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Abstract. There recently has been much interest in non-interior continuation/smoothing methods for solv-
ing linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity
problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These ex-
tensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Burmeister
function. Issues such as existence of Newton directions, boundedness of iterates, global convergence, and local
superlinear convergence will be studied. Preliminary numerical experience on semidefinite linear programs
is also reported.
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1. Introduction

There recently has been much interest in semidefinite linear programs (SDLP) and,
more generally, semidefinite linear complementarity problems (SDLCP), which are ex-
tensions of LP and LCP, respectively, with the cone of nonnegative real vectors replaced
by the cone of symmetric positive semidefinite real matrices.Accordingly, there has been
considerable effort to extend solution approaches for LP and LCP to SDLP and SDLCP.
The main focus has been on extending the interior-point approach to solve SDLP (see
[1, 2, 27, 31, 33, 37, 38, 51] and references therein), monotone SDLCP [31, 48], and
semidefinite (nonlinear) complementarity problems (SDCP) [41]. Recently, extensions
of the merit function approach have also been considered [49, 54]. In this paper, we
consider extensions of a third approach, that of non-interior continuation, which has
been extensively studied in the settings of LP and CP.

We describe the semidefinite complementarity problem (SDCP) below, using the
notation in [49]. Let X denote the space of n × n block-diagonal real matrices with m
blocks of sizes n1, ..., nm, respectively (the blocks are fixed). Thus, X is closed under
matrix addition x + y, multiplication xy, transposition xT , and inversion x−1, where
x, y ∈ X . We endow X with the inner product and norm

〈x, y〉 := tr[xT y], ‖x‖ :=
√

〈x, x〉,
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where x, y ∈ X and tr[·] denotes the matrix trace, i.e., tr[x] = ∑n
i=1 xii . [‖x‖ is the

Frobenius-norm of x and “:=” means “define”.] Let O denote the set of p ∈ X that are
orthogonal, i.e., pT = p−1. Let S denote the subspace comprising those x ∈ X that are
symmetric, i.e., xT = x. Let S+ (respectively, S++) denote the convex cone comprising
those x ∈ S that are positive semidefinite (respectively, positive definite). Our problem
is to find, for a given mapping F : S �→ S, an (x, y) ∈ S × S satisfying

x ∈ S+, y ∈ S+, 〈x, y〉 = 0, F (x)− y = 0. (1)

We will assume thatF is continuously differentiable. We denote by Z the set of solutions
of SDCP, i.e., Z := {(x, y) ∈ S ×S : (x, y) satisfy (1)}, which we assume is nonempty.
This problem contains as special cases the SDLP (for which n2 = · · · = nm = 1, and
F is affine and skew-symmetric in the sense that 〈x − y, F (x) − F(y)〉 = 0 for all
x, y ∈ S) and CP (for which n1 = · · · = nm = 1).

We describe below the non-interior smoothing/continuation approach to solve SDCP.
This approach was considered in the setting of LP/CP by Smale [42], B. Chen and Har-
ker [11, 12], and Kanzow [28, 29], and was substantially generalized by C. Chen and
Mangasarian [15, 16], based on an earlier work of Kreimer and Rubinstein. It has sub-
sequently been extensively studied [5, 6, 9, 10, 14, 17, 18, 26, 50, 52] (also see [20,
22] for further references). In this approach, we construct a continuously differentiable
function φµ : S × S �→ S, parameterized by a “smoothing parameter” µ > 0, having
the property that

φµ(a, b) → 0 and (a, b, µ) → (x, y, 0) �⇒ x ∈ S+, y ∈ S+, 〈x, y〉 = 0. (2)

Accordingly, (1) is approximated by the smooth equation Hµ(x, y) = 0, where

Hµ(x, y) := (φµ(x, y), F (x)− y). (3)

Then, starting with any µ > 0 and z ∈ S × S, we fix µ and apply a few Newton-type
steps for Hµ(z) = 0 to update z, and then we decrease µ and re-iterate. Instead of
applying Newton steps to Hµ(z) = 0, one can fix µ and minimize ‖Hµ(z)‖, possibly
inexactly, using standard methods for unconstrained minimization and then decrease µ
[13, 15, 16, 23]. Here, we denote ‖(a, b)‖ :=

√
‖a‖2 + ‖b‖2 for (a, b) ∈ S × S.

We now consider possible choices of the smoothing function φµ. Following [50], let
CM denote the class of convex continuously differentiable functions g : 	 → 	 with
the properties that limτ→−∞ g(τ) = 0 and limτ→∞ g(τ) − τ = 0 and 0 < g′(τ ) < 1
for all τ ∈ 	. For any g ∈ CM , consider the following choice of φµ based on a proposal
of C. Chen and Mangasarian [15, 16] in the LP/CP case:

φµ(x, y) := x − µg((x − y)/µ), (4)

where, by convention, for any a ∈ S we have g(a) = pT diag[g(λ1), ..., g(λn)]p,
with p ∈ O and λ1, ..., λn ∈ 	 satisfying a = pT diag[λ1, ..., λn]p [25, Sec. 6.2]. It
is known that g(a) is well defined (independent of the ordering of λ1, ..., λn and the
choice of p) and belongs to S. There are many choices of g ∈ CM . One is a function
proposed independently by B. Chen and Harker [11, 12], Kanzow [28, 29], and Smale
[42] (CHKS):

g(τ) := ((τ 2 + 4)1/2 + τ)/2, (5)
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The second is the neural network function considered by C. Chen and Mangasarian [15,
16]:

g(τ) := ln(eτ + 1). (6)

For these two choices of g, we have, respectively, g(a) = ((a2 + 4I )1/2 + a)/2 and
g(a) = ln(ea + I ), where I denotes the n × n identity matrix, ea is the matrix expo-
nential of a and ln(·) denotes its inverse [25]. These two matrix functions were recently
considered by Auslender [3] in the context of penalty and barrier methods for SDLP.
Notice that ea+I is positive definite, so ln(ea+I ) is well defined. As one referee noted,
we can associate with each g ∈ CM a dual function g◦, defined by g◦(τ ) := τ + g(−τ)
for all τ ∈ 	, which also belongs to CM and satisfies

x − µg((x − y)/µ) = y − µg◦((y − x)/µ) ∀µ > 0, ∀x, y ∈ S.
Moreover, (g◦)◦ = g. Notice that the functions in (5) and (6) are self-dual, i.e., g◦ = g.
In fact, for any g ∈ CM we can derive a self-dual function ĝ(τ ) := (g(τ )+ g◦(τ ))/2 in
CM . We will also consider the following choice of φµ, based on a proposal of Kanzow
[28] in the CP case:

φµ(x, y) = x + y − (x2 + y2 + 2µ2I )1/2. (7)

This choice, called the smoothed Fischer-Burmeister (FB) function, has properties sim-
ilar to (4)–(5) but does not belong to the Chen-Mangasarian class (4). In Secs. 2 and 3,
we show that the above choices of φµ are continuously differentiable and satisfy (2); see
Cors. 1, 2 and Lemma 5. Notice that φµ given by (4) or (7) is homogeneous of degree 1
in µ, i.e.,

φµν(x, y) = µφν(x/µ, y/µ) ∀µ, ν > 0, ∀x, y ∈ S. (8)

As with interior-point methods, a convergence analysis requires the iterates (z, µ)
to lie in a neighborhood of the “path” defined by Hµ(z) = 0 [5, 6, 9, 14, 50, 52]. We
will use the following choice of neighborhood, based on one used for the CP case [6, 9,
50]:

Nβ := { (z, µ) ∈ S × S × 	++ : ‖Hµ(z)‖ ≤ βµ }, (9)

where β ∈ 	++ is a constant. Our method iteratively moves (z, µ) along the Newton
direction

−(∇Hµ(z)−1Hµ(z), σµ)

(σ ∈ (0, 1)) while maintaining it to remain in Nβ . In Secs. 4 and 5, we derive sufficient
conditions for the Newton direction to exist and for (z, µ) to be bounded; see Lemmas
6, 7, 8. In Sec. 6, we describe the method and, in Sec. 7, we analyze the global (linear)
convergence of (z, µ), extending the results in [50] to the SDCP setting; see Prop. 1 and
Cor. 3. To accelerate local convergence, we also consider moving z along the “pure”
Newton direction

−∇Hµ(z)−1H0(z)

and decreasing µ superlinearly, where H0(z) := limµ↓0Hµ(z); see Prop. 2. This di-
rection has been used by [9, 10, 14, 17] in the LP/CP case. In Sec. 8, we prove local
superlinear convergence under the assumptions of strict complementarity and nonde-
generacy–the same as for interior-point path-following methods using non-shrinking
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neighborhood [2, 27, 32, 33]. Our proof uses the Lipschitz continuity of φµ(z) in µ and
the Lipschitz continuity of ∇φµ(z) in z (see Lemma 9). Extension of our results to SDLP
and generalized SDCP is discussed in Sec. 9. Preliminary computational experience on
SDLP is reported in Sec. 10.

In what follows, we say that F is monotone if

〈F(x)− F(y), x − y〉 ≥ 0 ∀x, y ∈ S
and F is strongly monotone if there exists a ρ ∈ 	++ (the “modulus”) such that

〈F(x)− F(y), x − y〉 ≥ ρ‖x − y‖2 ∀x, y ∈ S.
We write x � y (respectively, x � y) to mean x − y is positive semidefinite (respec-
tively, positive definite). We denote by ∇F(x) the Jacobian of F at each x ∈ S, viewed
as a linear mapping from S to S. For a linear mapping M : S �→ S, we denote its
operator norm ‖|M‖| := max‖x‖=1 ‖Mx‖ and we denote the adjoint of M by M∗, i.e.,
〈y,Mx〉 = 〈M∗y, x〉 for all x, y ∈ S. For any x ∈ S, we denote by xij the (i, j)th
entry of x. We use ◦ to denote the Hadamard product, i.e., x ◦ y = [xij yij ]ni,j=1. For
any λ1, ..., λn ∈ 	, we denote by diag[λ1, ..., λn] the n × n diagonal matrix with di-
agonal entries λ1, ..., λn. We will freely use the following facts about trace [24]: For
any x, y ∈ X and any p ∈ O, tr[x] = tr[xT ] = tr[pxpT ], tr[xy] = tr[yx], and
tr[x + y] = tr[x] + tr[y]. Also, ‖ · ‖ is a norm on X and, in particular, the triangle
inequality and the Cauchy-Schwartz inequality hold for ‖ · ‖. For x ∈ S, we denote by
[x]+ the orthogonal projection of x onto S+, i.e., [x]+ := arg miny∈S+ ‖x − y‖. Also,
	+, 	++ denote the nonnegative and positive reals.

2. Lipschitzian properties of φµ

The following lemma shows that φµ given by (4) or (7) is Lipschitz continuous in µ.
This extends analogous results for the CP case [5, 14, 15, 21, 28, 50]. In what follows,
we denote φ0(x, y) := limµ↓0 φµ(x, y).

Lemma 1. Let φµ be given by (4) with g ∈ CM or (7). Then, for any x, y ∈ S and any
µ > ν > 0, we have

	(µ− ν)I � φν(x, y)− φµ(x, y) � 0,
	µI � φ0(x, y)− φµ(x, y) � 0,

(10)

where 	 = g(0) and φ0(x, y) = x − [x − y]+ if φµ is given by (4) with g ∈ CM , and
	 = √

2 and φ0(x, y) = x + y − (x2 + y2)1/2 if φµ is given by (7).

Proof. Fix any x, y ∈ S and any µ > ν > 0.
Suppose φµ is given by (4) with g ∈ CM . Let a := x − y. Choose any p ∈ O

and λ1, ..., λn ∈ 	 satisfying a = pT diag[λ1, ..., λn]p. Then, a/µ = pT diag[λ1/

µ, ..., λn/µ]p, so

g(a/µ) = pT diag[g(λ1/µ), ..., g(λn/µ)]p,
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and analogously for g(a/ν). Thus,

µg(a/µ)− νg(a/ν) = pT diag[µg(λ1/µ)− νg(λ1/ν), ..., µg(λn/µ)− νg(λn/ν)]p.

It can be shown that 0 < µg(λi/µ) − νg(λi/ν) ≤ g(0)(µ − ν) for i = 1, ..., n [50,
Lemma 3.1], and hence

g(0)(µ− ν)I � µg(a/µ)− νg(a/ν) � 0.

This together with (4) proves the first relation in (10), with 	 = g(0). Since this relation
holds for any ν ∈ (0, µ), taking ν ↓ 0 yields in the limit the second relation in (10).
Also, using the fact limµ↓0 µg(λi/µ) = max{0, λi} for all i, we obtain

lim
µ↓0

µg(a/µ) = pT diag[max{0, λ1}, ...,max{0, λn}]p.

By [49, Lemma 2.1], the right-hand side equals [a]+. Thus, φ0(x, y) = x − [x − y]+.
Supposeφµ is given by (7). Leta = x2+y2 and choose anyp ∈ O andλ1, ..., λn ∈ 	

satisfying a = pT diag[λ1, ..., λn]p. Then,

φµ(x, y) = x+y−(a+2µ2I )1/2 = x+y−pT diag[(λ1+2µ2)1/2, ..., (λn+2µ2)1/2]p,

and similarly for φν(x, y). Thus,

φν(x, y)− φµ(x, y) = pT diag[(λi + 2µ2)1/2 − (λi + 2ν2)1/2]ni=1p.

Also, since a � 0 so that λi ≥ 0 for each i, we have

0 < (λi + 2µ2)1/2 − (λi + 2ν2)1/2 ≤
√

2(µ− ν),

where the second inequality uses the observation that, for any λ ∈ 	+, the function
h(µ) := (λ+2µ2)1/2 is convex differentiable on	++, withh′(µ) = 2(λ+2µ2)−1/2µ ≤√

2, so that h(µ)− h(ν) ≤ h′(µ)(µ− ν) ≤ √
2(µ− ν). Thus,

√
2(µ− ν)I � φν(x, y)− φµ(x, y) � 0.

This proves the first relation in (10) with 	 = √
2. Since this relation holds for any

ν ∈ (0, µ), taking ν ↓ 0 yields in the limit the second relation in (10). Also, we have

φ0(x, y) = lim
µ↓0

φµ(x, y) = x + y − pT diag[
√
λ1, ...,

√
λn]p = x + y − (x2 + y2)1/2.

��
The constant 	 in Lemma 1 depends on φµ. In fact, it can be seen that 	 =

‖φ1(0, 0)‖/√n. Using Lem. 1, we show below that φµ given by (4) or (7) satisfies
(2).

Corollary 1. Let φµ be given by (4) with g ∈ CM or (7). Let 	 be the constant given in
Lemma 1. Then the following hold:
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(a) For any x, y ∈ S and any µ > ν > 0, we have

‖φν(x, y)− φµ(x, y)‖ ≤ √
n	(µ− ν) and ‖φ0(x, y)− φµ(x, y)‖ ≤ √

n	µ.

(11)
(b) φµ satisfies (2).

Proof. (a) Let λ1, ..., λn denote the eigenvalues of φν(x, y) − φµ(x, y). By (10) in
Lemma 1, we have 	(µ− ν) ≥ λi > 0, so

‖φν(x, y)− φµ(x, y)‖ =
√
λ2

1 + · · · + λ2
n ≤ √

n	(µ− ν).

This proves the first inequality. An analogous argument yields the second inequality.
(b) Using (a), we have for any a, b ∈ S and any µ > 0 that

‖φ0(a, b)‖ ≤ ‖φµ(a, b)‖ + ‖φµ(a, b)− φ0(a, b)‖ ≤ ‖φµ(a, b)‖ + √
n	µ.

Thus, as (a, b, µ) → (x, y, 0) and ‖φµ(a, b)‖ → 0, we have ‖φ0(a, b)‖ → 0. If φµ is
given by (4) with g ∈ CM , then Lemma 1 implies φ0(a, b) = a − [a − b]+ which is
Lipschitz continuous in (a, b) (since [·]+ is nonexpansive), so φ0(x, y) = 0. By a known
fact, e.g., [49, Lemma 2.1(b)], (x, y) satisfies the implications in (2). If φµ is given by
(7), then φ0(a, b) = a + b − (a2 + b2)1/2 which is continuous in (a, b) (since (·)1/2 is
continuous on K),1 implying φ0(x, y) = 0. By [49, Lemma 6.1(b)], (x, y) satisfies the
implications in (2). ��

3. Differential properties of φµ

In this section we study the differential properties of the smoothing function φµ given
by (4) or (7). For any c ∈ S++, define the linear mapping Lc : S �→ S by

Lc[x] := cx + xc.

It can be seen that Lc is strictly monotone (i.e., 〈x, Lc[x]〉 = 2tr[cx2] > 0 whenever
x �= 0) and so has an inverse L−1

c , i.e., for any x ∈ S, L−1
c [x] is the unique d ∈ S

satisfying cd + dc = x. Moreover, L−1
c [x] is continuous in (x, c).2

Lemma 2. Fix any µ ∈ 	++ and any x, y, u, v ∈ S.
(a) For φµ given by (4) with g ∈ CM , we have that φµ is Fréchet-differentiable and

∇φµ(x, y)(u, v) = u− pT ((p(u− v)pT ) ◦ c)p, (12)

where p ∈ O and λ1, ..., λn ∈ 	 are such that pT diag[λ1, ..., λn]p = (x − y)/µ, and

cij :=
{
(g(λi)− g(λj ))/(λi − λj ) if λi �= λj
g′(λi) if λi = λj . (13)

1 Suppose y � 0 and y2 = x → x̄. If ‖y‖ → ∞, we would have (y/‖y‖)2 → 0, contradicting any cluster
point of y/‖y‖ being nonzero. Thus ‖y‖ is bounded. Then, any cluster point ȳ of y satisfies ȳ � 0 and ȳ2 = x̄,
so ȳ = x̄1/2.

2 Suppose cy + yc = x and (x, c) → (x̄, c̄) ∈ S × S++. If ‖y‖ → ∞, we would have c(y/‖y‖) +
(y/‖y‖)c → 0 and so c̄(y/‖y‖) + (y/‖y‖)c̄ → 0, contradicting any cluster point of y/‖y‖ being nonzero.
Thus ‖y‖ is bounded. Then, any cluster point ȳ of y satisfies c̄ȳ + ȳc̄ = x̄, so ȳ = L−1

c̄ [x̄].
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(b) For φµ given by (4) and (5), we have that φµ is Fréchet-differentiable and

2∇φµ(x, y)(u, v) = u+ v − L−1
c [(x − y)(u− v)+ (u− v)(x − y)], (14)

where c := ((x − y)2 + 4µ2I )1/2.
(c) For φµ given by (7), we have that φµ is Fréchet-differentiable and

∇φµ(x, y)(u, v) = u+ v − L−1
c [xu+ ux + yv + vy], (15)

where c := (x2 + y2 + 2µ2I )1/2.

Proof. In what follows, we will use “O(t)” to denote any nonnegative-valued function
on 	++ (depending on φµ and (x, y)) such that that lim supτ↓0O(τ)/τ < ∞.

(a) By a result of Dalecki and Krein (see Thm. V.3.3 and p. 150 of [4]), g(a) is a
Fréchet-differentiable function of a ∈ S and, for all h ∈ S,

∇g(a)h = pT ((phpT ) ◦ c)p,
where p ∈ O and λ1, ..., λn ∈ 	 are such that pT diag[λ1, ..., λn]p = a, and c is given
by (13). [Here, ∇g(a) is the gradient of g(a) as a function of a ∈ S.] Then, using (4)
and the chain rule, we obtain that φµ is Fréchet-differentiable and ∇φµ(x, y)(u, v) is
given by (12).

(b) We have from (4) and (5) that 2φµ(x, y) = x + y − ((x − y)2 + 4µ2I )1/2. For
any u, v ∈ S, we have upon denoting d := ((x − y + u − v)2 + 4µ2I )1/2 and using
d2 − c2 = [(d − c)c + c(d − c)] + (d − c)2 that

d−c+L−1
c [(d−c)2] = L−1

c [d2−c2] = L−1
c [(x−y)(u−v)+(u−v)(x−y)+(u−v)2].

Thus, ‖d − c‖ = O(‖u − v‖) so d − c = L−1
c [(x − y)(u − v) + (u − v)(x − y)] +

O(‖u− v‖2). This and (5) yield

2φµ(x, y)− 2φµ(x + u, y + v)

= d − c − (u+ v) = L−1
c [(x − y)(u− v)+ (u− v)(x − y)]

+O(‖u− v‖2)− (u+ v).

The conclusion follows.
(c). For any u, v ∈ S, we have upon denoting d := ((x+u)2 + (y+ v)2 + 2µ2I )1/2

and using d2 − c2 = [(d − c)c + c(d − c)] + (d − c)2 that

d − c + L−1
c [(d − c)2] = L−1

c [d2 − c2] = L−1
c [xu+ ux + yv + vy + u2 + v2].

Thus, ‖d − c‖ = O(‖(u, v)‖) so d − c = L−1
c [xu + ux + yv + vy] + O(‖(u, v)‖2).

This yields

φµ(x, y)− φµ(x + u, y + v) = d − c − (u+ v)

= L−1
c [xu+ ux + yv + vy] +O(‖(u, v)‖2)− (u+ v).

The conclusion follows. ��
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For our global convergence analysis (see Prop. 1), we need φ1 to be continuously dif-
ferentiable, i.e., for any z̄ ∈ S ×S, lim‖z−z̄‖→0 ‖|∇φ1(z)−∇φ1(z̄)‖| = 0. To show this
for φµ given by (4), we need the following lemma showing that the set of eigenvectors
of a ∈ S has an upper Lipschitzian property.

Lemma 3. For any a ∈ S, there exist η, ε ∈ 	++ such that

min
p∈O
pT ap∈D

‖p−q‖ ≤ η‖a−b‖ whenever b ∈ S, q ∈ O, qT bq ∈ D, ‖a−b‖ ≤ ε, (16)

where D denotes the space of n × n real diagonal matrices with decreasing diagonal
entries.

Proof. See the Appendix.

By using Lemma 3, we obtain the following result showing that φµ given by (4),
with g ∈ CM , is continuously differentiable. If g is analytic (i.e., g(τ), with τ ∈ IC, is
defined and an analytic complex-valued function everywhere on IC), then φµ is infinitely
differentiable. It can be seen that g given by (5) or (6) is analytic.

Lemma 4. For any g : 	 �→ 	, if g is continuously differentiable, then g(a) is con-
tinuously differentiable in a ∈ S. If g is analytic, then g(a) is k-times continuously
differentiable in a ∈ S, for k = 1, 2, ...

Proof. See the Appendix.

Corollary 2. For φµ given by (4) with g ∈ CM , we have that φµ is continuously differ-
entiable. If g is analytic, then φµ is k-times continuously differentiable for k = 1, 2, ...

Proof. This follows from Lemma 4 and the chain rule. ��
For our global linear convergence analysis, we need ∇φ1 to be Lipschitz continuous

(on S × S). The following lemma shows this to be true for two choices of φµ.

Lemma 5. For φµ given by (4)–(5) or (7), ∇φ1 is defined and Lipschitz continuous.

Proof. See the Appendix.

4. Invertibility of Jacobian of Hµ

Using Lemma 2, we have the following two lemmas showing that F being monotone
is sufficient for ∇Hµ(z) to be invertible for all z and µ. The proof is based loosely on
ideas from [48] on existence of search directions for interior-point methods. Moreover,
if F is strongly monotone and ‖|∇F(x)‖| is uniformly bounded, then ‖|∇Hµ(z)−1‖| is
uniformly bounded.

Lemma 6. Suppose F is monotone and φµ is given by (4) with g ∈ CM . Then ∇Hµ(z)
is invertible for all z ∈ S × S and µ > 0. Moreover, if F is strongly monotone,
then for any set B ⊂ S × S such that supz=(x,y)∈B ‖|∇F(x)‖| < ∞, we have,
supz∈B,µ>0 ‖|∇Hµ(z)−1‖| < ∞.
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Proof. Fix any x, y ∈ S and µ ∈ 	++. To show ∇Hµ(x, y) is invertible, it suffices to
show that, for any (r, s) ∈ S × S, there is a unique (u, v) ∈ S × S satisfying the linear
equation ∇Hµ(x, y)(u, v) = (r, s), which by (3) is equivalent to

∇φµ(x, y)(u, v) = r, Mu− v = s, (17)

with M := ∇F(x). Since F is monotone, M is a monotone linear mapping.
From Lemma 2(a), we have that ∇φµ(x, y)(u, v) is given by (12), where p ∈ O and

λ1, ..., λn ∈ 	 are such that pT diag[λ1, ..., λn]p = (x − y)/µ, and c is given by (13).
Then, defining the linear mapping B : S �→ S by Bu = pT ((pupT ) ◦ c)p and letting
A := I − B, we can rewrite (17) as

Au+ Bv = r, Mu− v = s.

It can be verified that B = B∗ and hence A = A∗. Also, we obtain from (13) and the
fact that 0 < g′(τ ) < 1 for all τ ∈ 	 that 0 < cij < 1 for all i, j . Thus, for any nonzero
u ∈ S, we have

〈u,Bu〉 = tr[upT ((pupT ) ◦ c)p] =
n∑

i,j=1

((pupT )ij )
2cij > 0,

implying B is strongly monotone and hence invertible. Then, the above equation is
equivalent to (upon eliminating v and setting d := B−1u):

(AB + BMB)d = r + Bs. (18)

For any d ∈ S, we have from A = A∗ that

〈d,ABd〉 = 〈Ad,Bd〉
= 〈(I − B)d, Bd〉
= tr[(d − pT ((pdpT ) ◦ c)p)pT ((pdpT ) ◦ c)p]

= tr[(pdpT )((pdpT ) ◦ c)− ((pdpT ) ◦ c)2]

=
n∑

i,j=1

((pdpT )ij )
2cij (1 − cij )

≥ ‖d‖2 min
i,j
cij (1 − cij ).

Thus AB is strongly monotone. Since M is monotone and B = B∗ so that BMB is
monotone, this implies AB + BMB is strongly monotone. Then (18) has a unique
solution and so does (17).

Assume further F is strongly monotone, so that min‖d‖=1〈d,Md〉 ≥ ρ for some
constant ρ ∈ 	++ independent of x. Then, we have from (17) and A = I − B that

(I − B)u+ Bv = r, Mu− v = s.

Since Bu = pT
(
c ◦ (pupT ))p, multiplying the above equations on the left by p and

on the right by pT and letting ũ := pupT , ṽ := pvpT , r̃ := prpT , s̃ := pspT , and
defining M̃ by M̃a := pM(pT a) for any a ∈ S, we have

(I − c ◦)ũ+ c ◦ ṽ = r̃ , M̃ũ− ṽ = s̃.
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Eliminating ṽ yields
(I − c ◦ + c ◦ M̃)ũ = r̃ + c ◦ s̃.

Fix any α ∈ (0, 1] satisfying α < ρ. Then, the above linear system can be written as

(I − (1 − α)c◦) ũ + c ◦ (M̃ − αI)ũ = r̃ + c ◦ s̃.
Since 0 < cij < 1 for all i, j , it is readily seen that I − (1 − α)c ◦ is an invertible (in
fact, strongly monotone) linear mapping. Then, the above linear system can be written
as

ũ + (I − (1 − α)c ◦)−1c ◦ (M̃ − αI)ũ = (I − (1 − α)c ◦)−1(r̃ + c ◦ s̃).
Taking the inner product of both sides with (M̃ − αI)ũ yields

〈(M̃ − αI)ũ, ũ + (I − (1 − α)c ◦)−1c ◦ (M̃ − αI)ũ〉
= 〈(M̃ − αI)ũ, (I − (1 − α)c ◦)−1(r̃ + c ◦ s̃)〉. (19)

We now bound from below the left-hand side of (19) and bound from above the right-hand
side of (19).

Using 0 < cij < 1 for all i, j , we have

‖(I − (1 − α)c ◦)−1(r̃ + c ◦ s̃)‖2 =
n∑

i,j=1

(r̃ij + cij s̃ij )
2/(1 − (1 − α)cij )

2

≤
n∑

i,j=1

(r̃ij + cij s̃ij )
2/α2

≤
n∑

i,j=1

2
(
(r̃ij )

2 + (cij s̃ij )
2
)
/α2

≤ 2(‖r̃‖2 + ‖s̃‖2)/α2

= 2‖(r, s)‖2/α2.

In addition,

‖(M̃ − αI)ũ‖2 = ‖(M − αI)u‖2

= ‖Mu‖2 − 2α〈u,Mu〉 + α2‖u‖2

≤
(
‖|M‖|2 − 2αρ + α2

)
‖u‖2. (20)

〈(M̃ − αI)ũ, ũ〉 = 〈Mu, u〉 − α‖u‖2 ≥ (ρ − α)‖u‖2. (21)

Also, letting d := (I − (1 − α)c ◦)−1(M̃ − αI)ũ and using 0 < cij < 1 for all i, j , we
have

〈(M̃ − αI)ũ, (I − (1 − α)c ◦)−1c ◦ (M̃ − αI)ũ〉
= 〈(I − (1 − α)c ◦)−1(M̃ − αI)ũ, c ◦ (M̃ − αI)ũ〉
= 〈d, c ◦ (I − (1 − α)c ◦)d〉

=
n∑

i,j=1

(dij )
2cij (1 − (1 − α)cij )

≥ 0.
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Using the above four inequalities, we obtain from (19) and the Cauchy-Schwartz
inequality that

(ρ − α)‖u‖2 ≤
√

‖|M‖|2 − 2αρ + α2 ‖u‖ ·
√

2‖(r, s)‖/α
and hence

‖u‖ ≤ C‖(r, s)‖, where C :=
√

2

√
‖|M‖|2 − 2αρ + α2

α(ρ − α)
.

Since ‖v‖ = ‖Mu − s‖, this yields ‖(u, v)‖2 ≤ ‖u‖2 + (‖|M‖|‖u‖ + ‖s‖)2 ≤
C2‖(r, s)‖2 + (‖|M‖|C + 1)2‖(r, s)‖2, so that

‖|∇Hµ(z)−1‖| ≤
√
C2 + (‖|M‖|C + 1)2.

Hence ‖|∇Hµ(z)−1‖| is uniformly bounded whenever ‖|∇F(x)‖| is uniformly bounded.
��
Lemma 7. SupposeF is monotone andφµ is given by (7). Then ∇Hµ(z) is invertible for
all z ∈ S×S andµ > 0. Moreover, ifF is strongly monotone, then for any set B ⊂ S×S
such that supz=(x,y)∈B ‖|∇F(x)‖| < ∞, we have supz∈B,µ>0 ‖|∇Hµ(z)−1‖| < ∞.

Proof. Fix any x, y ∈ S and µ ∈ 	++. To show ∇Hµ(x, y) is invertible, it suffic-
es to show that, for any (r, s) ∈ S × S, there is a unique (u, v) ∈ S × S satisfying
the linear equation ∇Hµ(x, y)(u, v) = (r, s), which by (3) is equivalent to (17) with
M := ∇F(x). Since F is monotone, M is a monotone linear mapping.

From Lemma 2(c), we have that ∇φµ(x, y)(u, v) is given by (15), where c :=
(x2 + y2 + 2µ2I )1/2. Then, applying Lc to the first equation in (17) and rearranging
terms yield

Lc−x[u] + Lc−y[v] = Lc[r], Mu− v = s.

Let A := Lc−x and B := Lc−y . By observing that c � x and c � y, we see that A,B
are invertible. Also it is easily seen that A = A∗, B = B∗. Then, the above equation is
equivalent to (upon eliminating v and setting d := B−1u):

(AB + BMB)d = Lc[r] + Bs. (22)

For any d ∈ S, we have from A = A∗ that

〈d,ABd〉 = 〈Ad,Bd〉
= 〈Lc−x[d], Lc−y[d]〉
= 〈(c − x)d + d(c − x), (c − y)d + d(c − y)〉
= tr[(c − x)d(c − y)d + d2(c − x)(c − y)

+d2(c − y)(c − x)+ d(c − x)d(c − y)]

= tr[2(c − x)d(c − y)d + d2((c − x)(c − y)+ (c − y)(c − x))]

= 2‖(c − x)1/2d(c − y)1/2‖2 + tr[d2((c − x − y)2 + 2µ2I )]

≥ 2‖(c − x)1/2d(c − y)1/2‖2 + 2µ2‖d‖2, (23)
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where the inequality uses the fact d2 � 0, (c − x − y)2 � 0. Thus AB is strongly
monotone. Since M is monotone and B = B∗ so that BMB is monotone, this implies
AB + BMB is strongly monotone. Then (22) has a unique solution and so does (17).

Assume further F is strongly monotone, so that min‖d‖=1〈d,Md〉 ≥ ρ for some
constant ρ ∈ 	++ independent of x. Fix any α ∈ (0, 1] satisfying α < ρ. Let p ∈ O
and λ1, ..., λn ∈ 	 be such that pT diag[λ1, ..., λn]p = c − x + α(c − y). Then, (22)
can be written as

Lc̃−x̃[ũ] + Lc̃−ỹ[M̃ũ] = Lc̃[r̃] + Lc̃−ỹ[s̃],

where c̃ := pcpT , x̃ := pxpT , ỹ := pypT , ũ := pupT , ṽ := pvpT , r̃ := prpT , s̃ :=
pspT , and we define M̃ by M̃a := pM(pT a) for anya ∈ S. Let
 := diag[λ1, ..., λn] =
c̃ − x̃ + α(c̃ − ỹ). Then the above equation can be written as

L
[ũ] + Lc̃−ỹ[(M̃ − αI)ũ] = Lc̃[r̃] + Lc̃−ỹ[s̃].

Since c̃ � x̃ and c̃ � ỹ so that 
 � 0, then L
 is invertible, so the above equation in
turn can be written as

ũ+ L−1



[
Lc̃−ỹ[(M̃ − αI)ũ]

]
= L−1




[
Lc̃[r̃] + Lc̃−ỹ[s̃]

]
.

Taking the inner product of both sides with (M̃ − αI)ũ yields

〈ũ, (M̃ −αI)ũ〉+ 〈d, L−1



[
Lc̃−ỹ[d]

]〉 = 〈(M̃ −αI)ũ, L−1



[
Lc̃[r̃] + Lc̃−y[s̃]

]〉, (24)

where we let d := (M̃ − αI)ũ. We now bound from below the left-hand side of (24)
and bound from above the right-hand side of (24).

By the definition of c̃, we have that

c̃2 − (x̃ỹ + ỹx̃)− 2µ2I = (x̃ − ỹ)2 � 0,

implying x̃ỹ + ỹx̃ � c̃2. Thus

(x̃ + ỹ)2 = c̃2 + (x̃ỹ + ỹx̃)− 2µ2I � 2c̃2.

Therefore, by [49, Lemma 6.1(c)] (also see [4, Prop. V.1.8]),

x̃ + ỹ �
√

2c̃. (25)

By replacing ỹ with −ỹ in the above argument, we also have that

(x̃ − ỹ)2 � 2c̃2, x̃ − ỹ �
√

2c̃. (26)

Since c̃ − x̃ � 0 and 0 < α ≤ 1, we have c̃ − x̃ � α(c̃ − x̃). This together with (25)
implies that


 = c̃ − x̃ + α(c̃ − ỹ) � α(2c̃ − x̃ − ỹ) � α(2 −
√

2)c̃. (27)
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We also have x̃ + αỹ = (1 + α)c̃−
, so that squaring both sides and using α2ỹ2 � ỹ2

yields

(1 + α)(c̃
+
c̃)−
2 = (1 + α)2c̃2 − (x̃2 + α2ỹ2)− α(x̃ỹ + ỹx̃)

� (1 + α)2c̃2 − c̃2 − αc̃2

= α(1 + α)c̃2.

Comparing the diagonal entries, we obtain for all i = 1, ..., n that

α(1 + α)(c̃2)ii ≤ 2(1 + α)c̃iiλi − λ2
i ≤ 2(1 + α)

λ2
i

α(2 − √
2)

− λ2
i ,

where the second inequality uses (27). Thus,

n∑

k=1

(c̃ik)
2 = (c̃2)ii ≤ θ1λ

2
i , (28)

where θ1 :=
(

1

α(1 − 1/
√

2)
− 1

1 + α

)
1

α
. Similarly, we have (1 + α)(c̃ − ỹ) = (x̃ −

ỹ)+
, so squaring both sides yields

(1 + α)2(c̃ − ỹ)2 = 
2 + ((x̃ − ỹ)
+
(x̃ − ỹ))+ (x̃ − ỹ)2.

Comparing the diagonal entries and using (26), we obtain for all i = 1, ..., n that

(1 + α)2((c̃ − ỹ)2)ii = λ2
i + 2(x̃ii − ỹii )λi +

(
(x̃ − ỹ)2

)

ii

≤ λ2
i + 2

√
2c̃iiλi + 2(c̃2)ii

≤ λ2
i + 2

√
2

λ2
i

α(2 − √
2)

+ 2θ1λ
2
i ,

where the last inequality uses (27) and (28). Thus,

n∑

k=1

(c̃ik − ỹik)
2 =

(
(c̃ − ỹ)2

)

ii
≤ θ2λ

2
i , (29)

where θ2 :=
( √

2

α(1 − 1/
√

2)
+ 1 + 2θ1

)
1

(1 + α)2
. Using (28) and the symmetry of c̃,

we have
∣∣∣∣
(
L−1

 [Lc̃[r̃]]

)

ij

∣∣∣∣ = |(c̃r̃ + r̃ c̃)ij |/(λi + λj )

=
∣∣∣∣∣

n∑

k=1

(c̃ik r̃kj + c̃jk r̃ik)

∣∣∣∣∣
/(λi + λj )

≤
n∑

k=1

(|c̃ik||r̃kj | + |c̃jk||r̃ik|)/(λi + λj )
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≤
√√√√

n∑

k=1

|c̃ik|2 + |c̃jk|2
√√√√

n∑

k=1

|r̃kj |2 + |r̃ik|2/(λi + λj )

≤
√
θ1(λ

2
i + λ2

j )

√√√√
n∑

k=1

|r̃kj |2 + |r̃ik|2/(λi + λj )

≤
√
θ1

√√√√
n∑

k=1

|r̃kj |2 + |r̃ik|2.

Hence

‖L−1

 [Lc̃[r̃]]‖2 =

n∑

i,j=1

∣∣∣∣
(
L−1

 [Lc[r̃]]

)

ij

∣∣∣∣

2

≤
n∑

i,j=1

θ1

(
n∑

k=1

|r̃kj |2 + |r̃ik|2
)

= 2nθ1‖r‖2. (30)

By a similar argument using (29) in place of (28), we obtain that

‖L−1

 [Lc̃−ỹ[s̃]]‖2 ≤ 2nθ2‖s‖2. (31)

Finally, we have

〈d, L−1

 [Lc̃−ỹ[d]]〉 = 〈L−1


 [d], Lc̃−ỹ[d]〉
= 〈h,Lc̃−ỹL
[h]〉
= 〈Lc̃−ỹ[h], Lc̃−x̃+α(c̃−ỹ)[h]〉
= α‖Lc̃−ỹ[h]‖2 + 〈Lc̃−ỹ[h], Lc̃−x̃[h]〉
≥ 0,

where h := L−1

 [d] and the last inequality follows from (23). Using the above inequality

together with (21), (30), (31), we obtain from (24) and the Cauchy-Schwartz inequality
that

(ρ − α)‖u‖2 ≤ 〈(M̃ − αI)ũ, L−1



[
Lc̃[r̃] + Lc̃−ỹ[s̃]

]〉
≤ ‖(M̃ − αI)ũ‖

∥∥∥L−1



[
Lc̃[r̃] + Lc̃−ỹ[s̃]

]∥∥∥

≤ ‖(M − αI)u‖
√

2n(
√
θ1‖r‖ +

√
θ2‖s‖)

≤ ‖|M − αI‖|‖u‖
√

2n
√
θ1 + θ2‖(r, s)‖.

Combining this with (20) and we obtain

‖u‖ ≤ C‖(r, s)‖, where C :=
√

‖|M‖| − 2αρ + α2
√

2n

√
θ1 + θ2

ρ − α
.
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Since ‖v‖ = ‖Mu − s‖, this yields ‖(u, v)‖2 ≤ ‖u‖2 + (‖|M‖|‖u‖ + ‖s‖)2 ≤
C2‖(r, s)‖2 + (‖|M‖|C + 1)2‖(r, s)‖2, so that

‖|∇Hµ(z)−1‖| ≤
√
C2 + (‖|M‖|C + 1)2.

Hence ‖|∇Hµ(z)−1‖| is uniformly bounded whenever ‖|∇F(x)‖| is uniformly bounded.
��

Notice that we can choose α in the proofs of Lemmas 6 and 7 to make the bounds
on ‖|∇Hµ(z)−1‖| as sharp as possible. These bounds appear to be new even in the NCP
case.

5. Boundedness of neighborhood

As is mentioned in Sec. 1, our method will generate a sequence of iterates (z, µ) ∈ Nβ

with µ decreasing (see Algorithm 1). In this section we study sufficient conditions for
z to be bounded. In the CP case, this has been much studied [9, 11, 14, 16, 28, 29, 50,
53], though their extension to the SDCP setting is not necessarily straightforward. We
will consider each of the following three assumptions on F :

A1: The solution set Z is bounded and there exist η > 0 and γ > 0 such that

min
(x̄,ȳ)∈Z

‖x − x̄‖ ≤ η‖x − [x − F(x)]+‖γ ∀x ∈ S. (32)

A2: F is Lipschitz continuous and a uniformly R0-function in the sense that, for any
sequence xk ∈ S, k = 1, 2, ...,

‖xk‖ → ∞ and lim
k→∞

xk

‖xk‖ � 0 and lim
k→∞

F(xk)

‖xk‖ � 0

�⇒ lim
k→∞

inf
〈xk, F (xk)〉

‖xk‖2 > 0. (33)

A3: F is monotone and there exists x̄ ∈ S such that x̄ � 0, F (x̄) � 0.

A1 is a global error bound condition based on the projection residual x − [x − F(x)]+.
In the CP case of n1 = · · · = nm = 1, this condition has been much studied [34, 40]. In
the general case, a result of Pang [39] showed that A1 holds with γ = 1 if F is Lipschitz
continuous and strongly monotone. A2 is a generalization of the notion ofR0-matrix and
uniformlyR0-function defined in the CP case [8, 19, 47]. It can be seen thatA2 holds ifF
is Lipschitz continuous and strongly monotone or if F is affine and ∇F is representable
by anR0-matrix. A3 is a common assumption made for interior-point methods as well as
for some non-interior continuation methods. In what follows, we denote for any x ∈ S
with eigenvalues λ1, ..., λn, min[x] = mini λi .

Lemma 8. For any β ∈ 	++ and µ0 ∈ 	++, the set {(z, µ) ∈ Nβ : 0 < µ ≤ µ0} is
bounded if any of the following conditions hold:

B1: A1 holds and φµ is given by (4) with g ∈ CM.
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B2: A2 holds and φµ satisfies (2) and (8).
B3: A3 holds, and βµ0 < min[x̄], 2βµ0 < min[F(x̄)] for some x̄ ∈ S, and φµ is given

by (4) with g ∈ CM or (7).

Proof. Suppose B1 holds. For φµ given by (4) with g ∈ CM, we have from Lemma 1
and Cor. 1(a) that, for any (x, y, µ) ∈ Nβ with µ ≤ µ0,

‖x − [x − F(x)]+‖ = ‖φ0(x, y)− φµ(x, y)+ φµ(x, y)+ [x − y]+ − [x − F(x)]+‖
≤ ‖φ0(x, y)− φµ(x, y)‖ + ‖φµ(x, y)‖ + ‖[x − y]+ − [x − F(x)]+‖
≤ √

n	µ+ ‖φµ(x, y)‖ + ‖y − F(x)‖
≤ √

n	µ+ βµ+ βµ

≤ √
n	µ0 + βµ0 + βµ0,

where 	 is from Lem. 1, the second inequality uses the nonexpansive property of [·]+,
and the third inequality uses (3) and (9). This and (32) imply min(x̄,ȳ)∈Z ‖x − x̄‖ is
bounded. Since Z is bounded, then x is bounded and, by ‖y − F(x)‖ ≤ βµ ≤ βµ0, y
is bounded.

Suppose B2 holds. We argue by contradiction. Suppose there exist β ∈ 	++ and
µ0 ∈ 	++ and a sequence (xk, yk, µk) ∈ Nβ with 0 < µk ≤ µ0 for k = 1, 2, ... and
‖xk‖ → ∞. Since F is Lipschitz continuous so that ‖F(xk)‖/‖xk‖ is bounded, then,
by passing to a subsequence if necessary, we can assume that (xk/‖xk‖, F (xk)/‖xk‖)
converges to some (x̄, ȳ). Since (xk, yk, µk) ∈ Nβ , we have (see (3) and (9))

‖φµk (xk, yk)‖ ≤ βµk, ‖F(xk)− yk‖ ≤ βµk ∀k.
Dividing both sides of the second inequality by ‖xk‖ yields

‖F(xk)/‖xk‖ − yk/‖xk‖‖ ≤ βµk/‖xk‖ → 0,

so yk/‖xk‖ → ȳ. Dividing both sides of the first inequality by ‖xk‖ and using the
homogeneity property (8) yield

‖φµk/‖xk‖(xk/‖xk‖, yk/‖xk‖)‖ = ‖φµk (xk, yk)‖/‖xk‖ ≤ βµk/‖xk‖ → 0.

Since φµ satisfies (2) by Cor. 1, this gives in the limit x̄ � 0, ȳ � 0, 〈x̄, ȳ〉 = 0. Thus,
{(xk, yk)} satisfies the first three relations of (33), but violates the last relation. This
contradicts A2.

Suppose B3 holds. Let ȳ := F(x̄). Fix any (x, y, µ) ∈ Nβ with 0 < µ ≤ µ0. The
monotonicity of F implies

0 ≤ 〈x̄ − x, F (x̄)− F(x)〉
= 〈x̄ − x, ȳ − y + y − F(x)〉
= 〈x̄, ȳ〉 − 〈x, ȳ〉 − 〈x̄, y〉 + 〈x, y〉 + 〈x̄ − x, y − F(x)〉
≤ 〈x̄, ȳ〉 − 〈x, ȳ〉 − 〈x̄, y〉 + 〈x, y〉 + ‖x̄ − x‖βµ,

where the last inequality uses (3) and (9). Thus,

〈x, ȳ〉 + 〈x̄, y〉 − 〈x, y〉 − ‖x̄ − x‖βµ ≤ 〈x̄, ȳ〉. (34)
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Consider the case where φµ is given by (4) with g ∈ CM. Fix any ε ∈ 	++ satisfy-
ing (2β + ε)µ0 < min[ȳ] and (β + ε)µ0 < min[x̄]. We have that g(τ) increases from
0 to ∞ and g(τ) − τ decreases from ∞ to 0 as τ goes from −∞ to ∞, so there exist
scalars τ1 and τ2 satisfying g(τ1) = ε and g(τ2) − τ2 = ε with 0 < g(τ) < ε for all
τ < τ1 and 0 < g(τ)− τ < ε for all τ > τ2. Moreover, the properties of g imply that,
for any ξ, ψ ∈ 	 satisfying |ξ − g(ξ − ψ)| ≤ β, we have ξ > −β, ψ > −β and

ξ − ψ < τ1 �⇒ |ξ | < β + ε,

ξ − ψ > τ2 �⇒ |ψ | < β + ε,

τ1 ≤ ξ − ψ ≤ τ2 �⇒ |ξ | ≤ β + g(τ2) and |ψ | ≤ β + g(τ1)− τ1.

(35)

Consider any p ∈ O such that p(x − y)pT is diagonal. Let

x̃ = pxpT , ỹ = pypT , x̂ = px̄pT , ŷ = pȳpT .

Also, let I := {i ∈ {1, ..., n} : (x̃ii − ỹii )/µ > τ2}, J := {i ∈ {1, ..., n} : (x̃ii − ỹii )/

µ < τ1}. By [24, Thm. 4.3.26], we have min[x̄] = min[x̂] ≤ mini x̂ii and, similarly,
min[ȳ] ≤ mini ŷii . Since (x, y, µ) ∈ Nβ so that

β2 ≥ ‖x/µ− g((x − y)/µ)‖2

= ‖x̃/µ− diag[g((x̃ii − ỹii )/µ)]
n
i=1‖2

=
∑

i �=j
(x̃ij /µ)

2 +
n∑

i=1

(x̃ii/µ− g((x̃ii − ỹii )/µ))
2,

we have (also using the fact x̃ − ỹ is diagonal)
∑

i �=j
(x̃ij )

2 =
∑

i �=j
(ỹij )

2 ≤ β2µ2, |x̃ii/µ− g((x̃ii − ỹii )/µ)| ≤ β ∀i. (36)

It follows from the last relation in (36) and (35) that |ỹii |/µ < β + ε for i ∈ I ,
|x̃ii |/µ < β + ε for i ∈ J , and |x̃ii |/µ ≤ β + g(τ2), |ỹii |/µ ≤ β + g(τ1) − τ1 for
i ∈ {1, ..., n}\(I∪J ). This, together with (34), ‖x̄−x‖ ≤ ‖x̄‖+‖x‖ ≤ ‖x̄‖+∑i,j |x̃ij |,
µ ≤ µ0 and the first relation in (36), implies (after some algebra)

∑

i∈I
x̃ii ŷii +

∑

i∈J
x̂ii ỹii −

∑

i∈I∪J
x̃ii ỹii −

∑

i∈I
|x̃ii |βµ0 ≤ η

for some constant η (depending on g, β, µ0, ‖x̄‖, ‖ȳ‖ only). Rewrite this as
∑

i∈I
x̃ii (ŷii − ỹii − βµ0)+

∑

i∈J
(x̂ii − x̃ii )ỹii ≤ η +

∑

i∈I
(|x̃ii | − x̃ii )βµ0

and note that, for i ∈ I , we have from |ỹii |/µ < β + ε and our choice of ε that

ŷii − ỹii − βµ0 > ŷii − (β + ε)µ0 − βµ0 ≥ min[ȳ] − (2β + ε)µ0 > 0

and, for i ∈ J , we have from |x̃ii |/µ < β + ε and our choice of ε that

x̂ii − x̃ii > x̂ii − (β + ε)µ0 ≥ min[x̄] − (β + ε)µ0 > 0.
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Also, by (36) and (35), we have x̃ii > −βµ0 (so |x̃ii | − x̃ii < 2βµ0) and ỹii > −βµ0
for all i = 1, ..., n. These together imply that x̃ii , i ∈ I , and ỹii , i ∈ J , are bounded. We
have already shown earlier that x̃ii , i �∈ I , and ỹii , i �∈ J , are bounded, so all diagonal
entries of x̃ and ỹ are bounded. By (36) and µ ≤ µ0, the off-diagonal entries of x̃
and ỹ are also bounded. Thus, ‖x̃‖ = ‖x‖ and ‖ỹ‖ = ‖y‖ are bounded (by constants
depending on g, β, µ0, x̄, ȳ only).

Consider the case φµ is given by (7). Letting ζ1 := ‖x + y‖ and ζ2 := ‖(x2 + y2 +
2µ2I )1/2‖, we have

βµ ≥ ‖x + y − (x2 + y2 + 2µ2I )1/2‖ ≥ |ζ1 − ζ2| = |ζ 2
1 − ζ 2

2 |/(ζ1 + ζ2).

Since ζ 2
1 − ζ 2

2 = tr[(x + y)2] − tr[x2 + y2 + 2µ2I ] = 2〈x, y〉 − 2µ2n, then ζ1 > ζ2
would imply βµ ≥ (ζ 2

1 − ζ 2
2 )/(2ζ1) = (〈x, y〉 − µ2n)/‖x + y‖ while ζ1 ≤ ζ2 would

imply 〈x, y〉 ≤ µ2n. Thus, in either case, we have

〈x, y〉 ≤ βµ‖x + y‖ + µ2n.

Letting x+ := [x]+, x− := −[−x]+ and similarly for y+, y−, this together with (34)
imply

〈x̄, ȳ〉 + µ2n ≥ −βµ‖x + y‖ + 〈x, ȳ〉 + 〈x̄, y〉 − ‖x̄ − x‖βµ
= −βµ‖x+ + x− + y+ + y−‖ + 〈x+, ȳ〉 + 〈x−, ȳ〉

+〈x̄, y+〉 + 〈x̄, y−〉 − ‖x̄ − x+ − x−‖βµ
≥ −βµ(‖x+‖ + ‖x−‖ + ‖y+‖ + ‖y−‖)+ ‖x+‖ min[ȳ] − ‖x−‖‖ȳ‖

+ min[x̄]‖y+‖ − ‖x̄‖‖y−‖ − (‖x̄‖ + ‖x−‖ + ‖x+‖)βµ
= ‖x+‖(min[ȳ] − 2βµ)+ ‖y+‖(min[x̄] − βµ)

−‖x−‖‖ȳ‖ − ‖x̄‖‖y−‖ − (‖x̄‖ + 2‖x−‖ + ‖y−‖)βµ, (37)

where the second inequality uses the Cauchy-Schwartz inequality and the fact 〈a, b〉 ≥
‖b‖ min[a] for any a ∈ S++ and b ∈ S+ [48, Eq. (26)]. By [49, Lemma 6.1(c)], we see
that x − φµ(x, y) = (x2 + y2 + 2µ2I )1/2 − y ∈ S+, and hence

βµ ≥ ‖φµ(x, y)‖ = ‖x − φµ(x, y)− x‖ ≥ ‖x+ − x‖ = ‖x−‖,
where the second inequality uses the fact x+ is the nearest-point projection of x onto
S+. A symmetric argument shows that βµ ≥ ‖y−‖. This together with (37) yields

〈x̄, ȳ〉+µ2n ≥ ‖x+‖(min[ȳ]−2βµ)+‖y+‖(min[x̄]−βµ)− (2‖x̄‖+‖ȳ‖+3βµ)βµ.

Since min[ȳ] − 2βµ > 0 and min[x̄] − βµ > 0, this shows ‖x+‖ and ‖y+‖ are
bounded. Since we already showed that ‖x−‖ ≤ βµ and ‖y−‖ ≤ βµ, then ‖x‖ and ‖y‖
are bounded. ��

In the CP case, φµ can also be given by (7) in B1; see [46, Lemma 3.3]. It is not
known whether this extends to SDCP in general. By Cor. 1(b), B2 applies to φµ given
by (4) with g ∈ CM or (7). Condition B3 is an extension of the assumption made in
[50, Lemma 3.4] in the CP case (also see [9, Prop. 8] and [53, Lemma 2.4] for sim-
ilar assumptions). It is known that (see [53, Example 2.5] and [50, pp. 392–393]) the
assumption of βµ0 being sufficiently small cannot be removed from B3.
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6. Algorithm description

Below, we formally describe our method, parameterized by β, 	, σ ∈ 	++, ψ ∈ (0, 1),
φµ and π . This method is a direct extension of a method studied in [50] for the CP case.
Related non-interior path-following methods for the CP case are given in [5, 9, 14, 53].

Algorithm 1. Choose any (z0, µ0) ∈ Nβ , any ψ ∈ (0, 1), σ ∈ (0, β/(β + √
n	)), and

any continuous π : 	++ �→ 	 satisfying 0 < π(µ) ≤ (1 − σ)µ for all µ ∈ 	++. For
t = 0, 1, ..., we generate (zt+1, µt+1) from (zt , µt ) as follows:

Iteration. Let wt ∈ S × S satisfy

∇Hµt (zt )wt = −Hµt (zt ). (38)

Choose θt to be the largest θ ∈ {1, ψ,ψ2, ...} such that (zt + θwt , (1 − σθ)µt ) ∈ Nβ .
Choose any ẑt ∈ S × S and any νt ∈ {0, 1, ...}. Choose αt to be the largest α ∈
{1, ψ,ψ2, ..., ψν

t
, 0} such that

(
(zt + θtw

t )(1 − α)+ ẑt α, (1 − σθt )µt (1 − α)+ π(µt )α
) ∈ Nβ, (39)

and let

zt+1 := (zt + θtw
t )(1 − αt )+ ẑt αt , µt+1 := (1 − σθt )µt (1 − αt )+ π(µt )αt . (40)

Roughly speaking, at iteration t of Algorithm 1, we first compute a Newton direc-
tion wt by solving the linear equations (38), and next we move (zt , µt ) in the direction
(wt ,−σµt ) by as “large” a stepsize θt as possible while remaining in the neighborhood
Nβ (this is done using an Armijo-Goldstein-type line search), and lastly we move the
resulting pair as near to (ẑt , π(µt )) as possible while remaining in Nβ . [If αt = 1, then
(zt+1, µt+1) = (ẑt , π(µt )). The integer νt controls the accuracy and the work in comput-
ing αt .] This last move is designed to accelerate the convergence of the method. Notice
that, by choice of π , π(µt ) is always below 1−σθt and, assuming limµ↓0 π(µ)/µ = 0,
tends to zero superlinearly inµt . While ẑt can be chosen arbitrarily without affecting the
global convergence properties of the method, we would like ẑt to be near the solution
set Z for reasons of practical efficiency and improved convergence. In Sec. 8 we will
consider a particular choice of ẑt .

In the next section, we will show that if ∇Hµt (zt ) is invertible (so wt is uniquely
defined), then θt is defined and positive (due to our choice of σ ) and, since αt is well de-
fined (α = 0 always satisfies (39)), hence (zt+1, µt+1) is well defined and, by σ ∈ (0, 1)
and π(µt ) > 0, µt+1 is positive. We remark that, although our focus is on extend-
ing the method in [50], related continuation/smoothing methods (see, e.g., [5, 9, 10,
14–18, 28, 29, 52, 53]) may likely be similarly extended to the SDCP setting. Also,
the convergence of our method can be further improved (in theory, at least) by letting
µt [θ ] := min{µ > 0 : (zt + θwt , µ) ∈ Nβ} and choosing θt ∈ arg minθ>0 µt [θ ], etc.
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7. Global convergence analysis

In this section we use the results from Secs. 2–5 to analyze the global (linear) convergence
of Algorithm 1. We begin with the following proposition showing that global conver-
gence rests with ∇Hµ(z) being invertible and ‖z‖ being bounded for all (z, µ) ∈ Nβ

with µ ≤ µ0. If in addition ‖|∇Hµ(z)−1‖| is uniformly bounded and F and φµ are
sufficiently smooth, then linear convergence is achieved. This result and its proof are
based on [50, Prop. 3.1] for the CP case (also see [9, 14] for related results).

Proposition 1. Fix any β ∈ 	++. Fix any φµ satisfying (2), (8), and (11) for some
	 > 0, and with φ1 continuously differentiable. Assume ∇Hµ(z) is invertible for all
(z, µ) ∈ Nβ with µ ≤ µ0 ∈ 	++. Then {(zt , µt , θt )}t=0,1... generated by Algorithm 1
is well defined and satisfies (zt , µt ) ∈ Nβ and µt+1 ≤ (1 − σθt )µt for all t , where σ
and ψ are chosen in the method. Moreover, the following holds.

(a) If {zt } has a convergent subsequence, then {µt } ↓ 0 and the limit is in Z .
(b) If there existκ, λ1 ∈ 	++,λ2 ∈ 	+, andγ1 > 1,γ2 > 1 such that‖|∇Hµt (zt )−1‖| ≤

κ for all t and ‖φ1(r + s)−φ1(r)−∇φ1(r)s‖ ≤ λ1‖s‖γ1 and ‖F(x+u)−F(x)−
∇F(x)u‖ ≤ λ2‖u‖γ2 for all r, s ∈ S × S and x, u ∈ S, then µt+1 ≤ ωµt for all
t , where ω ∈ (0, 1) depends on β,ψ, σ, γ1, γ2,

√
n	, λ1(κβ)

γ1 , λ2(κβ)
γ1(µ0)

γ1−1

only.

Proof. At the start of each iteration t = 0, 1, ..., we have 0 < µt ≤ µ0 (since µt
is monotonically decreasing with t) and (zt , µt ) ∈ Nβ , so ∇Hµt (zt ) is invertible by
assumption, implying wt is well defined. We show below that θt is well defined and
positive. Then, since αt is well defined, so is (zt+1, µt+1) given by (40). Moreover, our
choice (39) of αt ensures that (zt+1, µt+1) ∈ Nβ and the property π(µ) ≤ (1 −σ)µ for
all µ ∈ 	++ ensures that µt+1 ≤ (1 − σθt )µt .

(a) By assumption, there is some subsequence T of {0, 1, ...} and some z∞ =
(x∞, y∞) ∈ S × S such that {zt }t∈T → z∞. Since µt is monotonically decreasing,
{µt } → some µ∞ ≥ 0. Since (zt , µt ) ∈ Nβ for all t ∈ T , then if µ∞ = 0, we would
have (zt , µt ) → (z∞, 0) and φµt (x

t , yt ) → 0,F(xt )−yt → 0 as t ∈ T , t → ∞. Since
F is continuous and φµ satisfies (2), we obtain in the limit that z∞ = (x∞, y∞) satisfies
(1), so z∞ ∈ Z . Thus, it remains to consider the case µ∞ > 0. For any (z, µ) ∈ Nβ and
θ ∈ [0, 1], w := −∇Hµ(z)−1Hµ(z) and z+ := z+ θw satisfy

‖Hµ(z+)‖ = ‖Hµ(z+ θw)−Hµ(z)− θ∇Hµ(z)w + (1 − θ)Hµ(z)‖
≤ ‖Hµ(z+ θw)−Hµ(z)− θ∇Hµ(z)w‖ + (1 − θ)‖Hµ(z)‖
≤ r(z, µ, θw)+ (1 − θ)βµ,

where we denote the 1st-order remainder r(z, µ, a) := ‖Hµ(z+a)−Hµ(z)−∇Hµ(z)a‖.
Thus, for µ+ := (1 − σθ)µ and writing z+ = (x+, y+), we have

‖Hµ+(z+)‖ ≤ ‖Hµ(z+)‖ + ‖Hµ(z+)−Hµ+(z+)‖
= ‖Hµ(z+)‖ + ‖φµ(x+, y+)− φµ+(x+, y+)‖
≤ r(z, µ, θw)+ (1 − θ)βµ+ √

n	(µ− µ+),
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where the equality uses (3) and the last inequality also uses Cor. 1(a). Since the right-hand
side is below βµ+ whenever

r(z, µ, θw)/θ + √
n	σµ ≤ (1 − σ)βµ,

which, by our choice of σ and the fact r(z, µ, θw)/θ → 0 as θ → 0, occurs whenever θ
is sufficiently small, it follows from our choice of θt that θt is well defined and positive
for all t . Moreover, either θt = 1 or else

r(zt , µt , (θt /ψ)w
t )/(θt /ψ) > ((1 − σ)β − √

n	σ)µt . (41)

Since π(µt ) ≤ (1 − σ)µt so that, by (40), µt+1 ≤ (1 − σθt )µt for all t , we see from
{µt } → µ∞ > 0 that {θt } → 0. Also, due to (8) and φ1 and F being continuous-
ly differentiable, {∇Hµt (zt )}t∈T converges in operator norm to ∇Hµ∞(z∞), which is
invertible. Since {Hµt (zt )}t∈T converges, this and (38) imply {wt }t∈T is bounded. These
two observations, together with {zt }t∈T → z∞ and {µt } → µ∞ > 0 (and φµ and F
being continuously differentiable and satisfying (8)), implies the left-hand side of (41)
tends to zero as t ∈ T , t → ∞. On the other hand, by our choice of σ andµt ≥ µ∞ > 0,
the right-hand side of (41) is bounded away from zero for all t , a contradiction.

(b) By (3), (8) and our assumptions on φ1 and F , we have

r(z, µ, a) = ‖(−µ(φ1(r + s)− φ1(r)− ∇φ1(r)s), F (x + u)− F(x)− ∇F(x)u)‖
≤ µ‖φ1(r + s)− φ1(r)− ∇φ1(r)s‖ + ‖F(x + u)− F(x)− ∇F(x)u‖
≤ µλ1‖s‖γ1 + λ2‖u‖γ2

≤ λ1‖a‖γ1/µγ1−1 + λ2‖a‖γ2 , (42)

where for simplicity we write z := (x, y), a := (u, v), r := z/µ, s := a/µ, so that
‖s‖ = ‖a‖/µ. Also, by (38) and (zt , µt ) ∈ Nβ , we have

‖wt‖ = ‖∇Hµt (zt )−1Hµt (z
t )‖ ≤ ‖|∇Hµt (zt )−1‖|‖Hµt (zt )‖ ≤ κβµt .

This together with (41) and (42) yields

0 < (1 − σ)β − √
n	σ < r(zt , µt , (θt /ψ)w

t )/(µtθt /ψ)

≤ λ1(θt /ψ)
γ1−1‖wt‖γ1/(µt )

γ1 + λ2(θt /ψ)
γ2−1‖wt‖γ2/µt

≤ λ1(θt /ψ)
γ1−1(κβ)γ1 + λ2(θt /ψ)

γ2−1(κβ)γ2(µt )
γ2−1,

from which we obtain that θt is bounded below by a positive constant depending on
β,ψ, σ, γ1, γ2,

√
n	, λ1(κβ)

γ1 , λ2(κβ)
γ2(µ0)

γ2−1 only. Since µt+1 ≤ (1 − σθt )µt for
all t , the global linear convergence of {µt } follows. ��

If in addition ‖ẑt − zt‖ is of the order of µt (such as when ẑt is given by (43) and
the assumptions of Prop. 1(b) hold), then the global linear convergence of µt in Prop.
1(b) yields, as a byproduct, that {zt } converges linearly in the root sense. Also, note that
the convergence ratio ω depends on λ1, λ2, κ, µ0 through their respective products only
and, in the case where F is affine (so λ2 = 0), ω does not depend on µ0.

By Cors. 1 and 2, φµ given by (4) with g ∈ CM, together with 	 given by Lemma 1,
satisfies the assumption of Prop. 1. Combining this observation with Lemmas 5, 6, 8 and
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Prop. 1 yield the following global (linear) convergence result for the case of φµ given
by (4). Notice that ∇φ1 being Lipschitz continuous implies φ1 satisfies the assumption
of Prop. 1(b) with γ1 = 2.

Corollary 3. Let φµ be given by (4) with g ∈ CM. Assume F is monotone and satisfies
either A1 or A2 or A3. In the case where A3 holds but not A1 or A2, assumeβµ0 < min[x̄],
2βµ0 < min[F(x̄)] for some x̄ ∈ S. Then {(zt , µt )}t=0,1... generated by Algorithm 1 is
well defined and satisfies (zt , µt ) ∈ Nβ for all t . Moreover, the following hold:
(a) {zt } is bounded, {µt } ↓ 0, and every cluster point of {zt } is in Z .
(b) If F is strongly monotone and ∇F is Lipschitz continuous and g is given by (5),
then there exists ω ∈ (0, 1) such that µt+1 ≤ ωµt for all t . If F is affine, then ω is
independent of (z0, µ0).

A similar reasoning using Lemma 7 shows that Cor. 3 still holds when φµ is instead
given by (7), provided A1 is excluded from among the possible assumptions on F (since
B1 in Lemma 8 excludes φµ given by (7)). Whether Cor. 3(a) holds under the assumption
that F satisfies A1 is open when φµ is given by (7). For φµ given by (4)–(5) or (7), ∇φ1
is Lipschitz continuous with constant λ1 = O(n), as is noted at the end of the Appendix.
Thus, if F is monotone and affine and we set σ := 1

2β/(β + √
n	) in Algorithm 1, then

the proof of Prop. 1(b) yields that θt > 1/(2λ1κ) = 1/O(nκ) for all t , and hence

µt+1 ≤ (1 − σθt )µt <

(
1 − 1

O(n1.5κ)

)
µt

for all t , where κ := supt≥0 ‖|∇Hµt (zt )−1‖|. This result does not depend on {zt } being
bounded. However, estimating κ can be difficult. If F is strongly monotone, the proofs
of Lemmas 6 and 7 give an estimate of κ that depends only on supt≥0 ‖|∇F(xt )‖| and
the modulus ρ of strong monotonicity. In the case of LCP and φµ given by (4)–(5),
Burke and Xu [7] derived an alternative estimate of κ by taking the minimum of moduli
of all principal pivotal transforms of ∇F . It is not known whether their analysis can be
extended to SDLCP.

8. Local superlinear convergence analysis

In this section we consider a special choice of ẑt in Algorithm 1 given by

∇Hµt (zt )(ẑt − zt ) = −H0(z
t ), (43)

which was considered in [9, 10, 14, 17] and is the analog of the predictor direction
used in interior-point methods. An important feature of ẑt given by (43) is that it can be
computed relatively inexpensively since the left-hand linear mapping is the same as in
(38).

For our analysis, we will need the following assumptions of strict complementarity
and nondegeneracy.

C1: x̄ + ȳ � 0.
C2: The equations x̄v+ uȳ = 0, ∇F(x̄)u = v have (u, v) = 0 as the only solution.
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These assumptions were introduced in the cases of SDLP and monotone SDLCP by
Kojima et al. [32] for the local superlinear convergence analysis of interior-point path-
following methods using non-shrinking neighborhood [27, 32, 33]. It was shown by
Haeberly (see [32, p. 144]) that, in the case of SDLP, C1 and C2 together are equivalent
to the primal and dual nondegeneracy assumptions given by Alizadeh et al. [2].

The proof of our result is based in part on the connection between φ0(x, y) and
φµ(x, y) (Cor. 1) and the observation that, under C1, x̄ − ȳ is nonsingular, so that
∇φµ(x, y) is Lipschitz continuous in (x, y) for (x, y) near (x̄, ȳ). In what follows, we
denote for any a ∈ S, |a| = (a2)1/2. It can be seen by diagonalizing a that |a| − a =
2[−a]+ and |a| + a = 2[a]+.

Lemma 9. Let φµ be given by (4)–(5) or (7) and fix any z̄ = (x̄, ȳ) ∈ Z satisfying C1
and C2. Fix any β ∈ 	++. Then, there exist scalars δ > 0 and κ1 > 0 such that for all
(z, µ) ∈ Nβ satisfying ‖z− z̄‖ + µ ≤ δ and w ∈ S × S satisfying

∇Hµ(z)w = −H0(z), (44)

the following holds.

(a) ‖w‖ ≤ µ/δ.
(b) ‖φ0(z+ w)‖ ≤ κ1µ

2.
(c) If in addition β >

√
2n	, where 	 is the constant given in Lemma 1, and ∇F

is Lipschitz continuous with constant L ≥ 0 on the ball {x ∈ S : ‖x − x̄‖ ≤
δ}, then (z + w, ν) ∈ Nβ whenever ν ≥ κ2µ

2, where κ2 := max{κ1/(β/
√

2 −√
n	),

√
2L/(βδ2)}.

Proof. We give the proof for the case of φµ given by (4)–(5). The case of φµ given by
(7) can be treated similarly using the fact (x̄2 + ȳ2)1/2 = x̄ + ȳ � 0 and Lemma 2(c).

(a) We argue this by contradiction. Suppose, for each integer k > 0, there exists
(zk, µk) = (xk, yk, µk) ∈ Nβ such that ‖zk − z̄‖ + µk ≤ 1/k but ‖wk‖ > kµk , where
wk = (uk, vk) satisfies ∇Hµk(zk)wk = −H0(z

k). Then zk = (xk, yk) → z̄ = (x̄, ȳ),
µk → 0 and µk/‖wk‖ → 0 and, using (3) and Lemmas 1, 2(b), we have

uk + vk − L−1
ck

[(xk − yk)(uk − vk) + (uk − vk)(xk − yk)] = −2φ0(z
k),

∇F(xk)uk − vk = yk − F(xk),

for all k, where we denote ck := ((xk − yk)2 + 4(µk)2I )1/2. Applying Lck to both sides
of the first equation yields

ck(uk + vk) + (uk + vk)ck − ((xk − yk)(uk − vk)+ (uk − vk)(xk − yk))

= −2(ckφ0(z
k)+ φ0(z

k)ck).

Since ‖φ0(z
k)‖ ≤ ‖φµk (zk)‖ + √

n	µk ≤ βµk + √
n	µk (see Cor. 1) and ‖yk −

F(xk)‖ ≤ βµk , we have upon dividing all sides by ‖wk‖ and using µk/‖wk‖ → 0 and
ck → ((x̄ − ȳ)2)1/2 = |x̄ − ȳ| that any cluster point w̄ = (ū, v̄) of {wk/‖wk‖} satisfies
w̄ �= 0 and

|x̄−ȳ|(ū+v̄)+(ū+v̄)|x̄−ȳ|−((x̄−ȳ)(ū−v̄)+(ū−v̄)(x̄−ȳ) = 0, ∇F(x̄)ū−v̄ = 0.
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Using the properties of | · | and (x̄, ȳ) ∈ Z , we have |x̄− ȳ|− (x̄− ȳ) = 2[ȳ− x̄]+ = 2ȳ
and |x̄ − ȳ| + (x̄ − ȳ) = 2[x̄ − ȳ]+ = 2x̄. Thus, the above equations yield

ȳū+ ūȳ + x̄v̄ + v̄x̄ = 0, ∇F(x̄)ū− v̄ = 0,

By C1, C2 and [33, Lemma 6.2], this implies w̄ = 0, contradicting w̄ �= 0.
(b) Since x̄ � 0, ȳ � 0, 〈x̄, ȳ〉 = 0 and x̄ + ȳ � 0, it is well known and not difficult

to show that, for some p ∈ O and I ⊆ {1, ..., n} and J = {1, ..., n}\I ,

x̄ = pT
[
x̃I I 0
0 0

]
p, ȳ = pT

[
0 0
0 ỹJJ

]
p,

for some x̃I I � 0 and ỹJJ � 0. Thus, x̄ − ȳ is nonsingular and hence |x̄ − ȳ| � 0.
Since, by (a), w = (u, v) given by (44) satisfies ‖w‖ ≤ µ/δ whenever (z, µ) ∈ Nβ and
‖z− z̄‖ + µ ≤ δ, by taking δ sufficiently small, we can further assume that

‖x − y‖ ≤ κ, ‖|L−1
((x−y)2+4µ2I )1/2

‖| ≤ κ, |x − y + τ(u− v)| � 0,

‖|L−1
|x−y+τ(u−v)|‖| ≤ κ ∀τ ∈ [0, 1], (45)

for some constant κ > 0 (depending on |x̄ − ȳ| only).
Fix any (z, µ) ∈ Nβ satisfying ‖z − z̄‖ + µ ≤ δ. By (a), ‖w‖ ≤ µ/δ and by (45),

‖x − y‖ ≤ κ , |x − y| � 0, and ‖|L−1
|x−y|‖| ≤ κ . We have upon using the fact (see the

proof of Lemma 2(b))

d − c + L−1
c [(d − c)2] = L−1

c [(x − y)(u− v)+ (u− v)(x − y)+ (u− v)2]

with c := |x − y| � 0 and d := |x − y + u − v| that, analogous to (14), φ0 is
Fréchet-differentiable at z with

2∇φ0(x, y)(u, v) = u+ v − L−1
|x−y|[(x − y)(u− v)+ (u− v)(x − y)].

In fact, L−1
|x−y| is continuous in (x, y), so ∇φ0(z) is continuous over the set of (z, µ)

satisfying ‖z− z̄‖ + µ ≤ δ.
Since x − y + τ(u− v) is nonsingular for all τ ∈ [0, 1] (see (45)), then φ0 is con-

tinuously differentiable along this line segment, so the mean value theorem and (44)
yield

‖φ0(z+ w)‖ =
∥∥∥∥φ0(z)+

∫ 1

0
∇φ0(z+ τw)w dτ

∥∥∥∥

=
∥∥∥∥−∇φµ(z)w +

∫ 1

0
∇φ0(z+ τw)w dτ

∥∥∥∥

=
∥∥∥∥

∫ 1

0
(∇φ0(z+ τw)w − ∇φµ(z)w) dτ

∥∥∥∥

≤
∫ 1

0

∥∥∇φ0(z+ τw)w − ∇φµ(z)w
∥∥ dτ. (46)
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Letting c := ((x − y)2 + 4µ2I )1/2, d := |x − y + τ(u − v)|, and e := (x − y)(u −
v) + (u − v)(x − y), we have from (14) and the above formula for ∇φ0 that, for any
τ ∈ [0, 1],

2∇φ0(z+ τw)w − 2∇φµ(z)w
= L−1

c [(x − y)(u− v)+ (u− v)(x − y)]

−L−1
|x−y+τ(u−v)|[(x − y + τ(u− v))(u− v)+ (u− v)(x − y + τ(u− v))]

= L−1
c [e] − L−1

d [e] − 2τL−1
d [(u− v)2]. (47)

Using

d − c + L−1
c [(d − c)2] = L−1

c [d2 − c2]

= L−1
c [τ(x − y)(u− v)+ τ(u− v)(x − y)+ τ 2(u− v)2 + 4µ2I ]

and (45), we have

‖d − c‖ ≤ κ‖τ(x − y)(u− v)+ τ(u− v)(x − y)+ τ 2(u− v)2 + 4µ2I − (d − c)2‖
≤ κ(2‖x − y‖‖u− v‖ + ‖u− v‖2 + 4

√
nµ2 + ‖d − c‖2)

≤ κ(2κ‖u− v‖ + ‖u− v‖2 + 4
√
nµ2)+ κ‖d − c‖2,

where the second inequality uses the fact that ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ S. Since
| · | and (·)1/2 are continuous functions and ‖(u, v)‖ ≤ µ/δ and t ∈ [0, 1], by taking
δ1 ∈ (0, δ] sufficiently small we can assume that κ‖d − c‖ ≤ 1/2 and ‖u − v‖ ≤ κ

whenever ‖z− z̄‖ + µ ≤ δ1. Then, the above inequality and ‖w‖ ≤ µ/δ yield

‖d − c‖ ≤ 2κ(2κ‖u− v‖ + ‖u− v‖2 + 4
√
nµ2) ≤ 2κ(3κ‖u− v‖

+4
√
nµ2) ≤ 12κ2µ/δ + 8κ

√
nµ2.

Thus, ‖d − c‖ ≤ κ0µ for a suitable constant κ0 > 0.
Letting � := L−1

c [e] − L−1
d [e], with c, d and e defined as above, we have

Ld [�] = dL−1
c [e] + L−1

c [e]d − e = (d − c)L−1
c [e] + L−1

c [e](d − c),

where the second equality uses the fact cL−1
c [e] +L−1

c [e]c = e. Since ‖d − c‖ ≤ κ0µ,
this together with (45) yields

‖�‖ = ‖L−1
d [Ld [�]]‖

≤ κ‖Ld [�]‖
= κ‖(d − c)L−1

c [e] + L−1
c [e](d − c)‖

≤ 2κ‖d − c‖‖L−1
c [e]‖

≤ 2κ0µκ
2‖e‖

≤ 2κ0µκ
2(2κ‖u− v‖)

≤ 8κ0µ
2κ3/δ.
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Combining this with (47), we have

2‖∇φ0(z+ τw)w − ∇φµ(z)w‖ = ‖�− 2τL−1
d [(u− v)2]‖

≤ 8κ0µ
2κ3/δ + 2τκ‖u− v‖2

≤ 8κ0µ
2κ3/δ + 2τκ(2µ/δ)2.

This holds for each τ ∈ [0, 1], which together with (46) and (45) yields

‖φ0(z+ w)‖ ≤
∫ 1

0
4κ0µ

2κ3/δ + 4τκµ2/δ2 dt = κ1µ
2,

where we let κ1 := 4κ0κ
3/δ + 2κ/δ2.

(c) By Cor. 1 and part (b), for any ν ≥ κ1µ
2/(β/

√
2 − √

n	), we have

‖φν(z+ w)‖ ≤ ‖φ0(z+ w)‖ + √
n	ν ≤ κ1µ

2 + √
n	ν

≤ (β/
√

2 − √
n	)ν + √

n	ν = βν/
√

2.

Also, we have from (44) that F(x)+∇F(x)u = y+ v, which together with part (a) and
ν ≥ √

2Lµ2/(βδ2) yields

‖F(x+u)−(y+v)‖ = ‖F(x+u)−F(x)−∇F(x)u‖ ≤ L‖u‖2 ≤ Lµ2/δ2 ≤ βν/
√

2.

Thus, by (3),

‖Hν(z+w)‖2 = ‖φν(z+w)‖2+‖F(x+u)−(y+v)‖2 ≤ (βν)2/2+(βν)2/2 = (βν)2,

so (z+ w, ν) ∈ Nβ . ��

In Lemma 9, if we assume F to be only continuously differentiable near x̄, then
we obtain ν ≥ o(µ) instead, with limµ↓0 o(µ)/µ = 0. Notice that if F is affine, then
L = 0. Also, it can be shown that part (a) of Lemma 9 holds for φµ given by (4) for any
g ∈ CM (the proof uses Lemmas 2(a) and 3), but it is not known whether part (b) holds
similarly. By using Lemma 9, we obtain the following local superlinear convergence
result for Algorithm 1 with ẑt chosen according to (43).

Proposition 2. Let φµ be given by (4)–(5) or (7), and fix any z̄ = (x̄, ȳ) ∈ Z satisfying
C1 and C2 and such that ∇F is Lipschitz continuous with constant L ≥ 0 on some ball
of radius δ0 > 0 around x̄. Fix any β >

√
2n	, where 	 is given in Lemma 1. Assume

∇Hµ(z) is invertible for all (z, µ) ∈ Nβ with µ ≤ µ0 ∈ 	++. Let {(zt , µt )}t=0,1... be
generated by Algorithm 1 with ẑt chosen by (43) and π chosen such that π(µ) ≥ κ2µ

2

for all µ > 0 sufficiently small, where κ2 is the constant given in Lemma 9. Then there
exists δ ∈ 	++ such that if ‖zt̄ − z̄‖ + µt̄ ≤ δ for some t̄ , then

‖zt − z̄‖ + µt ≤ δ and µt+1 ≤ π(µt ) ≤ (1 − σ)µt ∀t = t̄ , t̄ + 1, ...
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Proof. By Prop. 1, {(zt , µt )}t=0,1... is well defined and satisfies (zt , µt ) ∈ Nβ for all t .
Then, by Lemma 9, there exist δ2 ∈ (0, δ0] and κ1 which, together with κ2, have the
property that

‖ẑt − zt‖ ≤ µt/δ2, (ẑt , ν) ∈ Nβ whenever ‖zt − z̄‖ + µt ≤ δ2 and ν ≥ κ2(µt )
2.
(48)

By our choice of π , there exists δ ∈ (0, δ2] such that π(µ) ≥ κ2µ
2 whenever µ ≤ δ.

Then (48) implies

(ẑt , π(µt )) ∈ Nβ whenever ‖zt − z̄‖ + µt ≤ δ,

in which case our choice ofαt inAlgorithm 1 yieldsαt = 1, zt+1 = ẑt andµt+1 ≤ π(µt ).
This together with (48) yields

‖zt+1 − zt‖ ≤ µt/δ2, µt+1 ≤ π(µt ) ≤ (1 − σ)µt whenever ‖zt − z̄‖ + µt ≤ δ .
(49)

Then if there exists an index t̄ such that‖zt̄−z̄‖ ≤ δ/3 andµt̄ ≤ δ/3 andµt̄/(σδ2) ≤ δ/3,
a simple induction argument using (49) yields

‖zt+1−zt‖ ≤ (1−σ)t−t̄ µ
t̄

δ2
, ‖zt−z̄‖ ≤ δ/3+1 − (1 − σ)t−t̄

σ

µt̄

δ2
≤ 2δ/3, µt ≤ δ/3,

for all t = t̄ , t̄ + 1, ... Thus ‖zt − z̄‖ + µt ≤ δ for all t ≥ t̄ , which together with (49)
yields µt+1 ≤ π(µt ) ≤ (1 − σ)µt for all t ≥ t̄ . ��

By Lemmas 6 and 7, F being a monotone mapping is sufficient for ∇Hµ(z) to be
invertible. Prop. 2 says that the rate of local convergence depends on the rate at which
π(µ) → 0 as µ ↓ 0. If we choose, say,

π(µ) = µ2| ln(µ)|,
which satisfies the assumption of Prop. 2, thenAlgorithm 1 would achieve a convergence
rate very close to quadratic.

9. SDLP and generalized SDCP

As was remarked in Sec. 1, (1) includes SDLP as a special case. However, casting an
SDLP in the form (1) requires introducing auxiliary variables which is impractical for
computation. In this section we consider a generalization of (1) for which the analyses
and algorithm of previous sections can be readily extended and into which an SDLP can
be cast without increasing the problem dimension.

The generalized SDCP is to find, for given mappings F : S �→ S and G : S �→ S,
an (x, y, ζ ) ∈ S × S × S satisfying

x ∈ S+, y ∈ S+, 〈x, y〉 = 0, F (ζ )− y = 0, G(ζ )− x = 0. (50)

We assume that F and G are continuously differentiable and satisfy

∇F(ζ )�ζ = ∇G(ζ)�ζ = 0 ⇒ �ζ = 0 and lim
‖ζ‖→∞

‖(F (ζ ),G(ζ ))‖ = ∞.

(51)
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Clearly (1) is a special case of this problem in whichG is the identity mapping. We say
that F and G are relatively monotone if

〈F(ζ )− F(ζ ′),G(ζ )−G(ζ ′)〉 ≥ 0 ∀ζ, ζ ′ ∈ S.
Relative strong monotonicity is similarly defined; also see [49].

Consider an SDLP in the standard form

min 〈c, x〉 subject to x ∈ S+, [〈ai, x〉]�i=1 = b, (52)

where l ≥ 1 and c, a1, ..., a� ∈ S and b = [bi]�i=1 ∈ 	� are given. We assume that
a1, ..., a� are linearly independent and there exists d ∈ S satisfying [〈ai, d〉]�i=1 = b.
The optimality condition for this problem is

x ∈ S+, y ∈ S+, 〈x, y〉 = 0, [〈ai, x〉]�i=1 = b, y +
�∑

i=1

aiζi = c for some ζi ∈ 	.
(53)

Let a�+1, ..., aν ∈ S be a basis for the subspace of S orthogonal to a1, ..., a�, where ν :=
1
2

∑m
k=1 nk(nk + 1) is the dimension of S. Then, by letting ζ := (· · · , ζi, · · ·)T1≤i≤ν ∈ 	ν

and identifying 	ν with S, we see that (53) is a special case of (50) with

F(ζ ) := c −
�∑

i=1

aiζi, G(ζ ) := d −
ν∑

i=�+1

aiζi . (54)

Moreover, F and G are relatively monotone and satisfy (51).3

Analogous to (3), consider

Hµ(x, y, ζ ) := (φµ(x, y), F (ζ )− y,G(ζ )− x).

Then Lemmas 6 and 7 can be readily extended to this general problem whereby (strong)
monotonicity of F is replaced by relative (strong) monotonicity of F and G. Lemmas
8, 9, Algorithm 1, Props. 1, 2, Cor. 3 can be similarly extended. We note that an alter-
native geometric formulation of SDCP has been proposed by Shida and Shindoh [41],
into which an SDLP can be cast without increasing problem dimension. However, this
formulation does not appear to lend itself easily to the adaptation of Algorithm 1 and
the associated global convergence and local superlinear convergence analysis.

In the SDLP case where F and G are given by (54), we can work directly with
[〈ai, x〉]�i=1 = b instead of G(ζ)− x = 0. This avoids computing G explicitly. In par-
ticular, for a given (x, y) and [ζi]�i=1, the Newton direction (u, v) and [�ζi]�i=1 is the
unique solution of the linear equations

∇φµ(x, y)(u, v) = −φµ(x, y), [〈ai, u〉]�i=1 = r, v +
�∑

i=1

ai�ζi = s, (55)

3 We can also write (53) as the horizontal SDLCP: x ∈ S+, y ∈ S+, 〈x, y〉 = 0, Mx+Ny = Nc+Md,
whereM andN denote the orthogonal projections onto the subspaces spanned by, respectively, a1, ..., a� and
a�+1, ..., aν .
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where r := b− [〈ai, x〉]�i=1 and s := c− y −∑�
i=1 a

iζi . For the “pure” Newton direc-
tion, which is analogous to the predictor direction in interior-point methods, the linear
equations are identical except the right-hand term φµ(x, y) is replaced with φ0(x, y).
Analogously, we work with ‖Hµ(x, y, ζ )‖ = √‖φµ(x, y)‖2 + ‖s‖2 + ‖r‖2 in the def-
inition of the neighborhood Nβ (9).

For φµ given by (4)–(5), by using Lemma 2(b), (55) reduces to

�∑

j=1

〈ai, L−1
c−w

[
Lc+w[aj ]

]
〉�ζj = 〈ai, L−1

c−w
[
2Lc[φµ(x, y)] + Lc+w[s]

]〉 + ri,

i = 1, ..., �, (56)

where w := x − y and c := (w2 + 4µ2I )1/2. To compute the coefficients in (56), we
first find an eigenvalue factorization (i.e., spectral decomposition) of w, i.e., a p ∈ O
such that w̃ := pwpT is diagonal. Then, c̃ := pcpT = (w̃2 + 4µ2I )1/2 is also diagonal
and the coefficients in (56) can be written as

Bij := 〈ãi , L−1
c̃−w̃

[
Lc̃+w̃[ãj ]

]
〉, i, j = 1, ..., �,

hi := 〈ãi , L−1
c̃−w̃

[
2Lc̃[pφµ(x, y)p

T ] + Lc̃+w̃[pspT ]
]
〉 + ri, i = 1, ..., �,

where ãi := paipT . It was shown by Monteiro and Zanjácomo [36, Appendix 10] that
5�n3/3 flops suffice to compute ãi for i = 1, ..., �, assuming that a reverse Cholesky
factorization of ai+υiI , with υi ∈ 	+ chosen so that ai+υiI � 0, is available. Since c̃
and w̃ are diagonal, computingL−1

c̃−w̃
[
Lc̃+w̃[ãj ]

]
for j = 1, ..., �, requires onlyO(�n2)

flops. Since computing 〈a, b〉 requires n2 +n flops for any a, b ∈ S (using the symmetry
of a, b) and Bij = Bji for all i, j , then �(�+ 1)/2 · (n2 + n) additional flops suffice to
compute Bij for 1 ≤ i ≤ j ≤ �. A similar analysis shows that �n2 +O(n3) additional
flops suffice to compute hi for i = 1, ..., �. Thus, the work in computing the coefficients
is

1
2

3
�n3 + 1

2
�2n2 +O(�n2 + �2n+ n3) flops.

Given the coefficients, 2�3/3 + O(�n2) flops suffice to solve for [�ζi]�i=1 and (u, v).
The total work is less than that for the AHO and X-MT directions, but more than that
for the NT direction in interior-point methods [36, Sec. 3.7]. The work can be more or
less than that for the S-Ch-MT and HRVW/KSH/M directions, depending on the values
of � and n. However, these estimates of work do not take into account the exploitation
of sparsity in a1, ..., a�.

For φµ given by (7), by using Lemma 2(c), (55) reduces to

�∑

j=1

〈ai, L−1
c−x

[
Lc−y[aj ]

]
〉�ζj =〈ai, L−1

c−x
[
Lc[φµ(x, y)] + Lc−y[s]

]〉+ri, i=1, ..., �,

(57)
where c := (x2 + y2 + 2µ2I )1/2. Forming this equation requires two eigenvalue fac-
torization, one of x2 + y2 to compute c and another of c − x to evaluate L−1

c−x . This
contrasts with interior-point methods which require either a Cholesky factorization or
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a single eigenvalue factorization of y to form the Newton equation [2, 36, 45]. Using
an eigenvalue factorization of c − x, i.e., a p ∈ O such that c̃ − x̃ is diagonal, where
c̃ := pcpT , x̃ := pxpT , ỹ := pypT , the coefficients in (57) can be written as

Bij := 〈ãi , L−1
c̃−x̃

[
Lc̃−ỹ[ãj ]

]
〉, i, j = 1, ..., �,

hi := 〈ãi , L−1
c̃−x̃

[
Lc̃[pφµ(x, y)p

T ] + Lc̃−ỹ[pspT ]
]
〉 + ri, i = 1, ..., �,

where ãi := paipT . As was discussed above, 5�n3/3 flops suffice to compute ãi for
i = 1, ..., �. However, c̃− ỹ may not be diagonal and [Bij ]�i,j=1 may not be symmetric.
As a result, the work in computing the coefficients is more than that for (56). In partic-
ular, computing Lc̃−ỹ[ãj ], for j = 1, ..., �, requires �(2n3 + n2) flops and using these
to compute Bij , for i, j = 1, ..., �, requires �2(n2 + n) additional flops. Thus, the work
in computing the coefficients is

3
2

3
�n3 + �2n2 +O(�n2 + �2n+ n3) flops.

Given the coefficients, 2�3/3 + O(�n2 + n3) flops suffice to solve for [�ζi]�i=1 and
(u, v). The total work is comparable to that for the AHO direction [36, Sec. 3.7].

Notice that the above two Newton directions are Q-scale invariant in the sense of
Todd [44, Sec. 6]. In particular, if x, y, s, a1, ..., a� are each multiplied, respectively, on
the left and on the right by p and pT for any p ∈ O, then the Newton directions u, v
would be similarly transformed. However, neither direction is P -scale invariant.

10. Preliminary computational experience

To gain some understanding of the numerical behavior/performance of Algorithm 1 with
ẑt chosen as described in Prop. 2, we implemented this method in Matlab to solve the
SDLP (52), with adaptations as described in Sec. 9. In this section we describe the im-
plementation and report our preliminary numerical experience with it. We chose SDLP
for its availability of test problems and Matlab solvers.

In our Matlab implementation of Algorithm 1, we choose φµ given by (7) with
	 = √

2, and set ψ = .9, σ = min{.3, σ̂ } with σ̂ := β/(β + √
2n	), and π(µ) =

min{(1 − σ)µ,µ1.5}. The choice of β will be clarified below. We also experimented
with φµ given by (4)–(5) and, while the results are quite similar in terms of iteration
count and solution accuracy, there are some differences in implementation and CPU
time which we will comment on. We choose ẑt by (43) whenever µt < 0.1 (otherwise
we set αt = 0) and set νt = 0 for all t (corresponding to αt being either 0 or 1). The
above parameter choices, though reasonable, were made without much fine tuning and
can conceivably be improved. To further accelerate the method, we replace the term
(1 − σθt )µt in (39) and (40) with the smallest µ ∈ {(.7)j (1 − σθt )µt }j=0,1,... such that
(zt + θtw

t , µ) ∈ Nβ . This µ is easy to compute since an eigenvalue factorization of
(xt )2 + (yt )2 is already available from computing wt . In particular, wt is obtained by
solving a reduced system of linear equations in�ζj ∈ 	, j = 1, ..., �, of the form (57),
with (x, y) andµ indexed by t . The equation for ẑt is identical except the right-hand term
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φµ(x, y) is replaced with φ0(x, y). Finally, to improve the primal feasibility at termina-
tion, we employ a projection technique used in SDPT3 [45]:After computing the Newton
direction w = (u, v), check if ‖[〈ai, x + u〉]�i=1 − b‖ > ‖[〈ai, x〉]�i=1 − b‖ and if yes,
replace u by its orthogonal projection on to the null space {u ∈ S : [〈ai, u〉]�i=1 = 0}.

To simplify the programming and testing, we implemented Algorithm 1 by bor-
rowing the data structure, problem input, and linear algebra routines from the SDPT3

(version 1.3) Matlab code of Toh, Todd, and Tütüncü [45]. In particular, the Newton
equations (56) and (57) are formed and solved much like the AHO direction in SDPT3.
SDPT3 implements a primal-dual Mehrotra-predictor-corrector interior-point method
and is linked to a set of eight test problems. For comparison purposes, we use the same
initial x0 ∈ S and ζ 0 ∈ 	� as given by SDPT3. [SDPT3 can initialize with either a feasi-
ble or an infeasible x0 ∈ S++ and ζ 0. The results below are obtained with the infeasible
initialization. Qualitatively similar results are obtained with the feasible initialization.]
Then we initialize the remaining parameters according to:

y0 = c −
�∑

i=1

aiζ 0
i , µ0 = ‖H0(z

0)‖/4, β = 1.5‖Hµ0(z
0)‖/µ0.

We note that y0 need not be positive definite. For example, on random, ETP and LogC-
heby problems of Table 2, y0 has negative eigenvalue ranging from −2 to −600. We
use the same termination criterion as in SDPT3, namely, terminate the method when
“relative duality gap” and “relative primal and dual infeasibility”, as defined in [45], are
below a specified threshold. In our testing, we set the threshold to 3 · 10−9.

Tables 1 and 2 tabulate the single-run iteration count (niter) for SDPT3 (using three
different choices of search directions: AHO, HKM and NT) and Algorithm 1 on, respec-
tively, small and medium-sized problems from the SDPT3 test set. Since Algorithm 1
does not maintain x and y to be positive semidefinite, we also report the minimum ei-
genvalue of, respectively, x and y on termination (minx and miny). [On some problems,
both x and y had non-negligible negative eigenvalues at the early stages of the method.]
As can be seen from these tables,Algorithm 1 has comparable average iteration counts as
the interior-point methods on the small problems, but has higher average iteration counts

Table 1. Iteration counts for small SDLP problems.

AHO HKM NT Alg. 1

Problem n, l niter niter niter niter/minx/miny

random 10,10 9 13 13 17/−6.5 · 10−11/−1.5 · 10−12

Norm min 20,6 12 14 15 12/−1.6 · 10−11/−2.7 · 10−14

Cheby 20,11 12 14 13 11/−1.2 · 10−12/−8.9 · 10−11

Maxcut 10,10 10 11 11 10/−4.7 · 10−09/−1.4 · 10−11

ETP 20,10 12 14 13 17/−3.8 · 10−12/−1.0 · 10−15

Lovasz 10,22 11 13 11 12/−1.2 · 10−09/−5.6 · 10−09

LogCheby 60,6 13 15 13 17/−4.7 · 10−08/−3.0 · 10−09

ChebyC 40,11 11 12 13 11/−6.7 · 10−17/−1.1 · 10−12
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Table 2. Iteration counts for medium-sized SDLP problems.

AHO HKM NT Alg. 1
Problem n, l niter niter niter niter/minx/miny

random 20,20 11 12 12 21/−1.5 · 10−07/−1.3 · 10−10

Norm min 40,11 15 17 16 12/−1.6 · 10−11/−1.4 · 10−13

Cheby 40,21 16 16 16 13/−9.0 · 10−12/−2.5 · 10−11

Maxcut 21,21 10 11 11 12/−3.8 · 10−08/−9.9 · 10−12

ETP 41,21 14 16 16 23/−7.2 · 10−13/−1.0 · 10−16

Lovasz 21,88 14 16 16 20/−2.3 · 10−10/−1.2 · 10−07

LogCheby 120,11 16 17 15 22/−4.5 · 10−08/−1.3 · 10−10

ChebyC 80,21 12 13 12 12/−6.7 · 10−17/−4.2 · 10−15

on four of the medium-sized problems. On the remaining four problems (namely, Norm
min, Cheby, Maxcut, ChebyC), Algorithm 1 has comparable iteration counts. Thus, for
certain classes of SDLP, a non-interior method like Algorithm 1 may provide a viable
alternative to interior-point methods. In general, the use of ẑt significantly improves
the local convergence of Algorithm 1, enabling µt to decrease rapidly in the last few
iterations before termination. Figures 1 and 2 plot, using the plotting feature of SDPT3,
the duality gap and infeasibility trajectories for all methods on the small test problems.
The trajectories for the medium-sized problems are qualitatively similar and are omitted
for brevity. Notice that Algorithm 1 decreases the infeasibility faster than interior-point
methods at the early stages, but near the end the infeasibility increases. The reason for
this is not well understood, as the condition number for the Newton equation (57) is not
much worse than that for the interior-point methods. In any case, this shows that further
improvements are needed if Algorithm 1 is to solve problems to high accuracy.

In terms of CPU times (on a Dec Alpha workstation), Algorithm 1 is typically 10%-
30% slower when the FB function (7) is used than when the CHKS function (4)–(5) is
used, even though the iteration counts are comparable. This seems to be mostly due to
the more efficient computation of the Newton direction for the CHKS function, requir-
ing one eigenvalue factorization rather than two. The CPU times are about 2-4 times
those of interior-point methods, even though the iteration counts are comparable. The
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Fig. 1. Duality gap and infeasibility trajectories for problems 1–4 of Table 1.
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greater time is due to the cost of the Armijo-Goldstein-type line search to find θt . In
particular, in the earlier iterations, θt can be quite small (e.g., below 10−4) so a large
number of evaluations of ‖H(1−σθ)µt (zt + θwt )‖, with θ successively decreased from
1 by a factor of ψ = .9, is needed to find θt . Each evaluation requires one eigenvalue
factorization, so the line search can be very expensive. When we change ψ to .2, the
iteration count increases but the CPU time typically decreases due to less time being
spent in the line search. For the CHKS function, this typically decreases the CPU times
by 10%-50%, though they are still about twice that for the interior-point method using
the AHO direction. An exception is the ChebyC problem, for which the CPU times are
about equal. In general, for Algorithm 1 to be competitive with interior-point methods
in terms of CPU times, it seems necessary to find a more efficient line search strategy.

We also performed some testing with warm start, as one referee suggested. After
solving the SDLP, we perturbed b and c and resolved the problem starting at the solution
of the unperturbed problem. In general, interior-point methods were faster at resolving
the perturbed problem than Algorithm 1. An exception is the random problem of Table
2, where Algorithm 1 was able to resolve the perturbed problem while the interior point
methods quit after 1 iteration without resolving the problem. However, we caution that
these results are very preliminary and further studies are needed to draw any reasonable
conclusion.

11. Possible extensions

In this paper we studied a non-interior continuation method for SDCP and analyzed its
global (linear) convergence and local superlinear convergence. There is a number of
directions in which our work can be extended. One direction is the extension of other
smoothing functions for CP, e.g., [30]. Another direction is the extension of nonsmooth
methods to SDCP. A third direction is a more comprehensive computational study that
considers further implementation issues such as problem preprocessing, non-monotone
line search, and uses a broader set of test problems. There are also some specific open
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questions. For example, can Lemma 5 be extended to φµ given by (4) with arbitrary
g ∈ CM having Lipschitz continuous derivative? We hope these and related issues will
be further studied in the future.

Lastly, it was suggested to us by Takashi Tsuchiya that the scaling technique used
in interior-point methods for the Monteiro-Zhang and Monteiro-Tsuchiya families of
search directions (see [35] and references therein) might be adapted to our non-interior
point approach. This seems to be possible. In particular, for any nonsingular q ∈ X , we
can define the scaled function

φ̂µ(x, y) = φµ(qxq
T , q−T yq−1)

and consider the corresponding Newton equation analogous to (17):

∇φ̂µ(x, y)(u, v) = r, Mu− v = s,

with M := ∇F(x) and (r, s) ∈ S × S. [Here q−T is an abbreviation for (q−1)T .] It is
not difficult to verify that

∇φ̂µ(x, y)(u, v) = ∇φµ(x̂, ŷ)(û, v̂),
where we make the change of variable: x̂ = qxqT , ŷ = q−T yq−1, û = quqT , v̂ =
q−T vq−1. Then, the above Newton equation may be rewritten as

∇φµ(x̂, ŷ)(û, v̂) = r, M̂û− v̂ = ŝ,

where ŝ := q−T sq−1 and M̂ is the linear mapping defined by M̂û := q−T
(M(q−1ûq−T ))q−1. It can be verified that if M is monotone, then so is M̂ , and hence,
as was argued in the proof of Lemmas 6 and 7, this Newton equation has a unique solu-
tion (û, v̂). The global convergence result given in Cor. 3(a) would still hold when the
scaled Newton direction (q−1ûq−T , qT v̂q) is used (possibly with a different q at each
iteration), provided that ‖q‖ and ‖q−1‖ are uniformly bounded.

Acknowledgements. We thank Defeng Sun and the three referees for their helpful suggestions and comments
on the original version of this paper. We particularly thank one of the referees who provided numerous detailed
and insightful comments.

12. Appendix

Proof of Lemma 3. By considering each diagonal block of X separately, we can without
loss of generality assume the elements of X have one diagonal block, i.e., m = 1. Fix
any a ∈ S with eigenvalues of, respectively, λ1 ≥ · · · ≥ λn. If λ1 = · · · = λn, then
a = λ1I , so pT ap ∈ D for any p ∈ O and (16) holds for any η, ε ∈ 	++. Thus, in
what follows, we consider the case where n ≥ 2 and λi−1 > λi for some 2 ≤ i ≤ n.
Then, there exist unique r ∈ {2, ..., n} and indices l0 = 1 < l1 < · · · < lr = n+ 1 such
that λi = λi+1 for lk−1 ≤ i < lk − 1 and λlk−1 > λlk , for k = 1, .., r − 1. Let

δ := min
k=1,...,r−1

(λlk−1 − λlk )/2.
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Consider any b ∈ S and q ∈ O such that ‖a− b‖ ≤ δ and qT bq = diag[µ1, ..., µn]
for some µ1 ≥ · · · ≥ µn ∈ 	. By an inequality of Weyl [4, p. 63], [24, p. 367],

|λi − µi | ≤ ‖a − b‖ ∀i = 1, ..., n.

Thus, for each k = 1, .., r − 1, we have for i < lk−1 that

λi ≥ λlk−1−1 ≥ λlk−1 + ‖a − b‖ + δ ≥ µlk−1 + δ ≥ µj + δ ∀j = lk−1, ..., lk − 1,

and for i ≥ lk that

λi ≤ λlk ≤ λlk−1 − (‖a − b‖ + δ) ≤ µlk−1 − δ ≤ µj − δ ∀j = lk−1, ..., lk − 1.

Thus, for the index set Ik := {lk−1, ..., lk − 1}, we have

min{|λi − µj | : i ∈ {1, ..., n}\Ik, j ∈ Ik} ≥ δ.

Let mk := lk − lk−1 and let qk ∈ 	n×mk denote the submatrix of q comprising the
columns indexed by i ∈ Ik . Let Qk ⊂ 	n denote the range space of qk . Similarly, let
Pk ⊂ 	n denote the eigenspace of a corresponding to λi , i ∈ Ik . By Thm. 3.4 of [43,
p. 250] and Thm. 4.5 of [43, p. 92], we have

max





sup

‖p‖=1
p∈Pk

inf
q∈Qk

‖p − q‖, sup
‖q‖=1
q∈Qk

inf
p∈Pk

‖q − p‖





≤ ‖aqk − qkdiag[µi]i∈Ik‖/δ

= ‖(a − b)qk‖/δ
≤ ‖a − b‖‖qk‖/δ = ‖a − b‖/δ,

where the first equality follows from the fact bqk = qkdiag[µi]i∈Ik . The above inequal-
ity implies that, for each column q̃i of qk indexed by i ∈ Ik , there exists p̃i ∈ Pk such
that ‖p̃i − q̃i‖ ≤ ‖a − b‖/δ. Let pk ∈ 	n×mk be the matrix comprising p̃i , i ∈ Ik , for
its columns. Then, letting dk := pk − qk , we have

‖dk‖2 =
∑

i∈Ik
‖p̃i − q̃i‖2 ≤ mk‖a − b‖2/δ2. (58)

Also, using qTk qk = I , we have

pTk pk = (qk + dk)
T (qk + dk) = I + dTk qk + qTk dk + dTk dk.

Thus, further assuming
√
mk‖a − b‖/δ ≤ 1/3, we have ‖dk‖ ≤ 1/3 and so

‖dTk qk + qTk dk + dTk dk‖ ≤ ‖dTk qk‖ + ‖qTk dk‖ + ‖dTk dk‖ ≤ 2‖dk‖ + ‖dk‖2 ≤ 7/9 < 1,
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where the second inequality uses the facts ‖qk‖ = 1 and ‖qT d‖ ≤ ‖q‖‖d‖ for any
q, d ∈ 	n×mk . Hence pTk pk is nonsingular, so pk has full column rank. Then, letting
ok := (pTk pk)

−1/2, we have (pkok)T (pkok) = I and

‖ok − I‖2 = ‖(pTk pk)−1/2 − I‖2

= ‖(I + qTk dk + dTk qk + dTk dk)
−1/2 − I‖2

=
n∑

i=1

((1 + ξi)
−1/2 − 1)2

<

n∑

i=1

(
ξi

27

4

)2

= ‖qTk dk + dTk qk + dTk dk‖2
(

27

4

)2

≤ (2‖dk‖ + ‖dk‖2)2
(

27

4

)2

≤
(

7

3
‖dk‖

)2 (27

4

)2

,

where ξ1, ..., ξn denote the eigenvalues of qTk dk + dTk qk + dTk dk , and the first inequality
uses the facts that |ξi | ≤ 7/9 for all i and max|ξ |≤7/9 | d

dξ
[(1 + ξ)−1/2]| = 27/(2

√
8) ≤

27/4. Then, if we let p̂k := pkok , this together with ‖dk‖ ≤ 1/3 yields

‖p̂k − qk‖ = ‖(qk + dk)(ok − I )+ dk‖
≤ (‖qk‖ + ‖dk‖)‖ok − I‖ + ‖dk‖
≤ (1 + 1

3
)(

7

3
‖dk‖)27

4
+ ‖dk‖ = 22‖dk‖,

for k = 1, ..., r . Since (p̂k)T p̂k = I and the columns of p̂k span the eigenspace of a
corresponding to λlk−1 = · · · = λlk−1 (and eigenspace corresponding to distinct eigen-
values of a are orthogonal), we see that p̂ := [p̂1 · · · p̂r ] is an n × n real orthogonal
matrix, and p̂T ap̂ = diag[λ1, ..., λn]. This together with q = [q1 · · · qr ] and (58) yields

‖p̂ − q‖2 =
r∑

k=1

‖p̂k − qk‖2 ≤
r∑

k=1

(22)2mk‖a − b‖2/δ2.

��

Proof of Lemma 4. Suppose g is continuously differentiable. For any a ∈ S, let λ1 ≥
· · · ≥ λn ∈ 	 be the eigenvalues of a in decreasing order and let c be given by (13).
Since 0 < g′(τ ) < 1 for all τ ∈ 	, then 0 < cij < 1 for all i, j . For any other ã ∈ S, let
µ1 ≥ · · · ≥ µn ∈ 	 be the eigenvalues of ã in decreasing order and let c̃ be given by a
formula analogous to (13) but with “µ” replacing “λ”. Then, for any p, q ∈ O such that
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pT diag[λ1, ..., λn]p = a, qT diag[µ1, ..., µn]q = ã, we have from a result of Dalecki
and Krein (see the proof of Lemma 2(a)) that, for all e ∈ S,

∇g(a)e − ∇g(ã)e = pT ((pepT ) ◦ c)p − qT ((qeqT ) ◦ c̃)q
= dT ((pepT ) ◦ c)p + qT ((depT ) ◦ c)p + qT ((qedT ) ◦ c)p
+ qT ((qeqT ) ◦ c)d + qT ((qeqT ) ◦ (c − c̃))q,

where we define d := p− q, and the second equality is obtained by substituting p with
q + d and expanding the terms. Thus,

‖∇g(a)e−∇g(ã)e‖≤‖dT ((pepT ) ◦ c)p‖+‖qT ((depT ) ◦ c)p‖+‖qT ((qedT ) ◦ c)p‖
+ ‖qT ((qeqT ) ◦ c)d‖ + ‖qT ((qeqT ) ◦ (c − c̃))q‖
≤ 4‖d‖‖e‖ + ‖e‖‖c − c̃‖,

where the second inequality uses the facts p, q ∈ O and 0 < cij < 1 for all i, j , so that
‖dT ((pepT )◦c)p‖ = ‖dT ((pepT )◦c)‖ ≤ ‖d‖‖(pepT )◦c‖ ≤ ‖d‖‖pepT ‖ = ‖d‖‖e‖,
and similarly for the other terms. Thus,

‖|∇g(a)− ∇g(ã)‖| = max
‖e‖=1

‖∇g(a)e − ∇g(ã)e‖
≤ (4‖p − q‖ + ‖c − c̃‖) max

‖e‖=1
‖e‖

≤ 4‖p − q‖ + ‖c − c̃‖.

By an inequality of Weyl [4, p. 63], [24, p. 367], we have |λi − µi | ≤ ‖a − ã‖ for all
i, so the continuity of g′ and the definition of c, c̃ imply that ‖c − c̃‖ → 0 whenever
‖a − ã‖ → 0. Also, by Lemma 3, we could have chosen p ∈ O (depending on q) so
that ‖p − q‖ → 0 whenever ‖a − ã‖ → 0. This then yields that

‖|∇g(a)− ∇g(ã)‖| ≤ 4 min
p,q∈O
papT ∈D
qãqT ∈D

‖p − q‖ + ‖c − c̃‖ → 0 as ‖a − ã‖ → 0,

where D is as defined in Lemma 3. Thus, ∇g is continuous at a.
Suppose g is analytic. For any a ∈ S, g(a) can be expressed by the Cauchy integral

formula

g(a) = 1

2π

∮

�

g(τ)(τI − a)−1 dτ,

where � is any simple closed rectifiable curve (say, a circle) in IC that strictly encloses
all the eigenvalues of a [25, p. 427]. Using this formula, one obtains that, for all d ∈ S,

∇g(a)d = 1

2π

∮

�

g(τ)(τI − a)−1d(τI − a)−1 dτ,

e.g., [25, p. 521]. Fix any δ ∈ 	++ such that � strictly encloses all the eigenvalues of b
for all b ∈ S with ‖a − b‖ ≤ δ. Then, ∇g(b)d may be expressed by the same formula
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except with a replaced by b. Then

‖|∇ g(b)− ∇g(a)‖|
= sup

‖d‖=1
‖∇g(b)d − ∇g(a)d‖

= 1

2π
sup

‖d‖=1

∥∥∥∥

∮

�

g(τ)
(
(τI − b)−1d(τI − b)−1 − (τI − a)−1d(τI − a)−1

)
dτ

∥∥∥∥

= 1

2π
sup

‖d‖=1

∥∥∥∥

∮

�

g(τ)
(
(τI − b)−1d

(
(τI − b)−1 − (τI − a)−1

)

+
(
(τI − b)−1 − (τI − a)−1

)
d(τI − a)−1

)
dτ

∥∥∥

≤ 1

2π

∮

�

‖g(τ)‖(‖(τI − b)−1‖ + ‖(τI − a)−1‖)dτ

· max
τ∈�

‖(τI − b)−1 − (τI − a)−1‖.

The right-hand side tends to zero as b approaches a, i.e., ‖b − a‖ → 0. Thus, g(a) is
continuously differentiable in a. By using the above integral formula for ∇g(a)d we
can similarly show that g(a) is twice continuously differentiable in a and so on. By such
an inductive argument, we find that g(a) is k-times continuously differentiable in a, for
k = 1, 2, ..., with kth-order derivative

∇kg(a)[d1, ..., dk] = 1

2π

∮

�

g(τ)(τI − a)−1

(
∑

σ

k∏

i=1

(dσ(i)(τ I − a)−1)

)

dτ,

where the summation is taken over all permutations σ : {1, ..., k} �→ {1, ..., k}. ��

Proof of Lemma 5. Suppose φµ is given by (7). Then (15) yields

∇φ1(x, y)(u, v) = u+ v − L−1
c [xu+ ux + yv + vy] with c = (x2 + y2 + 2I )1/2.

Since c � 0 and is continuous in (x, y) so that L−1
c is continuous in (x, y), it is readily

seen that ∇φ1(x, y) is continuous in (x, y). Now we show ∇φ1 is Lipschitz continuous.
Fix any x, y, x̄, ȳ ∈ S. For any u, v ∈ S with ‖(u, v)‖ = 1, we have from (15) that

∇φ1(x, y)(u, v)− ∇φ1(x̄, ȳ)(u, v)

= L−1
c̄ [x̄u+ ux̄ + ȳv + vȳ] − L−1

c [xu+ ux + yv + vy]

= L−1
c̄ [(x̄ − x)u+ u(x̄ − x)+ (ȳ − y)v + v(ȳ − y)] + s̄ − s, (59)

where we let c := (x2 + y2 + 2I )1/2, c̄ := (x̄2 + ȳ2 + 2I )1/2, and s := L−1
c [xu+ux+

yv + vy], s̄ := L−1
c̄ [xu + ux + yv + vy]. For any a ∈ S and b := L−1

c̄ [a], we have
c̄b + bc̄ = a and hence

‖a‖2 = ‖c̄b + bc̄‖2 = 2tr[c̄2b2 + c̄bc̄b]

= 2(〈x̄2 + ȳ2, b2〉 + 2‖b‖2 + ‖c̄1/2bc̄1/2‖2) ≥ 4‖b‖2,
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where the last inequality uses x̄2 + ȳ2 � 0, b2 � 0 so their inner product is nonnegative.
Thus, the first term on the right-hand side of (59) can be bounded as follows:

‖L−1
c̄ [(x̄ − x)u+ u(x̄ − x)+ (ȳ − y)v + v(ȳ − y)]‖
≤ ‖(x̄ − x)u+ u(x̄ − x)+ (ȳ − y)v + v(ȳ − y)‖/2
≤ ‖x̄ − x‖‖u‖ + ‖ȳ − y‖‖v‖
≤ ‖(x̄ − x, ȳ − y)‖, (60)

where the last inequality uses the arithmetic identity (α1β1 +α2β2)
2 ≤ (α2

1 +α2
2)(β

2
1 +

β2
2 ) and ‖(u, v)‖ ≤ 1. Now we bound the second term on the right-hand side of (59).

We have cs + sc = xu+ ux + yv + vy = c̄s̄ + s̄c̄ and hence

(c − c̄)s + s(c − c̄) = c̄(s̄ − s)+ (s̄ − s)c̄ = Lc̄[s̄ − s].

We showed earlier that, for any a ∈ S and b := L−1
c̄ [a], we have ‖a‖2 ≥ 4‖b‖2. Thus

the above equation implies

‖s̄ − s‖ ≤ ‖(c − c̄)s + s(c − c̄)‖/2 ≤ ‖c − c̄‖‖s‖. (61)

Now we bound ‖s‖ and ‖c − c̄‖. Choose p ∈ O such that pcpT = diag[λ1, ..., λn]
for some λ1 ≥ · · · ≥ λn > 0. Then, (x̃2)ii + (ỹ2)ii + 2 = λ2

i for i = 1, ..., n
and s̃ij = (x̃ũ + ũx̃ + ỹṽ + ṽỹ)ij /(λi + λj ) for i, j = 1, ..., n, where s̃ := pspT ,
x̃ := pxpT , ỹ := pypT , ũ := pupT , ṽ := pvpT . Denoting column i of a ∈ S by ai ,
we thus obtain

|s̃ij | = |x̃Ti ũj + ũTi x̃j + ỹTi ṽj + ṽTi ỹj |/(λi + λj )

≤ (|x̃Ti ũj | + |ũTi x̃j | + |ỹTi ṽj | + |ṽTi ỹj |)/(λi + λj )

≤ (‖x̃i‖‖ũj‖ + ‖ũi‖‖x̃j‖ + ‖ỹi‖‖ṽj‖ + ‖ṽi‖‖ỹj‖)/(λi + λj )

≤ ‖ũj‖ + ‖ũi‖ + ‖ṽj‖ + ‖ṽi‖,
where the last inequality uses ‖x̃i‖2 + ‖ỹi‖2 = (x̃2)ii + (ỹ2)ii = λ2

i − 2 ≤ λ2
i for all i.

Hence

‖s‖2 = ‖s̃‖2

=
∑

i,j

|s̃ij |2

≤
∑

i,j

(‖ũj‖ + ‖ũi‖ + ‖ṽj‖ + ‖ṽi‖)2

≤
∑

i,j

4(‖ũj‖2 + ‖ũi‖2 + ‖ṽj‖2 + ‖ṽi‖2)

= 8n(‖ũ‖2 + ‖ṽ‖2) = 8n‖(u, v)‖2 = 8n. (62)

Define ψ : S × S �→ S by ψ(x, y) := (x2 + y2 + 2I )1/2. Since φ1(x, y) = x + y −
ψ(x, y) and we already proved that φ1 is continuously differentiable, then so isψ . More-
over, by (15), ∇ψ(x, y)(u, v) = L−1

c [xu+ux+ yv+ vy], with c = (x2 + y2 + 2I )1/2.
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This together with (62) implies ‖∇ψ(x, y)(u, v)‖ ≤ √
8n‖(u, v)‖, so the mean value

theorem yields

‖c̄ − c‖ = ‖ψ(x̄, ȳ)− ψ(x, y)‖
=
∥∥∥∥

∫ 1

0
∇ψ((x, y)+ τ(x̄ − x, ȳ − y))(x̄ − x, ȳ − y)dτ

∥∥∥∥

≤
∫ 1

0
‖∇ψ((x, y)+ τ(x̄ − x, ȳ − y))(x̄ − x, ȳ − y)‖dτ

≤
√

8n‖(x̄ − x, ȳ − y)‖.
Combining (59), (60), (61), (62) yields

‖|∇φ1(x, y)− ∇φ1(x̄, ȳ)‖| = max
‖(u,v)‖=1

‖∇φ1(x, y)(u, v)− ∇φ1(x̄, ȳ)(u, v)‖
≤ (1 + 8n)‖(x̄ − x, ȳ − y)‖.

For φµ given by (4)–(5), we have from Cor. 2 that ∇φ1 is defined and continuous.
The proof that ∇φ1 is Lipschitz continuous is very similar to the one given above, but
using (14) in place of (15). The corresponding Lipschitz constant is (1+4n)/

√
2, instead

of 1 + 8n. For brevity, the details are omitted. ��
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