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Abstract

Stochastic programming, despite its immense modeling capabilities, is well known to be compu-

tationally excruciating. In this paper, we introduce a unified framework of approximating multi-

period stochastic programming from the perspective of robust optimization. Specifically, we propose

a framework that integrates multistage modeling with safeguarding constraints. The framework is

computationally tractable in the form of second order cone programming (SOCP) and scalable across

periods. We compare the computational performance of our proposal with classical stochastic pro-

gramming approach using sampling approximations and report very encouraging results for a class

of project management problems.
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1 Introduction

The study of stochastic programming dates back to Beale [1] and Dantzig [18]. In a typical two-stage

stochastic program, decisions are made in the first stage in the face of uncertainty. Once the uncertainties

are realized, the optimal second stage decisions or recourse decisions are carried out. Such “stochastic

programs” attempt to integrate optimization and stochastic modeling that could potentially solve a large

class of important practical problems ranging from engineering control to supply chain management.

(see, e.g. Ruszczynski and Shapiro [25], Birge and Louveaux [14].) Despite the immense modeling

potential, stochastic programs, especially multistage ones, are notoriously difficult to solve to optimality

(see Shapiro and Nemirovski [27], Dyer and Stougie [19]). Quite often, finding a feasible solution is

already a hard problem. It is therefore important to develop a tractable and scalable methodology that

could reasonably approximate stochastic programs.

Besides multiperiod modeling, another aspect of stochastic programming deals with the constraints’

feasibility under parameter uncertainties, which we generally term as safeguarding constraints. Typi-

cally, we either ignore parameter variability, which could lead to massive violations of constraints (see

Ben-Tal and Nemirovski [4]), or require the constraints to be satisfied for all possible realizations of

uncertainties, which can be excessively conservative. The “middle path” of these extremes is to en-

force safeguarding constraints to within some prescribed levels of feasibility. In robust optimization,

we control the level of feasibility of the constraints by adjusting the sizes of the uncertainty sets (see

Ben-Tal and Nemirovski [2, 3, 4], El-Ghaoui et al. [20, 21], Iyangar and Goldfarb [22], Bertsimas

and Sim [9, 10, 11, 12] and Chen, Sim and Sun [16]). Charnes and Cooper [15] introduced the chance-

constrained formulation, in which feasibility level is measured by the probability of constraint violations.

Unfortunately, such constraints are generally non-convex and intractable. Bernstein approximation (see

Nemirovski and Shapiro [23]) provides reasonably good approximation to these problems in the form of

tractable convex optimization problems. Under mild distributional assumptions, the robust optimiza-

tion framework of Chen, Sim and Sun [16] provides approximations to chance-constrained problems

in the from of second order cone optimization problems (SOCP), which have the benefits of greater

tractability both in theory and in practice.

Literatures on multistage stochastic programs with safeguarding constraints are rather limited, per-

haps due to the lack of tractable solution methodologies. To the best of our knowledge, it is not until

recently that Chen, Sim and Sun [16] proposed tractable methodologies that lead to approximate so-

lutions to such models. A closely related approach is Ben-Tal et al. [6], which propose an adjustable
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robust counterpart to handle dynamic decision making under uncertainty. We note that the uncertain-

ties addressed by the model of Ben-Tal et al. [6] is non-stochastic, while the uncertainties considered

in Chen, Sim and Sun [16] require mild distributional assumptions such as known mean, support and

some deviation measures of the random data. In these models, linear decision rule is the key enabling

mechanism that permits scalability to mutistage models. Interesting applications of such models include

supplier-retailer flexible commitments contracts (Ben-Tal et al. [7]), project crashing with uncertain

activity time (Chen, Sim and Sun [16]) and analyzing distribution systems with transhipment (Chou,

Sim and So [17]).

In this paper, we propose a framework for approximating multistage stochastic optimization with

chance constraints and semi-complete recourse. We adopt the phrase semi-complete recourse from sto-

chastic programming terminology as a less restrictive condition compared to complete recourse problems.

When hard constraints in the model are inevitable, we show that linear decision rule can lead to in-

feasible instances even under complete recourse, which motivates our proposal of a new deflected linear

decision rule suited for stochastic models with semi-complete recourse. We introduce “computationally

friendly” models in the form of second order cone program (SOCP), which could be solved efficiently

both in theory and in practice. In our approach, the distributions of the primitive uncertainties do

not have to be fully specified. Overall, the most important feature of our proposal is the scalability to

multistage stochastic programs.

The structure of the paper is as follows. In Section 2, we describe the general stochastic model with

chance constraints and semi-complete recourse. In Section 3 we propose the deflected linear decision

rule and use it to approximate the general model. Section 4 discusses methods of approximating chance

constraints and the objective function. We then summarizes the previous discussions in Section 5 and

provide a second order cone formulation to approximate the original problem. In Section 6 we present

encouraging preliminary computational results. Section 7 concludes this paper.

Notations We denote a random variable, x̃, with the tilde sign. Bold face lower case letters such as

x represent vectors and the corresponding upper case letters such as A denote matrices. In addition,

x+ = max{x, 0} and x− = max{−x, 0}. The same operations can be used on vectors, such as y+ and

z− in which corresponding operations are performed componentwise.
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2 A Stochastic Programming Model with Chance Constraints and

Semi-complete Recourse

A classical two-stage stochastic program with fixed recourse can be formulated as follows (see, e.g.

Ruszczynski and Shapiro [25]).

min c′x + E(Q(x, z̃))

s.t. Ax = b

x ≥ 0,

(1)

where
Q(x, z) = min q′y

s.t. T (z)x + Dy = h(z)

y ≥ 0.

(2)

We define z̃ ∈ <N as the vector of primitive uncertainties that consolidate all underlying uncertainties

in the stochastic model and E to represent the expectation on random variable z̃. The stochastic

model represents a sequence of events. Here vectors x and y are the first and the second stage decision

variables, respectively. The second stage decision (a.k.a recourse decision), y is made after applying

decision x and after the actual value of z̃ is realized. For given (x, z), the second stage cost Q(x, z) is

set to be +∞ if the feasible set of (2) is empty, and −∞ if problem (2) is unbounded from below. It

can be shown (see e.g. Ruszczynski and Shapiro (2003)) that, under very general conditions, problem

(1) is equivalent to

min c′x + E(q′y(z̃))

s.t. Ax = b

T (z̃)x + Dy(z̃) = h(z̃)

x ≥ 0

y(z̃) ≥ 0

y(·) ∈ Y,

(3)

where Y is a space of measurable functions. The vector of functions, y(·), corresponds to the second

stage decision vector or recourse variables as functions of the realization of z̃. There are several types

of recourse in the context of stochastic programming. In fixed recourse problems, the matrix D is not

subject to uncertainty. The stochastic program (1) is said to have relatively complete recourse if for

any x ∈ {x : Ax = b, x ≥ 0}, E(Q(x, z̃)) < +∞. Relatively complete recourse problems ensure that

the second stage problem is always feasible for any choice of feasible first stage decision vector, x. It is
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generally not easy to identify conditions of relatively complete recourse (see Birge and Louveaux [14]).

An important class of relatively complete recourse problems is known as complete recourse, which is

defined on the matrix D such that for any t, there exists y ≥ 0, s.t. Dy = t. Hence, complete recourse

problems depend on the structure of the matrix D, which is an easier condition to identify. Moreover,

many stochastic programming problems have complete recourse. A special case of complete recourse is

simple recourse, where D = [I − I].

Another aspect of stochastic programming problems is probabilistic constraints or chance constraints

introduced by Charnes and Cooper [15], which is almost independently addressed from multiperiod

models. Chance constrained problems in the form of a single stage problem are as follows

min c′x

s.t. P(ai(z̃)′x ≤ bi(z̃)) ≥ 1− εi.
(4)

The ith constraint is allowed to be violated within probability level less than εi. Therefore, we can view

the usual nonnegative constraint or hard constraint as a special case of chance constraint in which εi is

zero.

Based on these frameworks, we propose a two-stage stochastic optimization model with fixed recourse

and chance constraints as follows:

ZSTOC = min c′x + E(d′v(z̃)) + E(f ′w(z̃))

s.t. Ax = b

U(z̃)x + V v(z̃) + Ww(z̃) = h(z̃)

P(vj(z̃) ≥ 0) ≥ 1− εj ∀j ∈ {1, . . . , n2}
wi(z̃) ≥ 0 ∀i ∈ I ⊆ {1, . . . , n3}
x ≥ 0

v(·), w(·) ∈ Y

(5)

where c, d,f and b are known vectors in <n1 ,<n2 ,<n3 and <m1 respectively, A, V and W are known

matrices in <m1×n1 ,<m2×n2 ,<m2×n3 . We assume the following affine data dependency on U(z̃) ∈
<m2×n1 and h(z̃) ∈ <m2 , that is,

U(z̃) = U0 +
N∑

k=1

Ukz̃k,

h(z̃) = h0 +
N∑

k=1

hkz̃k.

In the proposed stochastic optimization model, we make distinctions between the recourse variables

v(z̃) and w(z̃).
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(a) The recourse variables vi(z̃) are permitted to be negative with low probability, that is vi(z̃) < 0

with probability at most εi > 0.

(b) The recourse variable wi(z̃), i ∈ I must satisfy the inequality constraint for all outcomes.

We propose a new notion of semi-complete recourse, which is a characteristic of the matrix W .

Definition 1 We say that the stochastic program (5) has semi-complete recourse if there exists vector

r with ri > 0 for all i ∈ I, such that Wr = 0.

To motivate the model, we next present some examples to illustrate the generality of Model (5).

Example 1: Single stage chance constrained problems

With W = 0, which is the simplest case of semi-complete recourse, V = I, d = 0 and f = 0, Model

(5) is essentially the same as Model (4).

Example 2: Complete recourse problems

In complete recourse problems, we have V = 0 and d = 0, and the matrix W satisfies the condition of

complete recourse, which implies that for any t, there exists wi ≥ 0, i ∈ I, such that Dw = t. We next

show that if a matrix W satisfies the condition of complete recourse, it also satisfies the condition of

semi-complete.

Proposition 1 Under complete recourse, there exists r with ri > 0 for all i ∈ I, such that Wr = 0.

Proof : By definition of complete recourse, for any v > 0, we can find a vector s ≥ 0 such that

Ws = −Wv. Clearly, r := s + v > 0 and Wr = 0.

We refer to strict semi-complete recourse for the case that the matrix W satisfies the condition

of semi-complete recourse but not complete recourse. A very simple example of strict semi-complete

recourse is W = 0.
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Example 3: Chance constraints with violation penalties

Consider the following two stage stochastic optimization problem with chance constraints and penalties

of constraint violations.
min c′x + E(d′v(z̃)) + E(d̄′v(z̃)−)

s.t. Ax = b

U(z̃)x + V v(z̃) = h(z̃)

P(vj(z̃) ≥ 0) ≥ 1− εj ∀j
x ≥ 0,

(6)

where d̄ is a non-negative vector associated with violation of the chance constraints. The effective cost

contribution associated with the recourse action is

divi(z̃) + d̄ivi(z̃)−,

where d̄i(vi(z̃))− is the cost penalty for constraint violation. Clearly, we can linearized the objective

function of Model (6) as follows:

min c′x + E(d′v(z̃)) + E(d̄′w1(z̃))

s.t. Ax = b

U(z̃)x + V v(z̃) = h(z̃)

v(z̃) + w1(z̃)−w2(z̃) = 0

P(vj(z̃) ≥ 0) ≥ 1− εj ∀j
x ≥ 0

w1(z̃), w2(z̃) ≥ 0,

and the associated matrix corresponding to W in Model (5) has the form of

W =




0 0

I −I


 ,

which trivially satisfies the condition of strict semi-complete recourse.

Example 4: Distributional systems with transshipment

This example is adopted from Chou, Sim and So [17] to motivate the framework. Consider a distribution

system of n retailers and arc set E facing exogenous random demand d(z̃). At the first stage, each retailer

i decides its inventory level xi, which incurs unit holding cost, hi. At the second stage, demands are
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realized. When shortages at one location occur, we can cover from available inventories at other retail

locations through possible lateral transshipment. Assuming a fully connected network, let cij be the

unit transportation cost between retailers i and j for all (i, j) ∈ E . We assume cost symmetry, that is

cij = cji, and denote wij(z̃) as the recourse decision related to transhipment quantity from retailer i to

j after the realization of demands. Hence, the final inventory balance at retailer i is

vi(z̃) = xi − di(z̃)−
∑

j:(i,j)∈E
wij(z̃) +

∑

j:(j,i)∈E
wji(z̃),

which takes negative values when shortages occur. The goal is to find an initial inventory allocation so

as to minimize the total inventory holding cost and expected transhipment cost while ensuring certain

service levels, i.e., the demand at each retailer will be satisfied with high probability. Hence, we have

the following formulation

min h′x +
∑

(i,j)∈E
cijE (wij(z̃))

s.t. vi(z̃) = xi − di(z̃)−
∑

j:(i,j)∈E
wij(z̃) +

∑

j:(j,i)∈E
wji(z̃) ∀i

P(vi(z̃) ≥ 0) ≥ 1− εi ∀i ∈ I

w(z̃) ≥ 0

x ≥ 0.

(7)

To check semi-complete recourse, we send a unit flow across every arc. Since the network is fully

connected, flow conservation is maintained at every node, satisfying the condition of semi-complete

recourse. Note that when n = 2, the recourse matrix,

W =



−1 1

1 −1


 ,

does not satisfy the condition for complete recourse. As a matter of fact, the total flow into all the

nodes must be maintained at zero. Hence, Model (7) has strict semi-complete recourse.

3 Recourse Approximation via Decision Rules

Modern solution methodology for stochastic optimization model (see for instance, Birge and Louveaux

[14]) focuses on solving multistage problems with hard constraints (as in the case of Model (2) and Model

(5) in which εj = 0). Unfortunately, the number of possible recourse decisions increases proportionally
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with the number of possible realization of the random vector z̃, which could be extremely large or even

infinite. Indeed, under the assumption that the stochastic parameters are independently distributed,

Dyer and Stougie [19] show that two-stage stochastic programming problems are #P-hard. Under the

same assumption they show that certain multi-stage stochastic programming problems are PSPACE-

hard.

Due to the astronomical number of scenarios, Monte Carlo sampling methods are often used to

obtain approximate solutions to stochastic optimization problems. Despite the wide adoption of such

sampling approximation in stochastic optimization, the theoretical performance of the method has

only been studied recently, for instance, by Shapiro and Nemirovski ([27]). They concluded that the

number of samples required to approximate multistage stochastic programs to reasonable accuracy grows

exponentially with the number of stages. Moreover, the problem remains hard even under complete

recourse.

In view of the hardness results, we propose a tractable approximation for Model (5) by restricting

the recourse decisions to specified decision rules. In Ben-Tal et al. [7], and Chen, Sim and Sun [16],

linear decision rules have been used and promising computational results have been reported. We extend

the linear decision rule and propose a deflected linear decision rule in order to tackle problems with

semi-complete recourse.

3.1 Linear decision rules

The extremely large number of recourse variables leads to the computational intractability of stochastic

optimization. To resolve the issue, we adopt linear decision rule proposed in Ben-Tal et al [6] and Chen,

Sim and Sun [16]. Using linear decision rule, we restrict recourse variables, say w(z̃) and v(z̃), to be

affinely dependent on the primitive uncertainties. We denote L as the space of linear decision functions.

Hence, v(·) ∈ L ⊆ Y implies that there exists a set of vectors v0, . . . ,vN such that

v(z̃) = v0 +
N∑

k=1

vkz̃k.
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We can approximate the stochastic model (5) as follows:

ZLDR = min c′x + d′v0 + f ′w0

s.t. Ax = b

Ukx + V vk + Wwk = hk ∀k ∈ {0, . . . , N}
P(vj(z̃) ≥ 0) ≥ 1− εj ∀j ∈ {1, . . . , n2}
wi(z) ≥ 0 ∀z ∈ W, ∀i ∈ I ⊆ {1, . . . , n3}
x ≥ 0

v(·), w(·) ∈ L.

(8)

Since any feasible solution of Model (8) is also feasible in (5) and the objectives coincide, we have

ZSTOC ≤ ZLDR. We will defer the discussion of approximating the constraints in Model (8) to Section

4.

3.2 Deflected linear decision rules

3.2.1 On linear decision rules and hard constraints

Although linear decision rule may not be optimal, Chen, Sim and Sun [16] show encouraging computa-

tional results for models with chance constraints. However, linear decision rules under “hard” inequality

constraints such as,

w(z̃) ≥ 0,

may perform poorly. As an illustration, suppose the primitive uncertainties, z̃ have infinite support,

then the following nonnegativity constraints

w(z̃) = w0 +
N∑

k=1

wkz̃k ≥ 0

imply that

wk = 0 ∀k ∈ {1, . . . , N},

and the decision rule is reduced to w(z̃) = w0, and hence, independent of the primitive uncertainties.

This may lead to infeasible instance even in the case of complete recourse. For example, consider the

following stochastic optimization model that determine E(|b(z̃)|):

min {E (w1(z̃) + w2(z̃)) : w1(z̃)− w2(z̃) = b(z̃), w1(z̃) ≥ 0, w2(z̃) ≥ 0} , (9)

which is one with simple recourse. Suppose z̃ has infinite support, we must have w1(z̃) = w0
1 and

w2(z̃) = w0
2, and hence, it would be impossible to satisfy the equality constraint. Furthermore, one
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should note that in many such problems, it is meaningless to replace the hard constraints with “soft”

constraints.

Our next goal is to improve upon the decision rules involving semi-complete recourse in the presence

of hard constraints. The conditions of the semi-complete recourse implies that even if there is a con-

straint violation that is due to w(z̃), we can still steer back the solution towards feasibility by paying

a finite price. We will illustrate this idea next.

3.2.2 Deflected linear decision rules

Under semi-complete recourse, for each i ∈ I, the following linear program

f̄i = min f ′p

s.t. Wp = 0

pi = 1

p ≥ 0

(10)

is feasible. We assume that the linear program (10) has an optimal solution, denoted as p̄i; otherwise

the problem (5) is unbounded. Then we define, for each i, f̄i = f ′p̄i. Therefore, for any decision rules

r(z̃) (which may not necessarily be nonnegative) and v(z̃) satisfying

U(z̃)x + V v(z̃) + Wr(z̃) = h(z̃), (11)

we let

w(z̃) = r(z̃) +
∑

i∈I

(ri(z̃)−)p̄i. (12)

It can be easily verified that

wi(z̃) ≥ 0 ∀i ∈ I

Ww(z̃) = Wr(z̃).

Therefore, for any given x, as long as there exist r(z̃) and v(z̃) satisfying (11), we can find a feasible

decision rule (referred to as a deflected decision rule), w(z̃). We note that the feasibility of (11) depends

on the solution in the first stage, i.e., x.

For the case of complete recourse, we can obtain stronger results. Not only does there exist a feasible

deflected decision rule, there exists a feasible deflected linear decision rule, that is, Equation (12) with

r(·) being linear functions. We summarize the results in the next two propositions.

Proposition 2 Under complete recourse, for any x and v(·) ∈ L, there exists r(·) ∈ L such that

U(z̃)x + V v(z̃) + Wr(z̃) = h(z̃).
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Proof : Let

v(z̃) = v0 +
N∑

k=1

vkz̃k

and

r(z̃) = r0 +
N∑

k=1

rkz̃k

By the assumption of complete recourse, there exist r0, r1, · · · , rN such that

Ukx + V vk + Wrk = hk ∀k ∈ {0, . . . , N}.

This implies the desired result.

Proposition 3 Under complete recourse, for any given x satisfying Ax = b, x ≥ 0, there exist

v(·), r(·) ∈ L such that (12) is feasible to problem (5).

Proof : Notice that v(z̃) = 0 always satisfies the chance constraints. Proposition 2 together with

equation (12) suggests that v(z̃) = 0 and (12) is feasible to problem (5).

From (12), we have

f ′w(z̃) = f ′r(z̃) + f̄
′(r(z̃)−).

Therefore, using the deflected linear decision rule w(·) and linear decision rule v(·), we can approximate

problem (5) as

ZDLDR = min c′x + d′v0 + f ′r0 + E
[
f̄
′
r(z̃)−

]

s.t. Ax = b

Ukx + V vk + Wrk = hk ∀k ∈ {0, . . . , N}
P(vj(z̃) ≥ 0) ≥ 1− εj ∀j ∈ {1, . . . , n2}
x ≥ 0

r(·),v(·) ∈ L.

(13)

Notice that in formulating and solving the above model, we do not directly need p̄i defined in (10). In

fact, what we really need is just f̄i, i ∈ I.

Since any feasible solution (x, v(z̃),w(z̃)) to Model (13), in which w(z̃) = r(z̃) +
∑

i∈I(r(z̃))−p̄i,

is feasible in (5), and the objectives coincide, we have ZSTOC ≤ ZDLDR. Moreover, given any feasible

solution, (x, v(z̃), w(z̃)), of problem (8), we observe that

E
[
f̄
′
w(z̃)−

]
= 0.
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Hence by letting r(z̃) = w(z̃), we obtain a feasible solution of Model (13) with the same objective.

Hence, ZSTOC ≤ ZDLDR ≤ ZLDR.

Unfortunately, Model (13) is still hard to solve because of the chance constraint P(vj(z̃) ≥ 0) ≥ 1−εj

and the nonlinear term E
[
f̄
′
r(z̃)−

]
in the objective function. In the sequel, we approximate (13) via

techniques from robust optimization so that the resulting model is in the form of second-order cone

programming, which can be solved efficiently both in theory and in practice.

4 Approximation via Robust Optimization

In this section, we first present approximation to the chance constraints in problems (13) and (8). Then

we discuss the approximation to the nonlinear term in the objective function in formulation (13).

4.1 Approximating chance constraints

Even in the absence of recourse, the chance constraint model (4) is already computationally challenging.

Indeed, although chance constraint is well known to be tractable for normal distributions (see Prekopa

[24]), such models usually lead to intractable models even for simple distributions such as uniform

distributions (see Nemirovski and Shapiro [27]).

Another caveat with stochastic optimization models is the need to assume exact distributions in

all the unknown parameters; without which, it would be impossible to proceed with Monte Carlo

sampling approximations. However, as complete distributional knowledge is rarely available in practice,

solutions that are highly tuned to a particular distributional assumption can perform badly in practice

(see for instance computational results in Bertsimas and Thiele [13]). As a “practical approach” to

specifying uncertainties, we only require partial description of the primitive uncertainties, z̃ in Model

(5). Specifically, we assume that each random variable z̃k has mean zero and support in W = [−z, z̄]

with zk, z̄k > 0. We also assume that the standard deviations of z̃k are known and equal to σk.

Consider a single linear chance constraint

P(v(z̃) ≥ 0) ≥ 1− ε, (14)

in which

v(z̃) = v0 +
N∑

k=1

vkz̃k,

where v0, . . . , vN are the decision variables. Let GΩ ⊂ W denotes a compact uncertainty set para-

meterized by an uncertainty budget Ω ≥ 0, where the uncertainty budget determines the size of the
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uncertainty set and, as we shall see, is essentially related to the probability of violating the constraint.

In robust optimization, we denote the set of all feasible solutions v0, . . . , vN satisfying

v(z) ≥ 0 ∀z ∈ GΩ, (15)

as the “robust counterpart” with respect to the uncertainty budget Ω. Such models were usually

“misinterpreted” as worst case models suggesting that robust optimization are being over-conservative in

the treatment of uncertainties. In fact, the level of conservativeness depends on the choice of uncertainty

set. For instance, if the set GΩ only contains the nominal value, we ignore data perturbation and recover

the nominal constraint. On the other extreme, if GΩ = W, we require the solution to remain feasible

for all possible data realization, which is indeed the worst case model addressed by Soyster, [28].

Recently, Chen, Sim and Sun ([16]) introduce new deviation measures to construct second order

conic representable uncertainty set from the underlying probability distributions. They propose the

following asymmetric uncertainty set (as illustrated in Figure 1),

GΩ =
{
z : ∃v, w ∈ <N

+ , z = v −w, ‖P−1v + Q−1w‖2 ≤ Ω
}

︸ ︷︷ ︸
AΩ

∩{−z ≤ z ≤ z̄}︸ ︷︷ ︸
W

, (16)

with P = diag(p1, . . . , pN ) and Q = diag(q1, . . . , qN ), where, pj , qj are deviation measures related to

the random variable z̃j . They define the forward deviation as

p∗j = sup
θ>0

{√
2 ln(E(exp(θz̃j)))/θ2

}
(17)

and backward deviation as

q∗j = sup
θ>0

{√
2 ln(E(exp(−θz̃j)))/θ2

}
. (18)

Given a sequence of independent samples, we can essentially estimate the magnitude of the deviation

measures from (17) and (18). Some of the properties of the deviation measures include:

Proposition 4 (Chen, Sim and Sun [16])

(a) If the random variable z̃ has mean zero and standard deviation, σ, then p∗ ≥ σ and q∗ ≥ σ. If in

addition, z̃ is normally distributed, then p∗ = q∗ = σ.

(b)

P(z̃ ≥ Ωp∗) ≤ exp(−Ω2/2)

P(z̃ ≤ −Ωq∗) ≤ exp(−Ω2/2)
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Proposition 4(a) shows that the forward and backward deviations are no less than the standard devia-

tion of the underlying distribution, and under normal distribution, these two values coincide with the

standard deviation. As exemplified in Proposition 4(b), the deviation measures provide an easy bound

on the distributional tails. Chen, Sim and Sun ([16]) show that new deviation measures provide tighter

approximation of probabilistic bounds compared to standard deviations. More interestingly, even if

only the mean and the support of the random variables are known, Chen, Sim and Sun ([16]) give a

tight bound to the deviation measures.

Theorem 1 (Chen, Sim and Sun [16]) If z̃ has zero mean and distributed in [−z, z̄], z, z̄ > 0, then

p∗ ≤ p̄ =
z + z̄

2

√
f

(
z − z̄

z + z̄

)
∈ P(z̃)

and

q∗ ≤ q̄ =
z + z̄

2

√
f

(
z̄ − z

z + z̄

)
∈ Q(z̃),

where

f(µ) = 2 max
s>0

φµ(s)− µ

s2
,

and

φµ(s) = ln

(
es + e−s

2
+

es − e−s

2
µ

)
.

With respect to the construction of GΩ, suppose the distribution of z̃j is available, it would be natural

to choose pj = p∗j and qj = q∗j . Otherwise, Theorem 1 suggests that we can also bound the deviation

measures from the distributional support and choose pj = p̄j and qj = q̄j . For instance, if z̃j is arbitrarily

distributed over [−1, 1], then we set pj = qj = 1. Suppose the distribution is uniform over [−1, 1], we

have pj = qj = 0.58, which leads to a smaller uncertainty set compared to the one with arbitrary

distribution. More importantly, Theorem 1 establishes the fact that the deviation measures are finite

for all random variables with finite support, which is the case for most problems in practice.

The next result shows how we can incorporate the uncertainty set to formulate the robust counterpart

as a tractable convex optimization model.

Theorem 2 (Chen, Sim and Sun [16])

The robust counterpart of

v(z) ≥ 0 ∀z ∈ GΩ,
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Figure 1: An uncertainty set represented by GΩ as Ω varies for N = 2.

(a) is equivalent to the set of feasible solutions (v0, ..., vN ) satisfying the following set of constraints




v0 ≥ Ωu0 + s′z + t′z̄

uk ≥ qk(vk − sk + tk) ∀k ∈ {1, . . . , N}
uk ≥ −pk(vk − sk + tk) ∀k ∈ {1, . . . , N}
‖u‖2 ≤ u0

u0 ≥ 0, u ∈ <N , s, t ∈ <N
+ .





(19)

(b) Moreover,

P (v(z) < 0) ≤ exp(−Ω2/2)

It is easy to see that even for high reliability factor, say violation probability of less than 10−6, the

budget of uncertainty Ω is practically a small constant of 5.3. In contrast, Chen, Sim and Sun [16]

show that the worst case budget Ωmax is at least
√

N in order for GΩmax to be as conservative as the

worst case uncertainty set W. Hence, the benefit of robust optimization increases with the number of

primitive uncertainties in the model, which is essentially achieving the effect of risk pooling.
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4.2 Bound on objective function

Now we deal with the objective function. Unfortunately, we are not aware of any tractable way of

evaluating E (ri(z̃)−) exactly. Moreover, since the distributions of the primitive uncertainties are not

fully specified, it would not be possible to evaluate its exact value. Given a random variable r̃ with

mean µ and standard deviation, σ, a well known tight bound is,

E(r̃−) ≤ 1
2

(
−µ +

√
µ2 + σ2

)
(20)

(see Scarf [26] for instance). Therefore, suppose y(·) ∈ L, we have

E
(
y(z̃)−

) ≤ 1
2

(
−y0 +

√
y2
0 + ‖Σ1/2y‖2

2

)
,

where Σ is the covariance matrix of z̃ and y = (y1, . . . , yN ). The bound does not take into account the

distributional support, which could degrade the quality of the approximation. For instance, if y(z̃) ≥ 0,

it follows trivially that E(y(z̃)−) = 0. Likewise, if y(z̃) ≤ 0, we have E(y(z̃)−) = −y0. Under these

circumstances, the bound would be weak. Hence, we propose the following tighter bound that resolves

these issues while still preserving the benefits of being second order cone representable.

Theorem 3 Let z̃ ∈ <N be a vector of zero mean random variables with covariance matrix Σ and

support in W = [−z, z̄].

(a)

E
(
(y0 + y′z̃)−

) ≤ h(y0, y)

where

h(y0,y) = min
s,t,u,v≥0

{
1
2

(
− y0 + (s + u)′z̄ + (t + v)′z+

√
(−y0 + (s− u)′z̄ + (t− v)′z)2 + ‖Σ1/2(−y − s + t + u− v)‖2

2

)}
.

(b) Moreover,

h(y0,y) ≤ 1
2

(
−y0 +

√
y2
0 + ‖Σ1/2y‖2

2

)
.

(c) Suppose

y(z) ≤ 0 ∀z ∈ W

then

E
(
(y0 + y′z̃)−

)
= h(y0, y) = −y0.
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Likewise, if

y(z) ≥ 0 ∀z ∈ W,

then

E
(
(y0 + y′z̃)−

)
= h(y0,y) = 0.

Proof : (a)Since −z ≤ z̃ ≤ z̄, we observe that

(z̄ − z̃)′s ≥ 0

(z + z̃)′t ≥ 0

(z̄ − z̃)′u ≥ 0

(z + z̃)′v ≥ 0

for all s, t, u, v ≥ 0. Therefore,

E((y0 + y′z̃)−)

≤ E((y0 + y′z̃ − (z + z̃)′t− (z̄ − z̃)′s)−)

= E((y0 − (−y + t− s)′z̃ − z′t− z̄′s)−)

= E
(−y0 + (−y + t− s)′z̃ + z′t + z̄′s + (y0 − (−y + t− s)′z̃ − z′t− z̄′s)+

)
(21)

= E
(−y0 + z′t + z̄′s + (y0 − (−y + t− s)′z̃ − z′t− z̄′s)+

)

≤ E
(−y0 + z′t + z̄′s + (y0 − (−y + t− s)′z̃ − z′t− z̄′s + (z + z̃)′v + (z̄ − z̃)′u)+

)

= E
(−y0 + z′t + z̄′s + (y0 − (−y + t− s + u− v)′z̃ − z′(t− v)− z̄′(s− u))+

)

= z′v + z̄′u + E
(
(−y0 + (−y + t− s + u− v)′z̃ + z′(t− v) + z̄′(s− u))+

)
(22)

= z′v + z̄′u + E
(
(y0 − (−y + t− s + u− v)′z̃ − z′(t− v)− z̄′(s− u))−

)

≤ z′v + z̄′u +
1
2

(
− y0 + z′(t− v) + z̄′(s− u)) +

√
(−y0 + z′(t− v) + z̄′(s− u))2 + ‖Σ1/2(−y + t− s + u− v)‖2

2

)
(23)

=
1
2

(
− y0 + z′(t + v) + z̄′(s + u)) +

√
(−y0 + z′(t− v) + z̄′(s− u))2 + ‖Σ1/2(−y + t− s + u− v)‖2

2

)

where the equalities of (21) and (22) follows from the fact that x+ = x + (−x)+︸ ︷︷ ︸
=x−

. The inequality (23) is

due to the bound (20).
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(b) Note that with s, t, u, v = 0, we have

1
2

(
− y0 + (s + u)′z̄ + (t + v)′z +

√
(−y0 + (s− u)′z̄ + (t− v)′z)2 + ‖Σ1/2(−y − s + t + u− v)‖2

2

)

=
1
2

(
−y0 +

√
y2
0 + ‖Σ1/2y‖2

2

)

Therefore,

h(y0,y) ≤ 1
2

(
−y0 +

√
y2
0 + ‖Σ1/2y‖2

2

)
.

(c) Suppose

y0 + y′z ≤ 0 ∀z ∈ W

then let s = t = 0, uk = (yk)+, vk = (−yk)+ for k = 1, . . . , N and

z∗k =





z̄k if yk > 0

−zk otherwise

Since z∗ ∈ W, we have y0 + y′z∗ ≤ 0. Furthermore, it is easy to verify that

y = u− v

and

y0 + u′z̄ + v′z = y0 + y′z∗ ≤ 0.

We have

1
2

(
− y0 + (s + u)′z̄ + (t + v)′z+

√
(−y0 + (s− u)′z̄ + (t− v)′z)2 + ‖Σ1/2(−y − s + t + u− v)‖2

2

)
= −y0.

Hence,

−y0 = E
(
(y0 + y′z̃)−

) ≤ h(y0, y) ≤ −y0.

Similarly, if

y0 + y′z ≥ 0 ∀z ∈ W

then let v = u = 0, sk = (−yk)+, tk = (yk)+ for k = 1, . . . , N and

z∗k =





z̄k if yk < 0

−zk otherwise
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Since z∗ ∈ W, we have y0 + y′z∗ ≥ 0. Furthermore, it is easy to verify that

y = t− s

and

y0 − s′z̄ − t′z = y0 + y′z∗ ≥ 0.

Hence, we have

1
2

(
− y0 + (s + u)′z̄ + (t + v)′z+

√
(−y0 + (s− u)′z̄ + (t− v)′z)2 + ‖Σ1/2(−y − s + t + u− v)‖2

2

)

=
1
2

(
− y0 + s′z̄ + t′z + | − y0 + s′z̄ + t′z|

)

= 0.

Therefore,

0 = E
(
(y0 + y′z̃)−

) ≤ h(y0, y) ≤ 0.

5 The Second-Order Cone Programming Model

Finally, we put the pieces together and propose the approximation for problem (5). Recall that in

Section 3, we proposed two approximations of problem (5); using linear decision rule in problem (8) and

using deflected linear decision rule in problem (13), both remain computationally challenging. Using

the techniques of Theorem 2 to approximate the chance constraints, we can formulate a tractable

approximation of Model (8) as follows:

ZLDR∗ = min c′x + d′v0 + f ′w0

s.t. Ax = b

Ukx + V vk + Wwk = hk ∀k ∈ {0, . . . , N}
vj(z̃) ≥ 0 ∀z ∈ GΩi , ∀j ∈ {1, . . . , n2}
wi(z) ≥ 0 ∀z ∈ W, ∀i ∈ I ⊆ {1, . . . , n3}
x ≥ 0

v(·), w(·) ∈ L,

(24)
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where Ωj =
√
−2 ln(εj). In addition, using Theorem 3 presented in Section 4, we can also approximate

the objective function and obtain the following tractable approximation of Model (13):

ZDLDR∗ = min c′x + d′v0 + f ′r0 + f̄
′
g

s.t. Ax = b

Ukx + V vk + Wrk = hk ∀k ∈ {0, . . . , N}
vj(z) ≥ 0 ∀z ∈ GΩi , ∀j ∈ {1, . . . , n2}
gi ≥ h(r0

i , (r
1
i , . . . , r

N
i )) ∀i ∈ I

x ≥ 0

r(·), v(·) ∈ L.

(25)

More explicitly, we have the following second order cone optimization formulation

ZDLDR∗ = min c′x + d′v0 + f ′r0 + f̄
′
g

s.t. Ax = b

Ukx + V vk + Wrk = hk ∀k ∈ {0, . . . , N}
v0
j ≥ Ωiu

1j
0 + t1j ′z̄ + s1j ′z ∀j ∈ {1, . . . , n2}

u1j
k ≥ qk(vk

j − s1j
k + t1j

k ) ∀j ∈ {1, . . . , n2}, k ∈ {1, . . . , N}
u1j

k ≥ −pk(vk
j − s1j

k + t1j
k ) ∀j ∈ {1, . . . , n2}, k ∈ {1, . . . , N}

‖u1j‖2 ≤ u1j
0 ∀j ∈ {1, . . . , n2}

t1j , s1j ≥ 0 ∀j ∈ {1, . . . , n2}
2gi + r0

i − (s2i + u2i)′z̄ − (t2i + v2i)′z ≥(
(−r0

i + (s2i − u2i)′z̄ + (t2i − v2i)′z)2+

‖Σ1/2(−ri − s2i + t2i + u2i − v2i)‖2
2

) 1
2

∀i ∈ I

s2i, t2i, u2i, v2i ≥ 0 ∀i ∈ I

x ≥ 0,

(26)

where ri = (r1
i , . . . , r

N
i ).

Notice that as input to the above formulation, the distributional information of the uncertainty z̃

includes the forward and backward deviation measures pi and qi, as well as the covariance matrix Σ.

Theorem 4 Under semi-complete recourse, deflected linear decision rule gives an objective value that

is at least as good as linear decision rule, that is, ZDLDR∗ ≤ ZLDR∗.
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Proof : Given any feasible solution, (x, v(z̃), w(z̃)) of problem (24), we observe that

wi(z) ≥ 0 ∀z ∈ W.

Hence, from Theorem 3 (c), we have

h(w0
i , (w

1
i , . . . , w

N
i )) = 0.

Therefore, by letting r(z̃) = w(z̃), we obtain a feasible solution of Model (25) that yields the same

objective as problem (24). Hence, ZDLDR∗ ≤ ZLDR∗ .

We give a simple illustration of the modeling steps.

Example 5: Newsvendor problem

We can model the newsvendor problem as a stochastic programming problem (see, for instance, Birge

and Louveaux [14]). A single retailer faces random demand. The retailer places an order to an outside

supplier before knowing the actual demand. Per unit ordering cost is c and the selling price to the

customers is p > c. Let the demand be d(z̃) = µ + z̃, in which z̃ has zero mean, standard deviation σ

and unknown support. Scarf [26] first studied such a model with ambiguity, that is, not knowing the

exact demand distribution. For simplicity of exposition, we assume that unsatisfied demand is lost and

leftover inventory has zero salvage value. Finally, we assume that the retailer’s objective is to maximize

the expected profit (or minimize expected negative profit). Let x denote the ordering quantity and d̃

denote the random demand. The stochastic optimization formulation of the newsvendor model is as

follows:
min cx + pE(w(z̃))

s.t. w(z̃) ≥ −x

w(z̃) ≥ −d(z̃)

x ≥ 0

w(·) ∈ Y,

in which function −w(z̃) represents the amount sold after observing the demand z̃. Equivalently,

min cx + pE(w3(z̃))

s.t. x + w3(z̃)− w1(z̃) = 0

w3(z̃)− w2(z̃) = −d(z̃)

w1(z̃), w2(z̃) ≥ 0

x ≥ 0

w1(·), w2(·), w3(·) ∈ Y.

22



It is obvious that the associated recourse matrix

W =



−1 0 1

0 −1 1


 ,

satisfies semi-complete recourse and that f̄1 = f̄2 = p. Using the approach of Model (25), we solve the

following problem

min cx + p(w0
3 + g1 + g2)

s.t. x + w0
3 − r0

1 = 0

w1
3 − r1

1 = 0

w0
3 − r0

2 = −µ

w1
3 − r1

2 = −1

2g1 ≥ −r0
1 +

√
(r0

1)2 + (σr1
1)2

2g2 ≥ −r0
2 +

√
(r0

2)2 + (σr1
2)2

x ≥ 0.

We can show that the solution is identical to the famous result in Scarf [26]. To be specific, after

simplification we have

min cx + 1
2p

(
(−x− µ) +

√
(x + w0

3)2 + (σw1
3)2 +

√
(µ + w0

3)2 + (σ(w1
3 + 1))2

)

s.t. x ≥ 0.

From triangle inequality, we have

√
(x + w0

3)2 + (σw1
3)2 +

√
(µ + w0

3)2 + (σ(w1
3 + 1))2 ≥

√
(x− µ)2 + σ2.

The equality is achieved at w0
3 = −µ and w1

3 = −1. Therefore we have

min cx + 1
2p

(
(−x− µ) +

√
(x− µ)2 + σ2

)

s.t. x ≥ 0,

which yields the same min-max solution of the newsvendor problem studied by Scarf [26].
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5.1 Multiperiod modeling

Our approach can be easily extended to deal with multiperiod stochastic programming problems as

follows.
min c′x +

∑T
t=1(E(d′tvt(ξ̃t)) + E(f ′twt(ξ̃t)))

s.t. Ax = b

x ≥ 0

U t(ξ̃t)x +
∑t

τ=1(V tτvτ (ξ̃τ ) + W tτwτ (ξ̃τ )) = bt(ξ̃t), t = 1, 2, . . . , T

P(vti(ξ̃t) ≥ 0) ≥ 1− εti,∀ t, i

wti(ξ̃t) ≥ 0,∀ i ∈ It,

(27)

where ξ̃t = (z̃1, .., z̃t), and the underlying uncertainties, z̃1 ∈ <N1 , . . . , z̃T ∈ <NT , unfold progressively

from the first period to the last period and z̃t is the vector of primitive uncertainties that is only

available at the tth period. We also assume that U t(ξ̃t) and bt(ξ̃t) are affine in ξ̃t.

There are a variety of ways to model chance constraints in a multi-stage stochastic programming

problem. In the above model we take the unconditional probability from the perspective of the beginning

of the planning horizon.

The multiperiod stochastic programming problem is said to have semi-complete recourse if for any

t, there exists a vector rt with rti > 0 for all i ∈ It such that

τ∑

k=t

W τkrk = 0, τ = t, . . . , T,

for some rt+1, . . . , rT satisfying rki ≥ 0, i ∈ Ik, k = t + 1, . . . , T . Therefore, similar to problem (10), we

can define
f̄ i

t = min
∑T

τ=t f ′τpi
tτ

s.t.
∑τ

k=t W τkp
i
tk = 0 ∀τ = t, . . . , T

pi
tt = 1

pi
tτ ≥ 0 ∀τ = t, . . . , T,

(28)

which is feasible. Without loss of generality, we assume that the optimal solution (p̄i
tt, . . . , p̄

i
tT ) exists,

denoted as for any t.
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Similar to the two stage model, the deflected linear decision rule can be defined as follows.

vt(ξ̃t) = v0
t +

t∑

τ=1

Nτ∑

j=1

vj
τz

j
τ

rt(ξ̃t) = r0
t +

t∑

τ=1

Nτ∑

j=1

rj
τz

j
τ

wt(ξ̃t) = rt(ξ̃t) +
t∑

k=1

∑

i∈Ik

(rki(ξ̃k))
−p̄i

tk.

Observe that the above decision rule fulfills the nonanticipativity requirement. Essentially, we end up

with a formulation for the multi-period model similar to the one for the two-period model we have

presented. Using the deflected linear decision rule, the size of the model does not explode exponentially

with the number of periods. Such decision rules can be viewed as a first order approximation of the

expected future costs, so that we can determine the first stage or ‘here-and-now’ decision. In practice,

we do not use the decision rule as the responding actions in subsequent stages. Instead, we adopt the

rolling horizon approach, that is, we resolve subsequent stages upon realizations of uncertainties at

earlier stages.

6 Computational Experiment

In this section, we illustrate our approach in a preliminary computational experiment. Since classical

stochastic optimization does not handle chance constraints with recourse, we restrict the comparison

to a two stage stochastic optimization problem with complete recourse. Specifically, on the two stage

problem, we demonstrate that when compared with sampling based stochastic programming approach,

our proposed framework achieves similar performance in objective values. In contrast, the size of our

model increases polynomially with the number of stages in the model, while the sample sizes according

to traditional stochastic programming approaches may increase exponentially (see, e.g., Shapiro and

Nemirovski [27], and Dyer and Stougie [19]). Therefore, we believe our proposed model is promising in

addressing large-scale multiperiod stochastic optimization models.

In our experiment, we consider a project management example of several activities. Each activity

has random completion time, t̃ij . The completion of activities must adhere to precedent constraints.

For instance, activity e1 precedes activity e2 if activity e1 must be completed before activity e2. In our

computational experiments, we assume that the random completion time tij(z̃) is independent of the

completion times of other activities. In addition, the completion time also depends on the additional
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amount of resource, xij ∈ [0, 1], committed on the activity as follows

t̃ij = bij + aij(1− xij)z̃ij , (29)

where z̃ij ∈ [−zij , z̄ij ], (i, j) ∈ E are independent random variables with zero means and standard

deviations σij .

Denote cij to be the cost of using each unit of resource for the activity on the arc (i, j). Our goal is

to minimize the expected completion time subject to the constraint that the total resource is under a

budget C.

A stochastic programming model to address the above project management problem is as follows.

min E(yn(z̃))

s.t. c′x ≤ C

yj(z̃)− yi(z̃)− wij(z̃) = bij + aij(1− xij)z̃ij ∀(i, j) ∈ E

y1(z̃) = 0

wij(z̃) ≥ 0 ∀(i, j) ∈ E
0 ≤ x ≤ 1

x ∈ <|E|

w(·), y(·) ∈ Y.

(30)

To check semi-complete recourse and model the deflected linear decision rules, we first take a look

at the following problem

f̄kl = min yn

s.t. yj − yi − wij = 0 ∀(i, j) ∈ E

y1 = 0

wkl = 1

w ≥ 0,

for each (k, l) ∈ E . Here, f̄kl corresponds to the longest duration path from node 1 to node n, when one

of the arc (k, l) has unit time while the rest of the arcs have zero completion time. Clearly, f̄kl = 1 for

all (k, l) ∈ E .

We compare solutions from two approaches. The first is stochastic optimization using sampling
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approximation as follows:

Z1(K) = min
1
K

K∑

k=1

yk
n

s.t. c′x ≤ C

yk
j − yk

i ≥ bij + aij(1− xij)zk
ij ∀(i, j) ∈ E , k ∈ {1, . . . ,K}

yk
1 = 0 k ∈ {1, . . . ,K}

0 ≤ x ≤ 1

x ∈ <|E|

yk ∈ <n ∀k ∈ {1, . . . ,K},

(31)

where zk
ij , k = 1, . . . ,K are independent samples of z̃ij .

For the second method, we adopt the framework of (26) as follows:

Z2 = min y0
n +

∑

e∈E
ge

s.t. c′x ≤ C

y0
j − y0

i − r0
(i,j) = bij ∀(i, j) ∈ E

y
(i,j)
j − y

(i,j)
i − r

(i,j)
(i,j) = aij(1− xij) ∀(i, j) ∈ E

ye
j − ye

i − re
(i,j) = 0 ∀e, (i, j) ∈ E , e 6= (i, j)

ye
1 = 0 ∀e ∈ E

2ge + r0
e − (se + ue)′z̄ − (te + ve)′z ≥(

(−r0
e + (se − ue)′z̄ + (te − ve)′z)2+

‖Σ1/2(−re − se + te + ue − ve)‖2
2

) 1
2

∀e ∈ E

se, te,ue,ve ≥ 0 ∀e ∈ E
0 ≤ x ≤ 1

x ∈ <|E|

y0, ye ∈ <n ∀e ∈ E
r0, re ∈ <|E| ∀e ∈ E
se, te,ue,ve ∈ <|E|,

(32)

where re = (ra
e : ∀a ∈ E).

For our computational experiment, we create a fictitious project with the activity network in the

form of H by W grid (see Figure 2). There are a total of H × W nodes, with the first node at the
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Figure 2: Project management “grid” with height, H = 4 and width W = 6.

left bottom corner and the last node at the right upper corner. Each arc on the graph proceeds either

towards the right node or the upper node. We assume that every activity on arc has independent and

identical completion time. In particular, for all arcs (i, j),

P(z̃ij = z) =





β if z = 1
2β

(1− β) if z = − 1
2(1−β) .

The parameter β controls the variance of the activity completion time, which increases to ∞ as β

decreases to zero. We set bij = 3, aij = 3 for all (i, j) ∈ E and c = 1. The project grid is fixed to H = 4

by W = 6. We compare the performances of models (31) and (32) in Table 1. In the table, Z1(K) and

Z2 are the optimal objective values of Model (31) using K samples, and Model (32), respectively. We

then use Monte Carlo simulation with 100,000 samples to estimate the actual objective function values

achieved by the first stage solutions derived from Models (31) and (32). The corresponding estimated

objected function values are recorded in columns Ẑ1(K) and Ẑ2. The computation experiment is

conducted on an 800 MHz Labtop with 1G RAM using CPLEX version 9.1.

From Table 1, we can see how the performance of stochastic optimization of Model (31) changes as

we change the sample sizes. We observe that the optimal objective value of Model (31) underestimates

the expected completion time derived from the solutions of Model (31), which is due to the artifact

of sampling approximation of stochastic optimization. When the parameter β becomes very small,

the variances of the primitive uncertainties z̃ij increases dramatically and the gap between Z1 and

Ẑ1 increases significantly. On the other hand, under the same circumstances, Model (32) provides a
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very consistent bound of the expected completion times and significantly outperforms the sampling

method using 1000 samples. When the variances of z̃ij are moderate, the sampling approximation with

1000 samples slightly outperforms our approximation method. Given the approximation nature of our

approach, the quality of the solutions generated by Model (32) is encouraging.

7 Conclusions

Although we only solve the stochastic optimization model approximately, we feel that the key ad-

vantage of our approach is the scalability to multistage models without suffering from the “curse of

dimensionality” experienced by most dynamic and stochastic programs.

We see that being able to formulate as a standard mathematical programming model such as a second

order cone programming problem is a definite advantage. It enables us to exploit specific structures for

computationally efficiency suited for large scale implementations.
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