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Abstract. In this paper, we consider smooth convex approximations to the maximum eigenvalue
function. To make it applicable to a wide class of applications, the study is conducted on the compos-
ite function of the maximum eigenvalue function and a linear operator mapping �m to �n, the space
of n-by-n symmetric matrices. The composite function in turn is the natural objective function of
minimizing the maximum eigenvalue function over an affine space in �n. This leads to a sequence of
smooth convex minimization problems governed by a smoothing parameter. As the parameter goes
to zero, the original problem is recovered. We then develop a computable Hessian formula of the
smooth convex functions, matrix representation of the Hessian, and study the regularity conditions
which guarantee the nonsingularity of the Hessian matrices. The study on the well-posedness of the
smooth convex function leads to a regularization method which is globally convergent.
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1. Introduction

Let �n denote the space of n-by-n real symmetric matrices endowed with the inner
product �X�Y � �= tr�XY � for any X�Y ∈�n. The maximum eigenvalue function
is often defined as the first component of the eigenvalue function 	��n→�n,
where for any X∈�n, 	�X� is the vector of eigenvalues of X in nonincreasing
order, i.e., 	1�X��	2�X�� ···�	n�X�. The minimization of the maximum ei-
genvalue function over various sets gives rise to probably the most important class
of eigenvalue optimization problems, see Lewis and Overton (1996). In particular,
the following problem which is to minimize the maximum eigenvalue function in
an affine subspace of �n is an equivalent reformulation of the semidefinite pro-
gramming relaxation of some combinatorial problems. Let A0�A1�����Am∈�n
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be given, and define an operator � ��m→�n by

�y �=
m∑
i=1

yiAi� ∀y∈�m�

Then the basic eigenvalue optimization problem we mentioned is given by

inf
y∈�m

	1�A�y�� (1)

where

A�y� �=A0+�y (2)

For more discussion on the problem, see Lewis and Overton (1996), Oustry (1999)
and Shapiro and Fan (1995).

It is well known that the eigenvalue function is usually not differentiable, which
inevitably gives rise to extremedifficulties in extending classical optimizationmeth-
ods (which often make use of information of the gradient and Hessian of ob-
jective functions) to eigenvalue optimization problems, see Overton and Womers-
ley (1995). Pioneering works conducted recently by Lewis within a very general
framework of spectral functions open ways in such extensions. A spectral function
is usually defined as a composite function of a symmetric function f ��n→�
and the eigenvalue function 	�·�. A function f ��n→� is symmetric if f is
invariant under coordinate permutations, i.e., f �P��=f ��� for any �∈�n and
P∈�, the set of all permutation matrices. Hence the spectral function defined
by f and 	 can be written as �f 		���n→� with �f 		��X�=f �	�X��
for any X∈�n. It seems that the spectral function, thought as a composition of
	�·� and a symmetric function, would inherit the nonsmoothness of the eigenvalue
function. However, according to the study of Lewis (1996), the smoothness of a
spectral function depends only on the smoothness of f . In fact, it is proved that
�f 		� is differentiable if and only if f is differentiable (differentiability means
Fréchet differentiability throughout the paper.) Furthermore, Lewis and Sendov
(2001) proved that �f 		� is twice (continuously) differentiable if and only if f is
twice (continuously) differentiable.

Although most of known spectral functions are not twice differentiable (not
even differentiable), we will soon see that the smooth approximation denoted by
f� (�>0 in general) to the nonsmooth function f gives rise to a smooth spectral
function �f�		�, which is a smooth approximation to the spectral function �f 		�.
For example, let

f �x� �=max�x1�����xn� (3)

Then

	1�X�=�f 		��X�� ∀X∈�n�
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A well known smoothing function to the maximum function (3) is the exponential
penalty function:

f��x� �=� ln

(
n∑
i=1

exi/�

)
� �>0� (4)

It is a C
 convex function and has the following uniform approximation to f , see
Chang (1980):

0�f��x�−f �x���lnn�

The penalty function, sometimes called the aggregation function, has been used in
a number of settings: Ben-Tal and Teboulle (1989), Bertsekas (1982), Goldstein
(1997), Li (1991), Peng and Lin (1999), Qi and Liao (1999), Qi and Tseng (2002),
Tang and Zhang (1994), and Tseng and Bertsekas (1993). In particular, Ben-Tal
and Teboulle (1989) studied this function together with its recession function (3).
Further studies along this line were conducted recently by Auslender (1999) in
a more general framework. In fact, this function is one of nonseparable penalty
functions in Auslender (1999).

It is easy to see that the exponential penalty function is symmetric in �n and the
well defined spectral function �f�		� is a uniform approximation to 	1�·�, i.e.,

0��f�		��X�−	1�X���lnn� ∀�>0� X∈�n� (5)

Moreover, �f�		� is twice continuously differentiable. It remains to consider its
composition with the affine mapping A�·�. For �>0, define �� ��

m→� by

���y� �=�f�			A��y�=f��	�A�y���� ∀y∈�m�

The uniform approximation (5) implies

lim
�→0

���y�=	1�A�y��� ∀y∈�m�

Therefore it is natural to consider the following convex minimization problem with
twice continuously differentiable objective function:

min
y∈�m

���y�� (6)

Hence we obtain a sequence of smooth functions which uniformly approximates
the maximum eigenvalue function with the accuracy controlled by a smoothing
parameter. As the parameter goes to zero, the function 	1�·� is recovered. The
efficiency of numerical methods for solving (6) depends on the availability and
the efficient computation of its gradient and Hessian. A related question is the
well-posedness of the problem (6) as defined in the book by Dontchev and Zolezzi
(1993). This leads us to consider a regularized minimization method for solving
(1).
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The paper is organized as follows: In Section 2, we derive formulae for the
gradient as well as for the Hessian of function ��, and study their properties. In
particular, we address the regularity conditions ensuring the nonsingularity of the
Hessian. We also develop a more explicit matrix representation of the Hessian. The
study on the well-posedness of the problem (6) leads to a regularization method for
solving (1) with convergence analysis in Section 3. Finally, conclusions are drawn
in Section 4. Frequently used basic gradient and Hessian formulae for continuously
differentiable spectral functions due to Lewis (1996) and Lewis and Sendov (2001)
are included in Section 5 as an Appendix.

Notation: Vectors in �n are viewed as columns and capital letters such as X�Y
et.al. always denote matrices in �n. For X∈�n, we denote by Xij the �i�j�th entry
of X. We use 	 to denote the Hadamard product between matrices, i.e.,

X	Y = �XijYij�
n
i�j=1�

Let the operator diag ��n→�n be defined by diag�X� �=�X11�����Xnn�
T ,

while for �∈�n, Diag��1������n� will denote the diagonal matrix with its ith
diagonal entry �i. Sometimes we write Diag��� instead of Diag��1������n� for
simplicity. Throughout, �·� denotes the Frobenius norm for matrices and the 2-
norm for vectors. We let �∗ ��n→�m be the adjoint operator of the linear
operator � ��m→�n defined by (2) and satisfies for all �d�D�∈�m×�n

dT�∗D�=�D��d��
Hence, for all D∈�n,

�∗D=��A1�D�������Am�D��T �

2. Smooth convex minimization problems

Through the rest of the paper, we let f be the maximum function defined by (3), f�
be the penalty function defined by (4), and �� be the merit function in the convex
minimization problem (6). The primary task in this section is to derive explicit
formulae for the gradient and the Hessian of �� which are used by many numerical
methods for solving (6). We then discuss the regularity conditions ensuring the
nonsingularity of the Hessian of ��. Finally, we give a matrix representation for the
Hessian.

2.1. BASIC CALCULATION

The following result is specialization of the results of [19, Lemma 7] and [22,
Prop. 3.1] on a general form of f� to the maximum function (3), and can also be
calculated directly.
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LEMMA 2.1. The following results hold:
(a) For any �1>�2>0, f�1�x��f�2�x� for all x∈�n.
(b) The gradient of f� is given by

 f��x�=����x� �=��1���x�������n���x��
T (7)

where for i=1�����n

�i���x�=
exi/�

n∑
j=1

exj/�
∈�0�1� and

n∑
i=1

�i���x�=1� (8)

(c) The Hessian of f� is given by

 2f��x�=
1
�

(
Diag�����x��−����x������x��T )� (9)

Let � denote the group of n×n real orthogonal matrices. For each X∈�n, define
the set of orthonormal eigenvectors of X by

�X �=�P∈�� PTXP=Diag�	�X����

Clearly �X is nonempty for each X∈�n. It follows Proposition 4.1 that the
spectral function �f�		� is continuously differentiable in �n. We now relate the
gradient of �f�		� to the subdifferential of 	1�·� (it is well known that 	1�·� is
convex and hence its subdifferential is well defined at any point X∈�n.) In fact,
it is shown in [17, Thm. 1] that

!	1�X�=
{
Q1YQ

T
1 � Y ∈�r

}
(10)

where Q1 is an n×r matrix whose columns form an orthogonal basis of the
eigenspace associated with 	1�X� (it has dimension r), and �r is the so-called
spectraplex of �r :

�r �=�V ∈�r � V is positive semidefinite� tr�V �=1�� (11)

The following result means that the gradient  �f�		��X� is an approximate
element with respect to !	1�X�.

PROPOSITION 2.2. For any X∈�n, we have
lim
�→0

 �f�		��X�∈!	1�X��

Proof. Let X∈�n and X=QDiag�	�X��QT , Q∈�X . Denote 	�=	�X� for
simplicity. Assume that X has multiplicity r of the largest eigenvalue 	1. Then the
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first r columns of Q must form an orthogonal basis of the eigenspace associated
with 	1. These columns form a matrix, say Q1∈�n×r .

It follows from (23) and (7) that

 �f�		��X�=QDiag� f��	��Q
T =QDiag���%�	��QT �

with

�i���	�=
e	i/�

n∑
j=1

e	j/�
= e�	i−	1�/�

n∑
j=1

e�	j−	1�/�
�

Noticing that 	 has multiplicity r of 	1 and 	1 is the largest element in 	, we obtain

lim
�→0

�i���	�=



1
r i=1�����r

0 i=r+1�����n�

Therefore

lim
�→0

 �f�		��X�=QDiag
[(

1
r
�����

1
r
�0�����0

)]
QT = 1

r
Q1IrQ

T
1 �

where Ir is the identity matrix in �r . Our result then follows from the characteriz-
ation (10) and (11) of subdifferential of 	1�·� at X. �

The next step is to develop the formulae for the gradient and the Hessian of ��,
which, viewed as the composition of the twice differentiable spectral function �f�	
	� and the affine mapping A�·� ��m→�n, follow from the standard chain rule.

PROPOSITION 2.3. Let �>0 be given. Then the followings hold:

(a) The function ���·� ��m→� is continuously differentiable, and the gradient
of ���·� at y∈�m is given by

 ���y�=�∗(U�Diag� f��	�A�y�����U
T
)
� ∀U ∈�A�y��

(b) The function ���·� ��m→� is twice continuously differentiable, and the
Hessian of ���·� at y∈�m is given by

 2���y��h�=�∗( 2�f�		��A�y����h�
)
� ∀h∈�m

where

 2�f�		��A�y����h�
=U

(
Diag� 2f��	�A�y���diag�H̃��+�	H̃)UT (12)

and U is any orthogonal matrix in �A�y�, H=�h, H̃=UTHU , and
�=��	�A�y��� is defined as in (25) with f replaced by f�.
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We now develop a more explicit formula for calculating  ���y�. Let U ∈�A�y�

and define

Ãi �=UTAiU � i=1�����m�

Let z �=	�A�y�� and ��=����z� (cf. (8)), then

�Ai� U�Diag� f��	�A�y�����U
T �=�UTAiU �Diag����=�Tdiag�Ãi��

We further let W ∈�n×m with its ith column given by the vector diag�Ãi�, i.e.,

W���i� �=diag�Ãi�� i=1�����m� (13)

Then taking into account of the formula of  ���y� in Proposition 2.3 (a), we have

 ���y�=WT��

In the next two subsections, we will pay attention to the Hessian of ��, study its
nonsingularity and develop a matrix representation for it.

2.2. NONSINGULARITY

The nonsingularity of the Hessian matrix  2���y� plays a very important role in
Newton-type methods for solving the (smooth) convex problem (6). It is clear to
see that the Hessian matrix is split into two parts, namely

 2���y�=�1�y�+�2�y�

where �1��2 ��
m→�n are defined respectively by

�1�y��h� �=�∗(U�Diag� 2f��	�A�y���diag�H̃���U
T
)
� ∀h∈�m

�2�y��h� �=�∗(U��	H̃�U T
)
� ∀h∈�m

where U ∈�A�y�, H=�h, H̃=UTHU and � is defined by ��	�A�y��� as in
(25) with f being replaced by f�. An implicit fact used in the above definitions
is the independence of the choice of U ∈�A�y� on h. Since �� is convex,  2�� is
positive semidefinite. We will see that it can be split into two positive semidefin-
ite operators, i.e., �1 and �2. If one of them is positive definite, so is  2��. This
provides a way to study the nonsingularity of  2��.

PROPOSITION 2.4. Let �1 and �2 be defined as above, then both of them are
positive semidefinite operators. And  2�%�y� is positive definite iff the matrices
A1�����Am are linearly independent and I �∈Range���, where Range���=
��h�h∈�m� and I is the identity matrix.
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Proof. We first prove the positive semidefiniteness of �1�·�. It suffices to show
that for any given y∈�m

�h��1�y��h���0� ∀h∈�m�

It is straightforward to see

�h��1�y��h�� = �h��∗(U�Diag� 2f��	�A�y���diag�H̃���U
T
)�

= ��h�U�Diag� 2f��	�A�y���diag�H̃���U
T �

= �UT��h�U�Diag� 2f��	�A�y���diag�H̃���
= �diag�H̃��T 2f��	�A�y���diag�H̃�

� 0�

The last inequality used the semidefiniteness of  2f��·� as f� is a convex function.
Now we prove �2 is positive semidefinite. For simplicity, we let z �=	�A�y��.

Then taking into account of Lemma 2.1 and (25), we obtain

�ij=���z��ij=




0 if i=j
1
��i���z� if i �=j� zi=zj
�i���z�−�j���z�

zi−zj if zi �=zj�

(14)

Here we used the relation

� 2f��z��ii=
1
�
��i���z�−��i���z��

2�� � 2f��z��ij=−1
�
�i���z��j���z�

and �i���z�=�j���z� if zi=zj and �i���z�>�j���z� if zi >zj . Thus, �ij�0
for all i�j=1�����n. We also note that for any B�C�D∈�n it is easy to verify
that

�B�C 	D�=�C�B	D�=�D�B	C��
Using this and the nonnegativity of all elements of �, we have for any h∈�m

�h��2�y��h�� = �h��∗(U��	H̃�U T
)�

= ��h�U��	H̃�U T �
= �UT��h�U��	H̃�
= �H̃��	H̃�
= ���H̃ 	H̃�
=

n∑
i=1

n∑
j=1

��ij��H̃ij�
2
�0�

This proves the semidefiniteness of �2.
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From the above argument, we see that  2���y� is positive semidefinite and it is
positive definite if and only if there does not exist nonzero h such that �h��1�h��=
�h��2�h��=0. Now note that �h��1�h��=0 if and only if H̃=0I for some
0∈� due to the special structure of  2f% , and �h��2�h��=0 if and only if
H̃ij=0 for i �=j since �ij >0 for i �=j. Hence  2���h�=0 for nonzero h∈�m

if and only if H̃=0I for some 0 �=0. The possibility of 0=0 is removed by
the linear independence of the matrices A1�����Am. But H̃=0I is equivalent to
I ∈Range���. Thus we complete the proof. �

2.3. MATRIX REPRESENTATION

It is ideal to have a matrix representation V ∈�m for  2���y� so that for any
h∈�m,

 2���y��h�=Vh� (15)

Therefore, the Newton equation

Vh=− ���y� (16)

can be solved in a number of ways (e.g., Golub and Val Loan, 1996). To this end,
let U ∈�A�y� be used in the definitions of �1 and �2, and recall that

Ãi �=UTAiU i=1�����m�

Note that

H̃=UT��h�U =UT

(
m∑
j=1

Ajhj

)
U =

m∑
j=1

Ãjhj�

Let matrix W ∈�n×m be defined by (13). Then

diag�H̃�=diag

[
m∑
j=1

Ãjhj

]
=Wh�

For simplicity, further let B �= 2f��	�A�y���. It follows that for i=1�����m

��1�y��h��i = �Ai� U�Diag�Bdiag�H̃���U T �
= �UTAiU �Diag�BWh��
= �Ãi�Diag�BWh��
=

n∑
j=1

�Ãi�jj�BWh�j�
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Putting in the matrix form, we have

�1�y��h�=
(
WTBW

)
h� (17)

Now we consider the linear operator �2. For i=1�����m, we have

��2�y��h��i = �Ai� U��	H̃�U T �
= �UTAiU � �	H̃�
= �Ãi� �	H̃�
= �H̃� Ãi	��
=

m∑
j=1

�Ãj� Ãi	��hj

=
m∑
j=1

��� Ãi	Ãj�hj�

Putting in matrix form, we then have

�2�y��h�=Mh� (18)

where M ∈�m is defined by

Mij �=��� Ãi	Ãj� i�j=1�����m� (19)

Putting (17) and (18) together, we have the matrix representation (15) with V ∈�m
given by

V �=WTBW+M�

Proposition 2.4 implies that both the matrix WTBW and M are positive semidef
-inite. In fact the positive semidefiniteness ofWTBW follows directly from that of
B since B is always positive semidefinite, see the structure of B in (8). We restate
Proposition 2.4 in terms of V .

PROPOSITION 2.5. Let V be defined as above depending on given y∈�m. Then

 2���y�=V �

Moreover, V is positive definite if and only if the matrices A1�����Am are linearly
independent and I �∈Range���.
Compared with the formula in Proposition 2.3 (b), the advantage of the matrix
representation of the Hessian matrix V is the separation of h from V , which makes
the Newton equation (see, (16)) into matrix–vector formulation, and hence paves
ways for applying numerical algorithm directly to it. To see clearly the implication
of Proposition 2.5, let us consider the simplest case that A�y� has multiplicity one
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of the largest eigenvalue, i.e., 	1�A�y��>	2�A�y��. In this case, the function
	1�A�·�� is twice continuously differentiable at y. After calculation by using the
formula (26) and repeating similar arguments as for the operator �2, we see that

 2	1�A�y��=M

where M is defined as in (19) with � replaced by

� �=




0 1
	1−	2

1
	1−	3

··· 1
	1−	n

1
	1−	2

0 0 ··· 0

1
	1−	3

0 0 ··· 0
���

���
���

� � �
���

1
	1−	n 0 0 ··· 0




and 	i �=	i�A�y���i=1�����n. We stress that M is independent of choice of
U ∈�A�y� due to the structure of �. Then conditions ensuring the nonsingular-
ity of M become the same conditions which guarantee the nonsingularity of the
Hessian of 	1�A�·�� at y, which is the case for optimization problems with twice
continuously differentiable data.

However, for the degenerate case, i.e., A�y� has multiplicity r (r >1) of the
largest eigenvalue, the situation becomes a bit complicated. For simplicity, let again
z �=	�A�y��. Hence, zi=	1�A�y�� for i=1�����r . We are interested in the
case where � is small. It follows from (8) that

lim
�→0

�i���z�=
{ 1
r i=1�����r
0 i=r+1�����n�

We observe from (14) that some elements of � grow to infinity as � approaches to
zero. The same problem occurs with the matrix  2f��y�. Fortunately, those two
matrices are well scaled, i.e., their magnitude is of 1/�. Let �0��0∈�n be defined
by

�0 �=
(
C 0
0 0

)
and �0 �=

(
D 0
0 0

)

where C �= 1
r �Er−Ir�, D�= 1

r2
�rIr−Er�, and Er is the matrix of all ones in �r

and Ir is the identity matrix in �r . It is easy to see from (14) and (9) that

lim
�→0

��=�0 and lim
�→0

� 2f��y�=�0� (20)

The limits in (20)mean that eventually the eigenvectors corresponding to the largest
eigenvalue of A�y� dominate the Hessian of ���y� as � goes to zero. This observa-
tion may be of vital importance in practically calculating the Hessian.
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3. A regularization method

In previous sections, we have seen that the function ���·� is well conditioned in the
sense that it is twice continuously differentiable and strictly convex given the linear
independence condition. Moreover, we have

lim
�→0

���y�=	1�A�y��� ∀y∈�m�

This suggests that, instead of minimizing the nondifferentiable function 	1�A�·��,
we can minimize the well conditioned function ���·�, and let � go to zero. A cru-
cial question to this approach is that if any selection of the minimizers of ���·�
converges to the set of minimizers of 	1�A�·�� as � goes to zero. To answer this
question, we apply Auslender’s general penalty approach [1] to our problem (1).

Recall that the recession function of h�·� defined below is the max-function (3)
(see Example (ii) of [1, Introduction])

h�x� �= ln

(
n∑
i=1

exi

)
� ∀x∈�n�

Then the smoothing function f� defined by (4) can be obtained by

f��x�=�h�x/���

For simplicity, let g ��m→�n

g�y� �=�		A��y�=	�A�y���

and the components of g be given respectively by

gi�y� �=	i�A�y��=�	i	A��y�� i=1�����n�

We then have

���y�=�h�g�y�/���

For each i=1�����n and y∈�m, the recession function of gi, denoted by �gi�
,
is defined by (see [1, (2.1)])

�gi�
�y� �= inf
{
liminf
k→


gi�tkyk�

tk
� tk→+
� yk→y

}
�

Let

g
�y� �=��g1�
�y�������gn�
�y��� ∀y∈�m�

A general convergence result of Auslender [1, Thm. 2.3], which in our case con-
cerns the convergence of any selection of the minimizers of ���·� to the solution set
of the minimizers of 	1�A�·��, involves the condition

h�g
�y��>0� ∀0 �=y∈�m� (21)

The other assumptions of [1, Thm. 2.3] are automatically satisfied in our case.
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LEMMA 3.1. Suppose that the solution set of (1), denoted by50, is nonempty and
bounded. Then (21) is satisfied for all 0 �=y∈�m.
Proof. Let 0 �=y∈�m be given, and let tk→+
 and yk→y. We have

�	i	A��tkyk�/tk=	i�A�tkyk��/tk=	i�A0+tk�yk�/tk=	i�A0/tk+�yk��

Hence

�gi�
�y�= lim
k→


	i�A0/tk+�yk�=	i��y��

Therefore, we have

h�g
�y��=	1��y��

Now we prove (21) holds for all 0 �=y∈�m. We first observe that 	1��y��0
for all y∈�m. To see this, suppose there exists one y∈�m such that 	1��y�<0,
then 	1�A�ty��→−
 as t→
, which contradicts the nonemptiness of 50. Let
y∗ ∈5. Note that we have proved 	1��y��0 for all y∈�m. If 	1��y�=0 for
some 0 �=y∈�m, then for any t�0,

	1�A�y
∗+ty��=	1�A�y

∗�+t�y��	1�A�y
∗��+t	1��y�=	1�A�y

∗���

If the equality holds for all t�0, then y∗+ty∈50 for all t�0, contradicting
the boundedness of 50. Therefore, we must have

	1�A�y
∗+t∗y�<	1�A�y

∗��

for some large t∗>0. That is, y∗+t∗y is a point which yields a less value than
that at y∗, and hence y∗ could not be a solution of (1), a contradiction. This proves
(21), completing our proof. �

Now we are ready to specialize to our problem a general convergence result
for penalty and barrier methods due to Auslender [1, Thm. 2.3] (all assumptions
except (2.7) of this theorem are automatically satisfied with our problem, and (2.7)
is verified in Lemma 3.1).

THEOREM 3.2. Suppose that the solution set50 of problem (1) is nonempty and
compact. Then the solution set 5� of problem (6) is also nonempty and compact
for any �>0. Moreover, every selection y�∈5� stays bounded with all its limit
points in 50. In particular, if the matrices A1�����Am are linearly independent,
then for every �>0 the minimization problem (6) is strictly convex, admits a
unique solution y�, and

lim
�→0

dist�y��50�=0

where dist denotes the distance of y� to 50.
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The boundedness condition on the solution set cannot be dropped in the the-
orem. Here is an example: Let n=2�m=1, A0=Diag�0�0� and A1=
Diag�0�1�. Then the solution set of the eigenvalue optimization problem is �x∈
��x�0�, which is obviously unbounded. However, for any �>0,

���x�=�ln�1+ex/���
and hence the convex minimization problem (6) has no solution. In this example,
the linear independence condition holds. On the one hand, the linear independence
increases the solvability of the smooth problem (6) as it is strictly convex. However,
sometimes it is very difficult to check the linear independence. On the other hand,
the linear independence is sometimes not sufficient to guarantee the solvability
of the smooth problem. To overcome these difficulties, we consider the so-called
Tikhonov regularization of the problem (6):

min
y∈�m

�̂��y�� (22)

where

�̂��y� �=���y�+
1
2
�y�2� ∀y∈�m�

Since ���·� is convex for any �>0, �̂��·� is strongly convex, and hence the problem
(22) always has a (unique) solution and is well-posed in the sense of Dontchev and
Zolezzi (1993). The Tikhonov regularization has been extensively studied in the
book Dontchev and Zolezzi (1993) and been successfully used to study comple-
mentarity problems and variational inequalities by a number of authors recently,
see Facchinei (1998), Facchinei and Kanzow (1999), Qi (1999, 2000), Ravindran
and Gowda (2000) and Sun (1999). The following result concerning the conver-
gence of the solution sequence of the regularized problem (22) can be proved
similarly as that for [1, Thm. 2.3] by usingLemma 3.1.

THEOREM 3.3. The smooth problem (22) has always a unique solution y� for
any �>0, and the solution sequence �y���>0 remains bounded and the distance
between y� and 50 approaches zero as �→0 providing 50 is nonempty and
bounded.

Our regularization method based on Theorem 3.3 can be stated as follows.

ALGORITHM 3.4 (A regularization method).
(S.1) Let ��1��2����� be a given sequence decreasing to zero. Let y

0∈�m be
given. Set k �=1.

(S.2) Using an unconstrained convex minimization method with initial point yk−1

to find the unique solution of the problem (22) with �=�k.
(S.3) Repeat (S.2) until a termination criterion is satisfied.
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REMARK. Although the problem (22) is well-posed for each �k>0, we stress
that sometimes it is not an easy task to find the exact solution of (22). Fortunately, it
is possible to design an iterative algorithm based on Algorithm 3.4 by exploiting
the regularization term of (22) as done in Qi (2000) and Sun (1999) for box vari-
ational inequalities and complementarity problems. It is beyond the scope of the
current paper to design such an algorithm with convergence analysis.

4. Conclusions

In this paper, we studied smooth convex approximations to the maximum eigen-
value function. To make it applicable to a wide class of applications, the study are
conducted on the composite function of the maximum eigenvalue function and a
linear operator mapping�m to �n, which in turn is the natural objective function of
minimizing themaximum eigenvalue function over an affine space in�n. This leads
us to a sequence of smooth convex minimization problems governed by a smooth-
ing parameter. As the parameter goes to zero, the original problem is recovered.
Efforts are then made on deriving a computable Hessian formula of the smooth
convex functions, and on the regularity conditions which guarantee nonsingularity
of the Hessian matrices. We also proposed a regularization technique ensuring the
well-posedness of the smooth convex problems. This could lead to a class of nu-
merical methods for minimizing the maximum eigenvalue function over an affine
space. As observed by a referee, the arguments in the paper do not depend much
on the special structure of the max function nor the log-exponential function and
could possibly be expanded to a more general class of convex symmetric functions
and their smoothing counterparts. For example, choose a smooth convex function
h��n→�n and define f%�x� �=%h�x% �. Then, f% forms a smoothing function for
the recession function h
�x� �= lim%→0+ f%�x�. Accordingly,

min �f%			A��y�

forms a smooth approximation of the nonsmooth optimization problem

min �h
			A��y��

Some additional assumptions on h might be needed to obtain results like Proposi-
tion 2.2 and Lemma 3.1, but most of the other results in the paper hold in this more
general context.
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Appendix

In this appendix, we recall formulae for the gradient and the Hessian of the twice
continuously differentiable spectral functions �f 		���n→�, which have played
important roles in this paper.

PROPOSITION 4.1 [12, Thm. 1.1] (formula for gradient). Let f be a symmetric
function from �n to � and X∈�n. Then the following hold:
(a) �f 		� is differentiable at point X if and only if f is differentiable at point

	�X�. In this case the gradient of �f 		� at X is given by

 �f 		��X�=UDiag� f �	�X���U T � ∀U ∈�X� (23)

More generally, the gradient of �f 		� has the following formula
 �f 		��X�=VDiag� f ����V T � (24)

for any orthogonal matrix V ∈� and �∈�n satisfying X=VDiag���V T .
(b) �f 		� is continuously differentiable at point X if and only if f is continu-

ously differentiable at point 	�X�.

In a recent paper, Lewis and Sendov (2001) found a formula for calculating the
Hessian of the spectral function �f 		�, when it exists, via calculating the Hessian
of f . This facilitates the possibility of using second-order methods for solving the
convex minimization problem. Suppose that f is twice differentiable at �∈�n.
Define the matrix ����∈�n×n:

������ij �=




0 if i=j(
 2f ���

)
ii
−( 2f ���

)
ij

if i �=j and �i=�j

� f ����i−� f ����j
�i−�j

else�
(25)

It is easy to see that ���� is symmetric due to the symmetry of f .

PROPOSITION 4.2 [14, Thm. 3.3, 4.2] (formula for Hessian). Let f ��n→�
be symmetric. Then for any X∈�n, it holds that �f 		� is twice (continuously)
differentiable at X if and only if f is twice (continuously) differentiable at 	�X�.
Moreover, in this case the Hessian of the spectral function at X is

 2�f 		��X��H�=U
(
Diag� 2f �	�X��diag�H̃��+��	�X��	H̃)UT �

∀H ∈�n (26)

where U is any orthogonal matrix in �X and H̃=UTHU .
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REMARK. We stress that the formulae (23) and (26) do not depend on the
particular choice of U ∈�X .
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