating the SDCP
as a semismooth equation and then, by applying the results of section 4, study is-
sues relevant to the design and analysis of smoothing Newton methods based on this
reformulation.

It is known [30, Proposition 2.1] that (x, y) ∈ S × S solves the SDCP if and only
if it solves the equations

H(x, y) :=

(
x− [x− y]+
F (x)− y

)
= 0,(33)

where [·]+ : S → S+ denotes the nearest-point projection onto S+, i.e.,

[x]+ := argmin{‖x− y‖ | y ∈ S+}.
The functionH is nonsmooth due to the nonsmoothness of the matrix projection oper-
ator [·]+. However, it was shown by Sun and Sun [29] that [·]+ is strongly semismooth,
so that H is semismooth. We will see that this result also follows from Proposition
4.10 and, in particular, f

✷

(·) = [·]+ with f(·) = max{0, ·} (Proposition 5.2).
There have been many smoothing methods proposed for solving semismooth equa-

tion reformulation of the NCP—see [2, 3, 4, 5, 6, 7, 11, 16, 22, 24] and references
therein. These methods are based on making accurate smooth approximation of the
semismooth equations. In particular, the smoothing method studied by Chen, Qi,
and Sun [6] and later studied by Kanzow and Pieper [16] have an accuracy criterion
called the Jacobian Consistence Property. We will verify this property with respect
to a class of smoothing functions Hµ for H, as proposed by Chen and Mangasarian
[4, 5] for the case of the linear program (LP) and the NCP and recently extended
in [8] to the SDCP. This property, together with semismoothness of H, allows the
development of methods of the form

(xk+1, yk+1) = (xk, yk)− tk∇Hµk
(xk, yk)−1H(xk, yk), k = 0, 1, . . . ,

with tk > 0 and µk ↓ 0 suitably chosen, that achieve both global convergence and
local superlinear convergence, assuming nonsingularity of all V ∈ ∂H(x, y) locally; see
[6, Thm. 3.2]. Such methods have the advantage of requiring only one linear equation
solve per iteration, in contrast to the two (or more) linear equation solves required
by other smoothing methods having similar global and local convergence properties.
Thus, our study paves the way for extending methods of the above form from the
NCP to the SDCP. This, for example, would improve on the methods of [8, 15] which
require two linear equation solves per iteration.

Let CM denote the class of convex continuously differentiable functions g : R→ R

with the properties

lim
τ→−∞ g(τ) = 0, lim

τ→∞ g(τ)− τ = 0, and 0 < g′(τ) < 1 ∀τ ∈ R.

Two typical examples of g are the so-called CHKS function g(τ) = ((τ2+4)1/2+ τ)/2
and the neural network function g(τ) = ln(eτ + 1). For any g ∈ CM, consider the
following smooth approximation of x−[x−y]+, as proposed by Chen and Mangasarian
[4, 5] for the case of the LP and the NCP:

φµ(x, y) := x− µg✷((x− y)/µ), µ > 0.(34)
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It was shown in [8, Lem. 1] that the limit limµ→0 φµ(x, y) exists and is equal to
x− [x− y]+. Moreover, one has [8, Cor. 1]

‖φµ(x, y)− (x− [x− y]+)‖ ≤
√
ng(0)µ,(35)

and φµ is continuously differentiable for any µ > 0 [8, Lem. 2]. Hence a smooth
approximation of H(x, y) is

Hµ(x, y) :=

(
φµ(x, y)
F (x)− y

)
, µ > 0.(36)

We say that Hµ has the Jacobian Consistence Property relative to H if there
exists a constant κ > 0 such that, for any (x, y) ∈ S × S, we have (i)

‖Hµ(x, y)−H(x, y)‖ ≤ κµ ∀µ > 0(37)

and (ii)

lim
µ→0+

dist(∇Hµ(x, y), ∂H(x, y)) = 0;(38)

i.e., the distance between ∇Hµ(x, y) and the set ∂H(x, y) approaches zero as µ is
decreased to zero. Here, we denote dist(L,M) := infM∈M ‖|L −M‖| for any linear
mapping L : S ×S → S ×S and any nonempty collectionM of linear mappings from
S × S to S × S. Also, for any (x, y) ∈ S × S, we define ‖(x, y)‖ = √‖x‖2 + ‖y‖2.
We show below that H is semismooth and Hµ has the Jacobian Consistence Property
relative to H. These results facilitate the extension of the smoothing Newton methods
of Chen, Qi, and Sun [6] for the NCP, later studied by Kanzow and Pieper [16], to
the SDCP. Such methods are promising. For example, a smoothing method of [8],
based on (34) and (36) with g being the CHKS function, is comparable to primal-
dual interior-point methods in terms of the number of iterations to solve benchmark
semidefinite programs with relative infeasibility and duality gap below 3 · 10−9. As
with interior-point methods and barrier/penalty methods, the smoothing parameter µ
needs to be small to obtain an accurate solution and, as µ becomes smaller, ∇Hµ(x, y)
can become more ill-conditioned. Thus, such smoothing methods could have difficulty
achieving solution accuracy much greater than 10−9.

We begin with the following lemma showing that the Jacobian Consistence Prop-
erty is inherited by f

✷

and its smooth approximations from f and its smooth approx-
imations.

Lemma 5.1. Let f : R → R be a strictly continuous function. Let fµ : R → R,
µ > 0, be differentiable functions such that there exists a scalar constant κ > 0 for
which

|fµ(ζ)− f(ζ)| ≤ κµ ∀µ > 0,(39)

lim
µ→0+

dist(f ′µ(ζ), ∂f(ζ)) = 0(40)

for all ζ ∈ R. Then, for any z ∈ S, we have

‖f✷

µ (z)− f
✷

(z)‖ ≤ √nκµ ∀µ > 0,(41)

lim
µ→0+

dist(∇f✷

µ (z), ∂f
✷

(z)) = 0.(42)
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Proof. Fix any z ∈ S. Consider any λ1, . . . , λn ∈ R and any p ∈ O satisfying
z = p diag[λ1, . . . , λn]p

T .
By (1) and (2), we have

‖f✷

µ (z)− f
✷

(z)‖ = ‖pT f✷

µ (z)p− pT f
✷

(z)p‖
= ‖diag[fµ(λ1)− f(λ1), . . . , fµ(λn)− f(λn)]‖
≤ √nκµ,

where the last inequality uses (39). This proves (41).
We now prove (42). For any µ > 0, since fµ is differentiable, then Proposition

4.3 yields that f
✷

µ is differentiable and

∇f✷

µ (z)h = p(cµ ◦ (pThp))pT ∀h ∈ S,(43)

where cµ := f
[1]
µ (λ) and λ := (λ1, . . . , λn)

T . Let λ̃1, . . . , λ̃m denote the distinct eigen-

values of z and denote Ik := {i ∈ {1, . . . , n}|λi = λ̃k}, k = 1, . . . ,m. We have

(cµ)ij =

{
(fµ(λ̃k)− fµ(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
f ′µ(λ̃k) if i, j ∈ Ik for some k.

(44)

By (39) and (40), for each ε > 0 there exists δ > 0 such that for each µ ∈ (0, δ) we
have

|fµ(λ̃k)− f(λ̃k)| < ε and |f ′µ(λ̃k)− vk| < ε, k = 1, . . . ,m,(45)

for some vk ∈ ∂f(λ̃k) depending on µ. Letting c ∈ S denote the symmetric matrix
whose (i, j)th entry is

cij :=

{
(f(λ̃k)− f(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
vk if i, j ∈ Ik for some k,

(46)

we then obtain from (39), (44), (45), and (46) that

|(cµ)ij − cij | < εβ ∀i, j = 1, . . . , n,(47)

where β > 0 is a scalar independent of µ and ε. Define the linear mapping V : S → S
by

V h := p(c ◦ (pThp))pT ∀h ∈ S.(48)

Then V depends on µ and, by (43) and (47), we have

‖|∇f✷

µ (z)− V ‖| = sup
‖h‖=1

‖∇f✷

µ (z)h− V h‖ = sup
‖h‖=1

‖(cµ − c) ◦ (pThp)‖ < εβ.

Thus ‖|∇f✷

µ (z)− V ‖| → 0 as µ → 0+. We now show that V belongs to ∂f
✷

(z). For

each k ∈ {1, . . . ,m}, since vk ∈ ∂f(λ̃k), there exist integer τk ≥ 1 and υk[ν] ∈ ∂Bf(λ̃k)
and ωk[ν] ∈ (0,∞), ν = 1, . . . , τk, satisfying

τk∑
ν=1

ωk[ν] = 1,

τk∑
ν=1

ωk[ν] υk[ν] = vk.



982 XIN CHEN, HOUDUO QI, AND PAUL TSENG

Then, it is straightforward to verify that

τ1∑
ν1=1

· · ·
τm∑

νm=1

(
m∏
k=1

ωk[νk]

)
= 1,

τ1∑
ν1=1

· · ·
τm∑

νm=1

(
m∏
k=1

ωk[νk]

)
c[ν1, . . . , νm] = c,

where c[ν1, . . . , νm] ∈ S denotes the symmetric matrix whose (i, j)th entry is

c[ν1, . . . , νm]ij :=

{
(f(λ̃k)− f(λ̃
))/(λ̃k − λ̃
) if i ∈ Ik, j ∈ I
 for some k �= �,
υk[νk] if i, j ∈ Ik for some k.

We now show that the linear mapping V [ν1, . . . , νm] : S → S defined by

V [ν1, . . . , νm]h := p(c[ν1, . . . , νm] ◦ (pThp))pT ∀h ∈ S

belongs to ∂Bf
✷

(z). For each k ∈ {1, . . . ,m}, since υk[νk] ∈ ∂Bf(λ̃k), there exist
λ̃kl ∈ R, l = 1, 2, . . ., such that f is differentiable at λ̃kl for all l and λ̃kl → λ̃k and
f ′(λ̃kl)→ υk[νk] as l→∞. Then, letting

zl := p diag[λ1l, . . . , λnl]p
T with λil := λ̃kl ∀i ∈ Ik, k = 1, . . . ,m,

for l = 1, 2, . . . , we have from Proposition 4.3 that f
✷

is differentiable at zl. Moreover,
as l→∞, we have zl → z and

‖|∇f✷

(zl)− V [ν1, . . . , νm]‖| = sup
‖h‖=1

‖∇f✷

(zl)h− V [ν1, . . . , νm]h‖

= sup
‖h‖=1

‖(f [1](λ1l, . . . , λnl)− c[ν1, . . . , νm]) ◦ (pThp)‖ → 0.

Hence V [ν1, . . . , νm] ∈ ∂Bf(z).
By using Lemma 5.1 together with Proposition 4.10, we can now establish the

main result of this section. Part (a) of this result was already shown in [29]. Here we
show that it also follows from Proposition 4.10.

Proposition 5.2. For the functions H and Hµ defined by (33) and (36) with
g ∈ CM, respectively, the following results hold.

(a) H is semismooth. If F is ρ-order semismooth (0 < ρ < ∞), then H is
min{1, ρ}-order semismooth.

(b) Hµ has the Jacobian Consistence Property relative to H.
Proof. Let

f(ζ) := max{0, ζ}, fµ(ζ) := µg(ζ/µ) ∀ζ ∈ R.(49)

(a) It was shown in [30, Lem. 2.1] that

f
✷

(z) = [z]+ ∀z ∈ S.

Also, it is well known that f is piecewise linear on R and hence f is strongly semis-
mooth. Then, by Proposition 4.10, f

✷

is strongly semismooth. It is known that the
composition of two ρ-order semismooth functions is also ρ-order semismooth [10, Thm.
19]. Hence the composite function (x, y) �→ f

✷

(x − y) = [x − y]+ is strongly semis-
mooth. Since F is semismooth, then H is semismooth. If F is ρ-order semismooth
(0 < ρ <∞), then H is min{1, ρ}-order semismooth.
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(b) It can be seen from (33), (35), and (36) that (37) is satisfied with κ :=
√
ng(0).

Alternatively, this can be deduced by applying Lemma 5.1 and using (49). We now
prove (38). It is readily seen from (49) and properties of g (see, e.g., [31]) that

lim
µ→0+

f ′µ(ζ) = lim
µ→0+

g′(ζ/µ) =



g′(0) if ζ = 0,
1 if ζ > 0,
0 if ζ < 0,

∂f(ζ) =



[−1, 1] if ζ = 0,
{1} if ζ > 0,
{0} if ζ < 0.

Since g′(0) ∈ (0, 1), this shows that (40) holds for all ζ ∈ R. Thus, by Lemma 5.1,
(42) holds for all z ∈ S. Fix any x, y ∈ S. It can be seen from (33) and f

✷

(·) = [·]+
that

B ∈ ∂H(x, y) if and only if B =

[
I − V V
∇F (x) −I

]
for some V ∈ ∂f✷

(x− y).

Also, we have from (34) and (36) that

∇Hµ(x, y) =

[
I −∇f✷

µ (x− y) ∇f✷

µ (x− y)
∇F (x) −I

]
.

Thus

dist(∇Hµ(x, y), ∂H(x, y)) = min
V ∈∂f✷ (x−y)

{
max

‖(u,v)‖=1
‖(∇f✷

µ (x− y)− V )(u− v)‖
}

≤
√
2 dist(∇f✷

µ (x− y), ∂f
✷

(x− y))
→ 0 as µ→ 0+,

where the last relation follows from (42) with z = x− y. This verifies (38).
We note that, for the particular choice (49) of f and fµ, we can obtain an ex-

plicit formula for c given by (46) and directly verify that V given by (48) belongs
to ∂f

✷

(z). Specifically, for any z ∈ S and any λ1, . . . , λn ∈ R and p ∈ O satisfying
z = p diag[λ1, . . . , λn]p

T , define the three index sets

α := {i| λi > 0}, β := {i| λi = 0}, γ := {i| λi < 0}.
Upon taking µ→ 0+ in (44) and using (49) and properties of g [31], we obtain in the
limit that the (i, j)th entry of c is given by

cij = lim
µ→0+

(cµ)ij =




1 if i, j ∈ α,
1 if i ∈ α, j ∈ β or i ∈ β, j ∈ α,
λi/(λi − λj) if i ∈ α, j ∈ γ,
λj/(λj − λi) if i ∈ γ, j ∈ α,
g′(0) if i, j ∈ β,
0 else.

(50)

To see that V given by (48) belongs to ∂f
✷

(z), let εl, l = 1, 2, . . ., be any sequence
of positive scalars converging to 0, and define for σ = −1, 1 and l = 1, 2, . . . the
symmetric matrix

zl[σ] := z + σεlp diag[d1, . . . , dn]p
T , with di :=

{
1 if i ∈ β,
0 else.

For each σ ∈ {−1, 1}, it can be seen that the eigenvalues of zl[σ] are λil[σ] := λi+σεldi,
i = 1, . . . , n, which are nonzero for all l sufficiently large. Thus, f is differentiable
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at λil[σ], i = 1, . . . , n, for all l sufficiently large. Hence, by Proposition 4.3, f
✷

is
differentiable at zl[σ] for all l sufficiently large and

∇f✷

(zl[σ])h = p(cl[σ] ◦ (pThp))pT ∀h ∈ S,

where cl[σ] := f
[1](λ1l[σ], . . . , λnl[σ]) ∈ S. Using (49), it can be seen that, as l →∞,

zl[σ]→ z and cl[σ] converges entrywise to c[σ] whose (i, j)th entry is

(c[σ])ij :=




1 if i, j ∈ α,
1 if i ∈ α, j ∈ β or i ∈ β, j ∈ α,
λi/(λi − λj) if i ∈ α, j ∈ γ,
λj/(λj − λi) if i ∈ γ, j ∈ α,
max{0, σ} if i, j ∈ β,
0 else.

(51)

Hence ∇f✷

(zl[σ]) converges in operator norm to V [σ] : S → S defined by

V [σ]h := p(c[σ] ◦ (pThp))pT ∀h ∈ S.

By the definition of ∂Bf
✷

(z), we see that V [σ] ∈ ∂Bf✷

(z). Moreover, (50) and (51)
show that c = g′(0)c[−1]+(1−g′(0))c[1], and hence V = g′(0)V [−1]+(1−g′(0))V [1].
This shows that V ∈ ∂f✷

(z).

6. Final remarks. In this paper, we studied various continuity and differentia-
bility properties of a class of symmetric-matrix-valued functions, which are natural
extensions of real-valued functions to matrix-valued functions. Using these properties,
we reformulated the SDCP as a semismooth equation based on the matrix projection
operator [·]+. We verified the Jacobian Consistence Property for the reformulated
semismooth equation and its smooth approximation based on a class of smoothing
functions proposed by Chen and Mangasarian [4, 5] for the LP and NCP and extended
in [8] to the SDCP. This result facilitates the extension of the smoothing method stud-
ied in [6] and [16] for the NCP to the SDCP. We stress that, apart from the Jacobian
Consistence Property, there are other important issues in extending the smoothing
method of [6] to the SDCP. One of them is the solvability of the smoothing Newton
equations. We leave this issue for future research.
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