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Abstract

The standard quadratic optimization problem (StQP) refers to the
problem of minimizing a quadratic form over the standard simplex. Such
a problem arises from numerous applications and is known to be NP-
hard. In a recent paper [15], we showed that with a high probability close
to 1, StQPs with random data have sparse optimal solutions when the
associated data matrix is randomly generated from a certain distribution
such as uniform and exponential distributions. In this paper, we present a
new analysis for random StQPs combining probability inequalities derived
from both the first-order and second-order optimality conditions. The new
analysis allows us to significantly improve the probability bounds. More
important, it allows us to handle normal distributions which is left open
in [15]. The existence of sparse approximate solutions to convex StQPs
and extensions to other classes of QPs are discussed as well.

Key words. Co-positive definite matrix, standard quadratic programming,
sparse solutions, random matrices, probability analysis.

1 Introduction

In this paper, we consider the following quadratic programming problem

min xTQx (1)

s.t. eTx = 1, x ≥ 0, (2)
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where Q = [Qij ] ∈ ℜn×n is a symmetric matrix, and e ∈ ℜn is the all 1-vector.
Like in [6], we called the above problem the standard quadratic programming
problem (StQP). The problem appears in numerous applications such as re-
source allocation [26], portfolio selection [30] and machine learning [32]. It also
covers several other important problems such as the maximal clique problem
in discrete optimization [20] and the determination of co-positivity of a matrix
in linear algebra [9]. In addition to its broad range of applications, the StQP
provides a prototype for numerous classes of quadratic optimization problems.
As such, the study of StQP has caught the attention of experts in many different
fields and various algorithms have been proposed in the literature. For details,
we refer to recent papers [9, 36, 41] and the references therein.

In this work we are mainly concerned with a special scenario of StQPs where
the matrix Q is generated from a certain distribution. The study on optimiza-
tion problems with random data can be dated back to early 1980s [21] when
Goldberg and Marchetti-Spaccamela considered how to find an exact solution of
the knapsack problem with random data. For more recent progress on random
knapsack problems, we refer to the paper [4]. In recent years, the study on
the so-called L1 minimization problem with random constraints has attracted a
great amount of attention from experts in various disciplines. It is shown that
when the coefficient matrix is generated from a normal distribution, then with
a high probability, the optimal solution of the L1 minimization problem is the
sparest point in the constrained set [12, 13, 19]. In [34], the authors extended
the L1 minimization to the case where the decision variable is required to be a
positive semidefinite (PSD) matrix and the L1 norm is replaced by the Nuclear
norm. Other extensions can also be found in [14].

In our recent work [15], we noted that there exists a close relation between
the StQP and the L1 minimization. Inspired by this observation, we considered
the existence of sparse solutions to StQPs with random data and proved that
with a high probability, an StQP admits a very sparse optimal solution if the
matrix Q is generated from a class of distributions including the uniform or
exponential distributions.

The analysis in [15] mainly builds upon on one characteristic based on the
first-order optimality condition of the global optimal solution of an StQP and
some probability bounds related to order statistics for random variables with
concave cumulative distribution functions in their supports. The class of dis-
tributions, though very broad and including notable distributions such as uni-
form and exponential, excludes normal distributions which are predominately
assumed in the literature on the L1 minimization problem and its extensions.

The main purpose of this work is to extend and improve the results in [15].
Specifically, we develop a new analysis for StQPs with random matrices combin-
ing properties derived from both the first-order and the second-order optimality
conditions of the global optimal solution of an StQP. It significantly improves
the results in [15]. More importantly, coupled with results from random ma-
trix theory, our new analysis allows us to handle StQPs with random matrices
generated from normal distributions. We also analyze an StQP with a random
positive semi-definite Q and estimate the sparsity of its so-called ϵ−approximate
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solution.
The paper is organized as follows. In Section 2, we review some useful

properties to be used here. In Section 3, we present a new analysis on sparse
solutions to random StQPs. In Section 4, we consider the case when Q is
positive semidefinite, and establish the existence of sparse approximations to
convex StQPs. Finally, we conclude our paper with some remarks in Section 5.

A few sentences regarding the notation. Throughout this paper, we use e and
exp(x) to denote the all-ones vector and the exponential function respectively.
The symbol E represents the all-ones square matrix with dimensions consistent
with the context and we use Ek for E when the dimension is specified as k.
We refer to x∗ as one of the sparsest global optimal solutions of problem (1)
(unless else specified), i.e., it has the smallest number of positive components
among all global optimal solutions. For a given vector x ∈ ℜn, ∥x∥0 denotes the
number of nonzero elements. We define n! as the factorial of a natural number
n, C(n, k) the number of k-combinations from a given set with n elements and

B(n, k) the Beta function with B(n, k) =
∫ 1

0
un−1(1− u)k−1du = (n−1)!(k−1)!

(n+k−1)! .

2 Preliminary Results

Before presenting our new analysis, we first review in this section some results
established in [15] that will be used in this paper.

Let Ur, r = 1, . . . , n be independent continuous random variables each with
a cumulative distribution F (·) and a probability density function f(·) and u1 ≤
u2 ≤ . . . ≤ un be the order statistics of Ur’s. Let Vr, r = 1, 2, . . . ,m be
independent continuous random variables each with a cumulative distribution
G(·) and a probability density function g(·) and v1 ≤ v2 ≤ . . . ≤ vm be the
order statistics of Vr’s. Assume that the random vectors [Ur]

n
r=1 and [Vs]

m
s=1 are

independent from each other. In addition, we make the following assumption
on the distributions.

Assumption 2.1. (a) G(·) is concave on its support.

(b) There exists a constant α ∈ (0, 1] such that G(x) ≥ αF (x) for any x ∈
(−∞,∞).

We have the following probability bounds on the order statistics.

Theorem 2.2. ([15]) Let Ur, r = 1, . . . , n and Vr, r = 1, . . . ,m be independently
identically distributed random variables with cumulative distribution functions
F (·) and G(·) respectively. Assume that the random vectors [Ur]

n
r=1 and [Vs]

m
s=1

are independent from each other. If G(·) and F (·) satisfy Assumption 2.1, then
we have

P (
k∑

r=1

ur ≤ kv1) ≤
k∏

j=1

(m+ n− k)(n− j + 1)

(n− k + αm(k−j+1)
k )(m+ n− j + 1)

(3)

m∑
i=1

P (

k∑
r=1

ur ≤ (k + 1)v1 − vi) ≤ (k + 1)P (

k∑
r=1

ur < kv1). (4)
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The following proposition presents some characteristics of a global optimal
solution of the standard quadratic program (1).

Proposition 2.3. ([15]) Suppose that x∗ is one of the sparsest global optimal
solutions of problem (1) satisfying ∥x∗∥0 = k > 1. Let QK ∈ ℜk×k be the
principal submatrix of Q induced by the index set of all the nonzero elements of
x∗ and define λ∗ = (x∗)TQx∗. Then the following conclusions hold:

C.1 There exists a row (or column) of QK such that the average of all its
elements is strictly less than the minimal diagonal element of Q;

C.2 The matrix QK − λ∗Ek is positive semidefinite.

Property C.1 in the above proposition follows from the first-order optimality
condition, while property C.2 is derived from the second-order optimality con-
dition. The following sparsity results of the global optimal solution were mainly
built upon property C.1 and the probability bounds in Theorem 2.2.

Theorem 2.4. ([15]) Assume that the upper triangular elements of Q are in-
dependent with the diagonal elements identically distributed with cdf G(·) and
pdf g(·) and the strict upper triangular elements of Q identically distributed with
cdf F (·) and pdf f(·). Suppose that G(·) and F (·) satisfy Assumption 2.1. Let
x∗ is a global optimal solution of problem (1). Then it holds

P (∥x∗∥0 ≥ k) ≤ τk−1(
1

(1− τ)2
+
k − 1

1− τ
) +

n(n+ 1)

2
τ ⌊

√
2nα⌋, (5)

where τ =
(

1
1+α/2

)1/2
.

One significant restriction of the above result is that the cdf G(·) is re-
quired to be concave or equivalently its pdf g(·) is nonincreasing in its support.
Though it covers notable distributions such as uniform and exponential, it ex-
cludes normal distributions, widely used in the literature of L1 minimization.
Interestingly, as observed from the numerical experiment in [15], the StQPs
generated from normal distributions still have very sparse optimal solutions. In
what follows we present a new analysis employing both properties C.1 and C.2,
which allows us to significantly improve the probability bounds in Theorem 2.4
and more importantly quantify the sparsity of global optimal solutions of StQPs
generated from normal distributions.
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3 A New Analysis on Sparse Solutions to ran-
dom StQPs

To present our analysis, let QK be the principal submatrix induced by the index
set K. Define the following probability events:

HK
1 = {QK satisfies C.1}; (6)

HK
1,i = {

∑
j∈K

Qij ≤ k min
j=1:n

Qjj}; (7)

H̃K
1,i = {

∑
j∈K

Qij ≤ k min
j ̸∈K\{i}

Qjj}; (8)

HK
2 = {∃λ∗ ∈ ℜ : QK − λ∗Ek ≽ 0}; . (9)

Let x∗ be one of the sparsest global optimal solutions of problem (1). From
Propositions 2.3, we have that if ∥x∗∥0 = k, then there exists an index set K
with |K| = k satisfying properties C.1 and C.2. Therefore, we have

P (∥x∗∥0 = k) ≤ C(n, k)P (HK
1 ∩HK

2 ).

Because HK
1 = ∪i∈KHK

1,i and any principal submatrix of a positive semi-definite
matrix is still positive semi-definite, it follows that

HK
1 ∩HK

2 ⊆ ∪i∈K(HK
1,i ∩HK\{i}

2 ).

Since HK
1,i ⊆ H̃K

1,i and the two events H̃K
1,i and HK\{i}

2 are independent, we have
for any given i ∈ K,

P (∥x∗∥0 = k) ≤ kC(n, k)P (H̃K
1,i)P (H

K\{i}
2 ), (10)

In the remaining of this section, we discuss how to bound the probabilities

P (H̃K
1,i) and P (H

K\{i}
2 ) under different distribution assumptions.

3.1 Concave Cumulative Distributions

In this subsection, we focus on the scenario where the matrix Q is generated
as follows: first randomly generate its lower triangle and diagonal elements
independently using the same cumulative distribution G(·); then symmetrize
the matrix by assigning the upper triangle elements with their corresponding
lower triangle elements. We assume that G(·) is continuous and concave in its
support.

We first show how to bound the probability P (ĤK
1,i), which interestingly can

be derived from the probability bound established in Theorem 2.2.

Lemma 3.1. Let QK ∈ ℜk×k be an arbitrary principal sub-matrix of Q ∈
ℜn×n, a symmetric matrix whose diagonal and lower diagonal elements are
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identically independently distributed with a continuous cumulative distribution
function concave in its support. Then we have that

P (H̃K
1,i) ≤

k(k − 1)k−1(n− k)!

n!
. (11)

Proof. Recall (8) and set Ur = Qijr , r = 1, . . . , k−1 for any jr with {j1, . . . , jr} =
K \ {i}, and Vr = Qlrlr , r = 1, . . . , n− k + 1 for any lr with {l1, . . . , ln−k+1} =
({1, . . . , n} \ K) ∪ {i}. Let [ur]

k−1
r=1 and [vr]

n−k+1
r=1 be the corresponding order

statistics in the ascending order. Conditioning on the position of Qii in the
order statistics of Vr, we have that for k ≥ 2

P (H̃K
1,i) = P

(∑k−1
r=1 ur ≤ kv1 −Qii

)
=

∑n−k+1
j=1 P

(∑k−1
r=1 ur ≤ kv1 − vj , Qii = vj

)
=

∑n−k+1
j=1 P (Qii = vj)P

(∑k−1
r=1 ur ≤ kv1 − vj

)
≤ 1

n−k+1kP (
∑k−1

r=1 ur ≤ kv1)

≤ 1
n−k+1

k(k−1)k−1(n−k+1)!
n! ,

where the last two inequalities follows from Theorem 2.2.

We next estimate the probability P (HK\{i}
2 ). For this purpose, we present

the following technical result.

Lemma 3.2. For a given symmetric matrix Q, if Q−λE is positive semidefinite
for some λ ∈ ℜ, then the projection matrix of Q onto the null space of e is
positive semidefinite. Moreover, it holds

Qij ≤
1

2
(Qii +Qjj) ≤ max(Qii, Qjj), ∀i, j; (12)

and

Qij ≤
√
QiiQjj , ∀i, j ∈ K (13)

when λ ≥ 0.

Proof. The first statement of the proposition follows directly from the fact that
Q− λE is positive semidefinite, which further implies

Q̂ =

(
Qii Qij

Qji Qjj

)
− λ

(
1 1
1 1

)
≽ 0. (14)

The positive semi-definiteness of the submatrix Q̂ is equivalent to the following
conditions: Qii − λ ≥ 0 and

(Qij − λ)2 ≤ (Qii − λ)(Qjj − λ),

which implies that

Qij − λ ≤
√
(Qii − λ)(Qjj − λ) ≤ (Qii − λ) + (Qjj − λ)

2
.
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Thus, the inequality (12) holds. If λ ≥ 0, then Q is the sum of two positive
semi-definite matrices (Q − λE) and λE and thus is positive semi-definite as
well, which further yields the inequality (13).

We now use the inequality (12) to provide a bound on the probability P (∃λ ∈
ℜ : Q− λE ≽ 0), which can help to bound P (HK\{i}

2 ).

Theorem 3.3. Let Q ∈ ℜn×n be a symmetric matrix whose diagonal and lower
diagonal elements are identically independently distributed with a continuous
cumulative distribution function. Then it holds

P (∃λ ∈ ℜ : Q− λE ≽ 0) ≤ 2n

(n+ 1)!
.

Proof. From the last inequality in (12), conditioning on the event A = {Q11 ≥
. . . ≥ Qnn}, the event {∃λ ∈ ℜ : Q− λE ≽ 0} implies the following event

B = {Qij ≤ Qkk, ∀n ≥ i ≥ j ≥ k ≥ 1}.

Define a series of events

Bk = {Qik ≤ Qkk, ∀n ≥ i > k}.

We have that
B = A ∩ ∩n

k=1Bk.

Therefore,

P (∃λ ∈ ℜ : Q− λE ≽ 0) ≤ P (B|A)

= P (B)
P (A)

= n!
∫∞
−∞dG(u1)

∫ u1

−∞dG(u2) . . .
∫ un−1

−∞ dG(un)
∏n

i=1G(ui)
n−i

= n!
∫ 1

0
dt1
∫ t1
0
dt2 . . .

∫ tn−1

0
dtn

∏n
i=1 t

n−i
i

= n!
∏n

i=1
1

i(i+1)/2

= 2n

(n+1)! ,

where the third equality follows by a variable transformation.
The above theorem can be improved for uniform/exponential distributions.

Theorem 3.4. If Q ∈ ℜn×n be a symmetric matrix whose diagonal and lower
diagonal elements are identically independently generated from the uniform dis-
tribution (i.i.u.d.) in (0, 1), then it holds

P (Q ≽ 0) ≤ 2n

(n+ 1)n
.

If Q ∈ ℜn×n be a symmetric matrix whose diagonal and lower diagonal elements
are identically independently generated from the exponential distribution(i.i.e.d.)
in (0,∞) with rate parameter 1, then it holds

P (Q ≽ 0) ≤ 2n

(n− 1)n
.
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Proof. If Q is generated from i.i.u.d. in (0, 1), from (13) it follows

P (Q ≽ 0) ≤ P
(
Qij ≤ Q

1/2
ii Q

1/2
jj , ∀1 ≤ i < j ≤ n

)
=

∫ 1

0

· · ·
∫ 1

0

∏
i<j

t
1/2
i t

1/2
j dt1 · · · dtn

=

∫ 1

0

· · ·
∫ 1

0

n∏
i=1

t
n−1
2

i dt1 · · · dtn =
2n

(n+ 1)n
. (15)

In case of exponential distribution, from the first inequality in (12) we obtain

P (Q ≽ 0) ≤ P

(
Qij ≤

Qii +Qjj

2
, ∀i < j

)
=

∫ ∞

0

· · ·
∫ ∞

0

∏
i<j

(
1− exp(− ti + tj

2
)

)
exp(−

n∑
i=1

ti)dt1 · · · dtn

=

∫ 1

0

· · ·
∫ 1

0

∏
i<j

(1−√
uiuj)du1 · · · dun

≤
∫ 1

0

· · ·
∫ 1

0

(
1−

2
∑

i<j

√
uiuj

n2 − n

)n2−n
2

du1 · · · dun

≤
∫ 1

0

· · ·
∫ 1

0

(
1−

n∏
i=1

u
1
n
i

)n2−n
2

du1 · · · dun

= nn
∫ 1

0

· · ·
∫ 1

0

(
1−

n∏
i=1

vi

)n2−n
2 n∏

i=1

vn−1
i du1 · · · dun

≤ nn
∫ 1

0

· · ·
∫ 1

0

(
1−

n∏
i=1

vi

)n2−n
2 n∏

i=1

vn−i
i du1 · · · dun

=
nn

n2−n
2 + 1

∫ 1

0

· · ·
∫ 1

0

(
1−

n−1∏
i=1

vi

)n2−n
2 +1 n−1∏

i=1

vn−1−i
i du1 · · · dun−1

= . . .

=
nn∏n

i=1

(
n2−n

2 + i
)

≤ 2n

(n− 1)n
, (16)

where the second and third inequalities follow from the inequality of arithmetic
and geometric means, the third equality from the variable transformation ui =
vni (i = 1, . . . , n).

To build some intuition about the relative magnitudes of the probability
bounds in Theorems 3.3 and 3.4, we use the well-known Stirling’s approximation
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for large factorials, which states [35]

lim
n→∞

n!
√
2πn

(
n

exp(1)

)n = 1.

It is clear that the bounds in Theorem 3.4 improve upon the one in Theorem
3.3 roughly by an order of exp(n).

Combining Theorem 3.3 and Lemma 3.1, we can obtain the following result.

Theorem 3.5. Assume that Q ∈ ℜn×n is a symmetric matrix whose diago-
nal and lower diagonal elements are identically independently distributed with
a continuous cumulative distribution function concave in its suppor. Let x∗ be
one global optimal solution of problem (1). It holds for k ≥ 2

P (∥x∗∥0 = k) ≤ (k − 1)k−12k−1

((k − 1)!)2
. (17)

Proof. From (10), Theorem 3.4 and Lemma 3.1, we obtain

P (∥x∗∥0 = k) ≤ kC(n, k)P (H̃K
1,i)P (H

K\{i}
2 )

≤ n!
k!(n−k)!

k2(k−1)k−1(n−k)!
n!

2k−1

k! .

Thus, the theorem holds.
We remark that comparing with the bound in [15] (presented in Theorem

2.4), for small k, the bound in the above theorem is not stronger. However, for
reasonably large k, the new bound is tighter. Indeed, the Stirling’s approxima-
tion implies that the new bound is roughly in the order of exp(−O(k ln k)) while
the one in [15] is exp(−O(k)).

When Q = (M +MT )/2 in which all elements of M ∈ ℜn×n are identically
independently distributed with a continuous cumulative distribution function
concave in its support, it is much more complicated to provide an upper bound
for P (Q − λE ≽ 0 for some λ ∈ ℜ). However, Theorem 2.2 alone allows to
provide an upper bound employing the approach in [15]. To compare with the
result in Theorem 3.5, we present the bound in the follow theorem.

Theorem 3.6. Assume that Q = (M +MT )/2 in which all elements of M ∈
ℜn×n are identically independently distributed with a continuous cumulative dis-
tribution function concave in its support. We have that for k ≥ 2

P (∥x∗∥0 = k) ≤ k(2k − 2)2k−2∏k−2
j=1 (n+ 1 + j)

.

Proof. Define

C = { 1

k − 1

∑
j∈K\{i}

Qij < min
j ̸∈K\{i}

Qjj}.

Note that H̃K
1 ⊆ C. The term 1

k−1

∑
j∈K\{i}Qij can be treated as the average of

2(k−1) independent random variables and minj ̸∈K\{i}Qjj is the smallest order
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statistics of n−k+1 independent random variables, each of which has the same
continuous cumulative distribution function concave in its support. Therefore,

P (∥x∗∥0 = k) ≤ kC(n, k)P (H̃K
1,i)

≤ kC(n, k)P (C)
≤ k(2k − 2)2k−2 n!(n−k+1)!

k!(n−k)!(n+k−1)!

≤ k(2k−2)2k−2∏k−2
j=1 (n+1+j)

,

which gives the bound in the theorem.
We remark that for fixed k, the above result essentially excludes the possi-

bility of having global optimal solutions with more than two positive elements
when n is large.

3.2 Normal Distribution

In this subsection, we discuss how to estimate the probability P (∥x∗∥0 = k)
whenQ is generated from an identically independent normal distributionN (0, 1)
(i.i.n.d.). We focus on the case in which Q is generated as follows: first generate
all elements of a matrix M ∈ ℜn×n identically independently from the standard
normal distribution N (0, 1); then set Q = (M +MT )/2. In such a case, the
diagonal elements and the off-diagonal elements of Q have different variances.
The matrix Q is referred to as the Gaussian Orthogonal Ensemble (GOE) [31]
in the literature of random matrix theory.

Again our task is to bound the probability P (H̃K
1,i) and P (HK\{i}

2 ). Un-
fortunately, the analysis in the previous subsection does not carry over to the
case with Normal distribution. In fact, though Theorem 3.3 works for gen-
eral distributions, Lemma 3.1 is only established for distributions with concave
cumulative distribution functions.

To bound the probability P (H̃K
1,i), we need the following key technical result.

Its proof is quite involved and presented in the appendix.

Theorem 3.7. Let Ui ∼ N(0, 1) (i = 1, . . . , k) be independent and V1 be the
smallest order statistics of n independent standard normal random variables
independent of Ui. There exists a constant η > 0 such that for any 1 ≤ k ≤ n,

Pr(
1

k

k∑
i=1

Ui ≤ V1) ≤ ηk
(
ln

(
n+ k

k

))⌈ k−1
2 ⌉

B(k, n+ 1).

The above theorem allows us to bound the probability P (H̃K
1,i).

Theorem 3.8. If Q ∈ ℜn×n is GOE, we have that for k ≥ 2.

P (H̃K
1,i) ≤

(
η2 ln

(
n+ k − 1

2k − 2

))k−1

B(2k − 2, n− k + 2).
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Proof. Since Q is GOE, we have that G = (M +MT )/2 with each component
of M ∈ ℜn×n being i.i.n.d. Similar to the proof of Theorem 3.6, we have that

H̃K
1,i ⊆ C =

 1

k − 1

∑
j∈K\{i}

Qij < min
j ̸∈K\{i}

Qjj

 .

The term 1
k−1

∑
j∈K\{i}Qij can be treated as the average of 2(k−1) independent

standard normal random variables and minj ̸∈K\{i}Qjj is the smallest order
statistics of n−k+1 independent standard normal random variables. Therefore,
the bound on P (C) and thus P (H̃K

1,i) follow by using Theorem 3.7.

The above theorem can be combined with the bound of P (HK\{i}
2 ) in The-

orem 3.3 to provide an upper bound of the probability P (∥x∗∥0 = k). Interest-

ingly, a much stronger bound of P (HK\{i}
2 ) is available from the random matrix

theory. To present the bound, note that the GOE enjoys the following nice
properties [31]:

P.1 The ensemble is invariant under the transformation

Q→WQWT

where W is any real orthogonal matrix;

P.2 The elements Qij , i ≤ j, are statistically independent.

P.3 It was shown in [18] that for the GOE,

P (Q ≽ 0) ≤ exp−
n2

4 .

To apply the above properties of GOE, choose a specific orthogonal matrixW
such that its last row Wn,: = eT /

√
n. It follows immediately that the principal

submatrix ofWQWT with the first n−1 rows and columns, W1:n−1,:QW
T
1:n−1,:,

is GOE and the property P.3 implies that

P (W1:n−1,:QW
T
1:n−1,: ≽ 0) ≤ exp

(
− (n− 1)2

4

)
.

Since
W1:n−1,:(Q− λE)WT

1:n−1,: =W1:n−1,:QW
T
1:n−1,:, ∀λ ∈ ℜ,

we immediately obtain the following result.

Theorem 3.9. If Q ∈ ℜn×n is the GOE generated from (i.i.n.d.), then it holds

P (∃λ ∈ ℜ : Q− λE ≽ 0) ≤ exp

(
− (n− 1)2

4

)
.

Combing Theorems 3.8 and 3.9, we have the following result.
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Theorem 3.10. Assume that Q ∈ ℜn×n is GOE. Let x∗ be one global optimal
solution of problem (1). We have that for k ≥ 2,

P (∥x∗∥0 = k) ≤ (2k − 3)!

(k − 1)!(n+ 1)k−2

(
η2 ln

(
n+ k − 1

2k − 2

))k−1

exp

(
− (k − 2)2

4

)
Proof. The result follows from (10), Theorem 3.8, Lemma 3.9 and the fact that

B(n, k) = (n−1)!(k−1)!
(n+k−1)! and

n!(n− k + 1)

(n+ k − 1)!
≤ 1

(n+ 1)k−2
.

The above theorem implies that one can essentially exclude the possibility
of global optimal solutions with three or more positive elements for large n.

4 Sparse Approximate Solutions to Convex StQPs
and Extensions

In this section we investigate the existence of sparse approximate solutions to
StQPs with a symmetric positive semi-definite matrix Q ∈ ℜn×n. Different from
the previous section, we focus on deterministic Q. Without loss of generality,
we can further assume that all the matrix elements are positive. In fact, the
optimal solution set of problem (1) is the same when Q is changed by adding
λE for any λ. Under such an assumption, we can decompose the matrix into
the following form

Q = V TV, V = [v1; v2, · · · , vn],

where the i-th column of V represent a data point in ℜd for some d with
rank(Q) ≤ d ≤ n, and Qij = vTi vj > 0 for i, j = 1, . . . , n. It follows imme-
diately

xTQx = ∥V x∥22,

and the StQP reduces to a problem of finding the shortest distance between the
origin in ℜd and the polytope P (V ) defined by

P (V ) = {v ∈ ℜd : v = V x, ∥x∥1 = 1, x ≥ 0.}

In other words, the StQP amounts to solving the following optimization problem

min
v∈P (V )

∥v∥. (18)

Since Qij = vTi vj > 0 for i, j = 1, . . . , n, it must hold 0 ̸∈ P (V ). Therefore, the
optimal solution to problem (18) must be achieved at a facet of the polytope
P (V ), which implies that the optimal solution v can be represented as a convex
combination of at most d points. If d << n, this indicates that the corresponding
StQP has a very sparse optimal solution.

12



We next consider the case where d is very large and in the same order of
n. We first cite a well-known result for embedding by Johnson and Linden-
strauss [25, 27].

Lemma 4.1. Given ϵ > 0 and an integer n. Let k be a positive integer such
that k ≥ k0 = O(ϵ−2 log(n)). For every set P of n points in ℜd, there exists a
mapping h : ℜd → ℜk such that

(1− ϵ)∥u− v∥2 ≤ ∥h(u)− h(v)∥2 ≤ (1 + ϵ)∥u− v∥2, ∀u, v ∈ P.

In particular, in [2], Achlioptas proved the following interesting result.

Theorem 4.2. Let P be an arbitrary set of n points in ℜd represented by a
matrix A ∈ ℜd×n. Given ϵ, β > 0 and let

k0 =
4 + 2β

ϵ2/2− ϵ3/3
log(n).

For integer k > k0, let R ∈ ℜk×d be a random matrix with R(i, j) = rij,
where rij are independent random variables from either one of the following two
probability distributions

rij =

{
1 with probability 1

2
−1 ... 1

2

(19)

rij =
√
3×

 1 with probability 1
6

0 ... 2
3

−1 ... 1
6

(20)

Let

M =
1√
k
RA.

Let h : ℜd → ℜk map the i-th column of A to the i-th column of M . With
probability at least 1− n−β, we have

(1− ϵ)∥u− v∥2 ≤ ∥h(u)− h(v)∥2 ≤ (1 + ϵ)∥u− v∥2, ∀u, v ∈ P.

To apply the above theorem to the StQP problem where Q = V TV , we can
first augment the matrix V by adding one more column (the origin in ℜd). We
then use the above-described random projection method to the augmented data
set V into a low dimensional space of size O( logn

ϵ2 ). Next we solve problem (18)
with the projected data set excluding the origin. By using Theorem 4.2, one
can show that with a high probability, the solution from the projected StQP in
a low dimensional space provides an (1 + ϵ)-approximation to the StQP in the
original space, which indicates with probability at least 1−n−β , there exists an
(1 + ϵ)-approximate solution to the original StQP whose sparsity is O( logn

ϵ2 ).
We close this section by discussing potential extensions of the results in the

previous sections to other classes of quadratic optimization problems. To start,
let us consider a generic QP model defined by

min xTQx+ rTx (21)

s.t. Ax = b, x ≥ 0.

13



Here A ∈ ℜm×n, b ∈ ℜm. Let us consider the case that the feasible set, denoted
by F = {x : Ax = b, x ≥ 0}, is a bounded polytope whose vertices belongs to
the following set defined by

S = {si : i = 1, . . . , S.}

From the above definition, for every x ∈ F , there exists αi ≥ 0, i = 1, · · · , S
such that

x =
S∑

i=1

αisi,
S∑

i=1

αi = 1.

Therefore, we can rewrite problem (21) as another StQP as follows

min αT Q̂α+ r̂Tα = αT Q̄α (22)

s.t.
S∑

i=1

αi = 1, α ≥ 0,

where
Q̂ij = sTi Qsj , r̂i = rT si, Q̄ = Q̂+ (r̂eTS + eS r̂

T )/2.

If we assume that the matrix Q̄ is generated from a certain distribution, then
by using the results in the previous sections, we can conclude that the global
optimal solution of problem (22) is very sparse. Suppose that the global opti-
mal solution to problem (22) has k positive elements, then the globally optimal
solution to problem (21) can be written as a convex combination of k vertices
of F . Since A ∈ ℜm×n, every vertex of F has at most m positive elements.
It follows immediately that the global optimal solution to problem (21) has at
most km positive elements. Therefore, when m is a very small integer and the
elements of the matrix Q̄ are generated from a certain distribution, we can con-
clude that with a high probability, the global optimal solution to problem (21)
is very sparse.

A particular example that worths mentioning is the mean-variance model
introduced in [30] where

F = {x : eTx = 1, µTx = µ̄, x ≥ 0}.

It has been observed for a long time that the optimal solution of the mean-
variance model is dominated by only a few assets [16], which corresponds to a
very sparse exact or approximate solution for the underlying QP. Note that for
the mean-variance model, we have m = 2. Therefore, the results in this paper
provides a potential interesting interpretation for the observed phenomena with
respect to the mean-variance model.

5 Conclusions

In this paper, we consider the so-called standard quadratic programming prob-
lems that arise from various applications. Under certain probability models

14



of the input data matrix, we show by performing probability analysis based
on the first-order and second-order optimality conditions of the underling QP
that there is a very high probability that the optimal solution to a random
StQP has only a few nonzero elements. Our results significantly improve the
corresponding ones in [15] employing the first-order optimality condition when
the elements of the input data matrix are generated by continuous distribution
functions concave in their supports. More importantly, we show that when the
input data matrix is GOE, the global optimal solutions of StQP (1) essentially
have at most two nonzero positive elements for large n. To prove the result, we
establish a key technical result which provides an upper bound of the proba-
bility of the event that the average of k independent standard normal random
variables is no more than the smallest order statistics of n independent standard
normal random variables, which we believe can be useful in other settings. We
also show that if the input data matrix is a deterministic positive semi-definite
matrix, with high probability a sparse approximate solution can be found.

Our results raise up several interesting research questions. First, we would
like to know how tight our bounds are. Second, can we establish general and/or
better results regarding the positive semi-definiteness of a randomly generated
symmetric matrix? More specifically, can we improve the bounds in Theo-
rems 3.3, 3.4? Can we provide similar bounds like we do for GOE when
Q = (M + MT )/2 with each element of M being identically independently
distributed with a general distribution? Third, our analysis for normal distri-
bution only works for GOE. Can we provide similar bounds if Q is symmetric
with identically independent distributed diagonal and lower triangle elements?
Finally, we point out that though the results in this work can provide a par-
tial interpretation regarding the mean-variance model for portfolio selection, it
is far from satisfactory since we use some assumptions on the data matrix Q̄,
which is constructed from the original input data matrix Q and the vertices of
the constraint set F . It will be of interest to explore whether we can establish
similar results based on characteristics of the input data matrices Q and the
coefficient data matrix A directly.

Appendix: Proof of Theorem 3.7

The proof is done by three steps. In the first step, we write down the probability
as an integral formula and divide the integral into two parts. One part of the
integral can be easily upper bounded by a function exponentially decaying in
n. In the second step, we provide an upper bound for another part of the inte-
gral using a tight approximation of the complementary cumulative distribution
function of the standard normal distribution. In the third step, we show that
the upper bounds on the two parts of the integral have consistent orders.
Step 1

Denote f(u) = exp(−u2/2). Let ϕ(u) = 1√
2π
f(u), Φ(u) =

∫ c

−∞ ϕ(ξ)dξ and

Φc(u) = 1−Φ(u) be the pdf, cdf and complementary cdf of the standard normal
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distribution. It is clear that

Pr(
1

k

k∑
i=1

Ui ≤ V1) =

√
k√
2π
In,k(−∞,∞),

where

In,k(l, u) =

∫ u

l

f(
√
ku)Φc(u)ndu.

To estimate I0(−∞,∞), we divide the integral into two parts.

In,k(−∞,∞) = In,k(−∞,−1) + In,k(−1,∞).

Since Φc(u) is decreasing in u,

In,k(−1,∞) ≤ Φc(−1)n = Φ(1)n.

Step 2
It suffices to estimate In,k(−∞,−1). For this purpose, we use the following

approximation of Φc(u) for u ≥ 0 (see 7.1.13 in [1]).

Lemma 5.1. For u ≥ 0,

2

u+
√
u2 + 4

ϕ(u) < Φc(u) ≤ 2

u+
√
u2 + 8/π

ϕ(u).

Using the above lemma, we can immediately show that for u ≥ 1,

1

ρu
f(u) < Φc(u) ≤ 1

ρ′u
f(u),

where ρ′ =
√
2π and ρ = 1+

√
5

2

√
2π.

We now derive an upper bound of In,k(−∞,−1) using Lemma 5.1.

In,k(−∞,−1) =
√
k√
2π

∫ −1

−∞ f(
√
ku)Φc(u)ndu

=
√
k√
2π

∫∞
1
f(
√
ku)(1− Φc(u))ndu

≤
∫∞
1
f(
√
ku)

(
1− 1

ρuf(u)
)n

du

=
∫∞
v0
f(
√
kv) (1− f(v))

n
(ρu(v))k v

u(v)+1/u(v)dv,

where the second equality follows from the symmetry of the Normal distribution,
the first inequality from Lemma 5.1, the last equality is derived by a variable
change with v =

√
2(u2/2 + ln(ρu)) and v0 =

√
1 + 2 ln(ρ). Since u ≤ v, we

have from the above formula that

In,k(−∞,−1) ≤ ρkJn,k,

where

Jn,k =

∫ ∞

v0

f(
√
kv) (1− f(v))

n
vkdv.
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Making a variable change with z = f(v), we have that

Jn,k = 2
k−1
2

∫ z0

0

zk−1(1− z)n(− ln z)
k−1
2 dz,

where z0 = f(v0) < 1.
To provide an upper bound for Jn,k, we analyze the derivatives of the beta

function. Define for a natural number i,

τi = (−1)i
diB(k, n+ 1)

dki
.

Note that

τi =

∫ 1

0

zk−1(1− z)n(− ln z)idz.

Since B(k, n+ 1) = Γ(k)Γ(n+1)
Γ(k+n+1) with the Gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt,

we have that
τ1 = −B(k, n+ 1)(ψ0(k)− ψ0(k + n+ 1)),

where

ψi(z) =
di+1 ln Γ(z)

dzi+1
= (−1)i+1i!

∞∑
l=0

1

(z + l)i+1

is the polygamma function (for the definitions and relationships of the special
functions, see Chapter 6 in [1]). Therefore,

τi =
i−1∑
j=0

C(i− 1, j)(−1)i−j(ψi−1−j(k)− ψi−1−j(k + n+ 1))τj

We now provide an upper bound on τi. From the above recursion, we have
that for any i− j > 1 and i ≤ k/2,

Cj
i−1(−1)i−j(ψi−1−j(k)− ψi−1−j(k + n+ 1)) = (i−1)!

j!

∑n
l=0

1
(k+l)i−j

≤ (i−1)!
j!

1
ki−j−2

∑∞
l=0

1
(k+l)(k+l−1)

= (i−1)!
j!

1
ki−j−2

1
k−1

≤
(
1
2

)i−j−1
.

Thus, we have

τi ≤ τi−1

∑n
l=0

1
k+l +

∑i−2
j=0 τj

(
1
2

)i−j−1

≤ maxj=0,...,i−1 τj(1 +
∑n

l=0
1

k+l )

≤ maxj=0,...,i−1 τj
(
ln(n+ k)− ln(k) + 1

k + 1
)

≤
(
ln( exp(2)(n+k)

k )
)i
τ0

=
(
ln( exp(2)(n+k)

k )
)i
B(k, n+ 1).
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We now use the above result on τi to bound Jn,k:

Jn,k = 2
k−1
2

∫ z0
0
zk−1(1− z)n(− ln z)

k−1
2 dz

≤ 2
k−1
2

∫ z0
0
zk−1(1− z)n[(− ln z)⌈

k−1
2 ⌉ + (− ln z)⌊

k−1
2 ⌋]/2dz

≤ 2
k−1
2

∫ 1

0
zk−1(1− z)n

[
(− ln z)⌈

k−1
2 ⌉ + (− ln z)⌊

k−1
2 ⌋
]
/2dz

≤
√
k√
2π

2
k−1
2

[(
ln( exp(2)(n+k)

k )
)⌈ k−1

2 ⌉
+
(
ln( exp(2)(n+k)

k )
)⌊ k−1

2 ⌋
]
/2B(k, n+ 1)

≤
√
k√
2π

2
k−1
2

(
ln( exp(2)(n+k)

k )
)⌈ k−1

2 ⌉
B(k, n+ 1),

where the first inequality follows from the convexity of xn in n and the last
inequality holds since the ln term is greater than 1.
Step 3

The above analysis implies that

Pr(
1

k

k∑
i=1

Ui ≤ V1) ≤ ρkJn,k +Φ(1)n.

When k is fixed as a constant, the first term in the above inequality dominates
the second term. However, when k is large, their relationship is less clear. We
now show that there exists a constant γ ≥ 1 such that Φ(1)n is dominated by
γkB(k, n+ 1).

For this purpose, we use the Stirling’s formula n! =
√
2πn

(
n
e

)n
eλn with

1
12n+1 < λn <

1
12n (see 6.1.37 in [1]). We have that for k > 1,

lnB(k, n+ 1) = ln (k−1)!n!
(n+k)!

≥ ln
√

2π(k−1)n
(n+k) + (k − 1) ln(k − 1) + n lnn− (n+ k) ln(n+ k)

= ln
√

2πn
(n+k)(k−1) + k ln(1− 1/k) + k[− ln(1 + n/k)− n/k ln(1 + k/n)]

≥ ln
√

2π
2k + k ln(1− 1/k) + n lnΦ(1)

−kmax0≤α≤1{ln(1 + 1/α) + ln[(1 + α)Φ(1)]/α}
= ln

√
2π
2k + k ln(1− 1/k)− k ln δ + n lnΦ(1),

where the first inequality follows from the Stirling’s formula, and

δ = max
α∈[0,1]

(1 + 1/α)[(1 + α)Φ(1)]1/α.

Therefore, for k > 1,

Φ(1)n ≤
√

2k

2π
(1− 1/k)−kδkB(k, n+ 1),

and hence

Pr(
1

k

k∑
i=1

Ui ≤ V1) ≤
√
k√
2π

(
2

k−1
2 ρk

(
ln

(
exp(2)(n+ k)

k

))⌈ k−1
2 ⌉

+
√
2(1− 1/k)−kδk

)
B(k, n+1)
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Using Mathematica, we observe that δ ≤ 6.4. It is clear that there exists a
constant η > 0 such that for any k > 1,

P (
1

k

k∑
i=1

Ui ≤ V1) ≤ ηk
(
ln

(
exp(2)(n+ k)

k

))⌈ k−1
2 ⌉

B(k, n+ 1).

Apparently, the exp(2) term inside ln can be combined with the η term. For
k = 1, we have that

P (
1

k

k∑
i=1

Ui ≤ V1) =
1

n+ 1
= B(k, n+ 1),

and thus Theorem 3.7 holds.
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