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1. Introduction
In recent years, many companies have started exploring in-
novative collaboration strategies in efforts to improve their
supply chain efficiency and, ultimately, the bottom line.
There are numerous examples of firms employing collab-
orative strategies in the form of long-term alliances and
collaborative logistics with an eye toward reducing their
supply chain costs. For example, such collaborative strate-
gies are used by the Good Neighbor Pharmacy and Affili-
ated Foods Midwest. The former is a cooperative network
of 2,700 independently owned and operated pharmacies.
The latter supplies more than 850 independent retails in the
12 Midwest states with a full line of grocery products.
To compete with big-box retailers, it is common for inde-

pendent grocery stores, hardware stores, and pharmacies to
form retailers’ cooperative groups—business entities that
employ economies of scale on behalf of retailer-members
to get discounts from manufacturers and to pool marketing.
To join a retailers’ cooperative, a store would typically pay
a membership fee and purchase stock in the cooperative in
return for its voting share. In addition, a store is usually
required to purchase a minimum amount of inventory from
the cooperative. The operating profits of the cooperative are
returned to the member stores in cash or stock rebate (see
Stankevich 1996). Over the years, retail cooperative groups
developed a variety of popular groupwide programs such
as insurance, pension plans, inventory management, pricing
assistance, logistics, warehousing, store design and layout,
site selection, and employee training (see Ghosh 1994).
These innovative strategies raise a variety of important

and challenging questions on managing supply chains. For

example, for a group of companies in a supply chain, how
should they cooperate? What possible outcomes can be
achieved, and how do the players share the costs and ben-
efits? Getting all players to agree on how to share costs
and benefits was identified as one of the major barriers
to collaborative commerce (see European Chemical Trans-
portation Association (ECTA) 2006, NerveWire 2002).
Cost allocation also plays a critical role for a single

firm in which several divisions or products share common
resources. As firms create autonomous units with delegated
responsibility toward personnel, adminstration, sales, and
distribution, costs of common resources have to be fully
allocated, otherwise the operating divisions may impute
lower costs to the common factor inputs and consume the
unallocated resources excessively (see Balachandran and
Ramakrishnan 1996).
The goal of this paper is to analyze the cost or bene-

fit allocation among several retailers in basic collaborative
supply chain settings, referred to as inventory centraliza-
tion games. In an inventory centralization game, we con-
sider a distribution system with multiple retailers that may
place joint orders and keep inventory at central warehouses.
There are two main reasons for this type of cooperation.
First, retailers can take advantage of the risk-pooling effect
by delaying the allocation of inventory. Second, exploit-
ing economies of scale allows retailers to reduce their costs
or increase their profits. Additionally, in practice, suppli-
ers usually provide quantity discounts to encourage large
orders, whereas third-party carriers offer volume or quantity
discounts, such as LTL (less-than-truckload) discounts, to
their clients to encourage demand for larger, more profitable
shipments.
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Given retailers’ interest in inventory centralization, it is
critical that they allocate the cost or share the benefit in
such a way that no retailer gains more by deviating from
the cooperation. We call such cooperatively achieved allo-
cations core allocations in this paper. This concept finds
prominent use in cooperative game theory.
In this paper, we apply the concept of core to ana-

lyze inventory centralization games with stochastic, price-
dependent demand and quantity discount. Specifically, we
consider a distribution system consisting of a set of retail-
ers that sell a single product. The demand of each retailer
depends on its own selling price and a common random
variable representing the market condition, referred to as a
market signal. By taking advantage of economies of scale
and risk-pooling effects, the retailers may form a coalition
by placing joint orders through multiple warehouses and
keeping inventory at warehouses. Due to long lead time,
there is a single replenishment opportunity, and orders have
to be placed long before the realization of the market sig-
nal. After the market signal is revealed, the inventory kept
at the warehouses can then be allocated to the retailers. The
objective of the retailers in a coalition is to maximize the
expected total profits of all retailers in the coalition.
In the inventory centralization game literature, demand

distribution is assumed to be given, which is of course con-
sistent with traditional inventory models focusing on exoge-
nously determined commodity prices. In recent years, how-
ever, with the development of information technology and
e-commerce, a number of industries have used innovative
pricing strategies as an effective tool to better match sup-
ply and demand and, therefore, significantly improve their
operational efficiencies (see, for example, Kimes 1989,
Gallego and van Ryzin 1994). Thus, in the inventory cen-
tralization games analyzed here, we assume that in addi-
tion to the inventory ordering and allocation decisions,
retailers may set their own selling prices either before or
after observing the market signal. Moreover, we assume
that retailers are noncompeting, i.e., a retailer’s price only
affects its own demand. This assumption is valid if the
retailers serve customers from nonoverlapping regions (for
example, most Good Neighbor Pharmacy stores operate in
separate nonintersecting market locations).
The main contribution of this paper is to show that inven-

tory centralization games with price-dependent demand
have nonempty cores under very general assumptions re-
garding ordering costs. Specifically, if the ordering costs
are linear, we use convex programming duality theory to
construct an allocation in the core of an inventory central-
ization game. More interestingly, under the assumption that
the ordering cost follows a general quantity discount, we
prove that an inventory centralization game in which all
retailers share a single common warehouse has a nonempty
core when (a) the retailers’ pricing decisions are made after
the revelation of the market signal, or (b) the retailers have
identical cost parameters and their pricing decisions are
made before the revelation of the market signal.

The main idea of our proof for inventory centralization
games with general quantity discount is to construct a new
inventory centralization game with a linear ordering cost,
which is known to have a nonempty core, such that the
maximum profit achieved by any subset of the retailers in
the new game will not decrease, while ensuring the maxi-
mum profit achievable by all retailers remains unchanged.
In addition to the proof of the nonemptiness of the core,
our approach also suggests a mechanism to find an alloca-
tion in the core for the inventory centralization game with
a general quantity discount.
Our assumption about the cost function is quite general.

Indeed, the only assumption we make is that the larger the
ordering/transporting quantity, the lower the average unit
ordering/transportation cost. Our assumption includes sev-
eral commonly used discounts: incremental discounts, all-
units discounts under which suppliers offer price breaks for
large orders (see Zipkin 2000), and the less-than-truckload
volume discount (see Muriel and Simchi-Levi 2003). It is
appropriate to point out that the all-units discount is neither
continuous nor monotone.
The rest of this paper is organized as follows. In §2, we

briefly review the related literature. In §3, we introduce the
inventory centralization game model and some important
solution concepts in the cooperative game theory. In §4,
convex programming duality theory is employed to show
that an inventory centralization game with linear ordering
cost has a nonempty core, which is followed by an analy-
sis on inventory centralization games with general quantity
discounts in §5 and a procedure to compute a core alloca-
tion in §6. Finally, some concluding remarks and important
extensions of our results are presented in §7.

2. Literature Review
In this section, we present a brief review of inventory
centralization games and integrated inventory and pricing
models. For a comprehensive review of applications of the
cooperative game theory to supply chain management, see
Nagarajan and Sošić (2006). We also refer to Demski and
Kreps (1983) for a review and critique to models in man-
agerial accounting, including the applications of coopera-
tive games in cost allocation.
Unlike our paper, which allows for general quantity dis-

count, inventory centralization games analyzed in the lit-
erature mainly focus on the risk-pooling effect. It is well
known in the inventory literature that inventory central-
ization leads to cost reduction or profit increase (see, for
example, Eppen 1979), which provides retailers with an
incentive to form coalitions.
A special case of inventory centralization games is the

newsvendor game, in which each retailer is a newsvendor
with the same cost parameters and the transportation cost
associated with reallocating inventory after observing the
demand is negligible. Newsvendor games have been ana-
lyzed in several papers by assuming linear ordering cost
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structure. Under this assumption, Hartman et al. (2000)
show that a newsvendor game has a nonempty core under
special assumptions on demand distributions. This result
has been generalized by Müller et al. (2002) and Slikker
et al. (2001), who show that the core is always nonempty
regardless of the demand distributions.
More general inventory games have been studied by

Slikker et al. (2005) and by Ozen et al. (2008), who extend
newsvendor games in two ways. First, retailers may place
orders through multiple warehouses. Second, in their set-
tings, the cost parameters of the retailers can be different
and the transportation costs may be nonzero. Although the
models are much more complicated than the one studied in
Hartman et al. (2000), Slikker et al. (2005) and Ozen et al.
(2008) still manage to show that the games have nonempty
cores. In another paper, Ozen and Sošić (2006) extend the
models by allowing the retailers to allocate inventory after
observing the revelation of a market signal but before the
realization of the demand.
The analysis in Hartman et al. (2000), Müller et al.

(2002), Slikker et al. (2001, 2005), and Ozen et al. (2008)
relies heavily on the structure of the underlying problems
and its extension to more general settings may be difficult.
To overcome this difficulty, Chen and Zhang (2009) present
a unified way to analyze inventory centralization games
using the duality theory of stochastic programming. Their
duality approach is further extended in Chen and Zhang
(2009) to analyze inventory centralization games with con-
cave ordering cost.
Anupindi et al. (2001) study a two-stage model that is

closely related to the one in Slikker et al. (2005) and Chen
and Zhang (2009). However, in their model, the retailers
do not fully cooperate. In the first stage, before demand re-
alization, each retailer makes its own decision on how much
to order. In the second stage, after observing the demands,
the retailers can cooperate by reallocating their inventories.
Granot and Sošić (2003) add an additional, noncooperative
stage between the two stages, in which each retailer deter-
mines the amount of its residual inventories to share.
Our paper analyzes inventory centralization games with

price-dependent demand and thus is related to the literature
on the coordination of inventory control and pricing strate-
gies. For a review of this literature, the reader is referred to
Eliashberg and Steinberg (1993), Petruzzi and Dada (1999),
Federgruen and Heching (1999), Yano and Gilbert (2002),
Elmaghraby and Keskinocak (2003), or Chan et al. (2004).
Our analysis and results for inventory centralization games
with quantity discount depend on whether pricing decision
is made before or after the revelation of a market signal,
and thus is also related to the literature on price and pro-
duction postponement. For more details on this literature,
we refer to van Mieghem and Dada (1999) and Chod and
Rudi (2005).
Our paper makes two important contributions to the lit-

erature. First, this paper is the first to incorporate pric-
ing decisions in the inventory centralization game setting.

So far, the literature on inventory centralization games
exclusively assumes that price is exogenously determined.
However, with the development of information technology
and e-commerce, firms can adjust their prices at minimal
costs to better match their supply and demand. Thus, it is
critical to investigate the impact of pricing decisions in the
inventory centralization game setting.
Second, this paper is the first to allow for general quan-

tity discounts in the inventory centralization game setting.
All the papers mentioned above do not take into consider-
ation quantity discounts, i.e., they assume that the ordering
cost is proportional to the order quantity. The only excep-
tion is Chen and Zhang (2009), which allows for concave
ordering cost in the newsvendor game setting. The quan-
tity discounts used here are much more general than the
concave ordering cost analyzed in Chen and Zhang (2009)
because they also include other commonly used discounts
such as all-units discounts and LTL cost structure as special
cases. Because we use rather general quantity discounts, the
duality approach proposed in Chen and Zhang (2009) does
not apply and consequently we develop a totally different
approach in this paper.

3. The Inventory Centralization
Game Model

Consider a distribution system consisting of a supplier, a set
of m warehouses denoted by W = �1�2� � � � �m�, and a set
of n retailers denoted by N = �1�2� � � � � n�. The retailers
order from the supplier through the warehouses and sell a
single type of goods in a single period.
The retailers are assumed to be noncompeting and allow-

ed to make their selling price decision. Each retailer’s de-
mand depends on its own selling price and a common
random variable—the market signal, 	. To satisfy their
demand, the retailers, taking advantage of risk-pooling
effects, may form coalitions to place joint orders through
the warehouses before observing the market signal, whereas
the inventories are allocated to the retailers after the market
signal is revealed. Let Zj ⊆ W be the set of warehouses
that can be used to supply retailer j if she does not coop-
erate with other retailers. If retailer j , together with some
other retailers, decides to form a group S, referred to as a
coalition, by placing joint orders and sharing inventory, her
demand can be served by the inventory at any warehouse
in

⋃
j∈S Zj .

Depending on when the pricing decision is made, we
focus on two different models. The first model, referred to
as the nonanticipative pricing model, assumes that the pric-
ing decision is made before the market signal is revealed.
On the other hand, the second model, referred to as the
postponed pricing model, assumes that the pricing decision
is made after the market signal is revealed.
The sequence of events is as follows. Before observing

the realization of the market signal, each warehouse places
an order by paying an ordering cost of ci�yi� for an order
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quantity yi at warehouse i. The retailers then decide their
selling prices pj�	�. In the postponed pricing model, the
pricing decision is made after the realization of the market
signal 	, whereas in the nonanticipative pricing model, the
pricing decision is made before the realization of the market
signal 	. In this case, we impose the nonanticipative con-
straint on the prices: E�pj�	��= pj�	� for all 	 and j ∈N ,
which implies that the pricing decision of each retailer is
independent of the realization of the market signal.
After the market signal 	 is revealed, all goods at the

warehouses are allocated to the retailers, say xij�	� units
of goods are shipped from warehouse i to retailer j . The
transportation cost of sending one unit of goods from ware-
house i to retailer j is sij . For each retailer j , if the total
amount of goods received from the warehouses is more
than the realized demand, a per-unit holding cost of hj for
excess inventory is incurred. On the other hand, we make
the following assumption regarding unsatisfied demand.

Assumption 1. Unsatisfied demand at retailer j is filled
by an emergency order, which incurs a per-unit emergency
ordering cost of qj .

1�2

The demand of each retailer is random and depends on
the realization of the market signal 	 and its own selling
price. Specifically, we concentrate on demand functions of
the following forms:

Assumption 2. For j ∈ N , the demand function of re-
tailer j satisfies

d̃j =Dj�pj�	� �= �j�	�−�j�	�pj� (1)

where �j and �j are two nonnegative random variables,
represented as functions of the market signal 	.3

To avoid technical complications, we assume that the
sample space � of 	 is finite. However, this assumption
can be relaxed if necessary.
We further assume that pj and p̄j are the lower and

upper bounds of pj�	�, respectively. Thus, in the postponed
pricing model, the feasible set of retailer j’s price decision
pj�·� is given by

P
�p�
j = �pj�·�� pj � pj�	�� p̄j � ∀	 ∈���

whereas in the nonanticipative pricing model, the feasible
set of retailer j’s price decision pj�·� is given by imposing
the nonanticipative constraint as follows:

P
�n�
j = {

pj�·�� E�pj�	��= pj�	��

pj � pj�	�� p̄j � ∀	 ∈�
}
�

The inventory centralization problem for a coalition of
retailers S ⊂ N can be formulated as a two-stage stochas-
tic programming model with recourse. In this model, yi,
i = 1�2� � � � �m, is the first-stage decision variable. After
the market signal 	 is revealed, a recourse decision should

be made, which is the amount of goods sent from i to j ,
i.e., xij�	� for all i ∈ ⋃

j∈S Zj and j ∈ S, and the sell-
ing price pj�	� (in the nonanticipative pricing model, we
impose the nonanticipative constraint, which implies that
pricing decisions are actually made at the first stage). Let
vj�	� be the total amount of goods received by retailer j .
For the coalition S, the objective is to maximize the ex-
pected total profit of all retailers in S.
Denote the maximum expected profit of the coalition S

by V �S�, which can be written as the optimal value of the
following two-stage stochastic programming problem with
recourse:

V �S�=max ∑
j∈S

{
E�Rj�pj�	��	�

−fj�vj�	�−�j�	�+�j�	�pj�	���
}

− ∑
i∈∪j∈SZj

(
ci�yi�+

∑
j∈S

sijE�xij �	��

)

s.t. yi−
∑
j∈S

xij �	�=0� i∈⋃
j∈S

Zj� 	∈��

vj�	�−
∑

i∈∪j∈SZj

xij �	�=0� j ∈S� 	∈��

xij�	��0� j ∈S� i∈⋃
j∈S

Zj� 	∈��

pj�·�∈Pj� j ∈S�

(2)

where the maximization is taken over �yi� xij �·��pj�·��
vj�·��, Rj is the realized revenue function for a given sell-
ing price r and realization of the marker signal 	:

Rj�r�	�= r��j�	�−�j�	�r��

fj represents the inventory holding cost or emergency
ordering cost

fj�%�= hj%
+ + qj�−%�+�

and Pj = P
�p�
j for j ∈ N in the postponed pricing model,

whereas Pj = P
�n�
j for j ∈ N in the nonanticipative pricing

model.
In the above model, the term in the first summation in

the objective function is the expected revenue minus the
expected inventory holding cost and emergency ordering
cost. The term in the second summation in the objective
function is the regular ordering cost and the transportation
cost. The first constraint implies that no warehouse holds
inventory. As pointed out by Chen and Zhang (2009), this
assumption is not critical and is made merely for the ease
of presentation. The second constraint specifies that the
total amount of goods received by a retailer equal the total
amount sent to the retailer from the warehouses.
Now the pair �N �V � with V given by (2) for each coali-

tion S ⊂ N defines a cooperative inventory centralization
game. Because some of our results depend on whether

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Chen: Inventory Centralization Games with Price-Dependent Demand and Quantity Discount
1398 Operations Research 57(6), pp. 1394–1406, © 2009 INFORMS

there is a single warehouse or multiple warehouses, we will
use the notation �N �V �m� to emphasize the cooperative
inventory centralization game with m warehouses when
necessary.
At this point, it is appropriate to introduce some basic

concepts of the cooperative game theory that will be used in
this paper. The set of retailers N is called the grand coali-
tion. The function V , the maximum total value that a coali-
tion S can generate when the members of S decide to secede
from the grand coalition and cooperate only among them-
selves, is referred to as the characteristic value function.
A vector l= �l1� l2� � � � � lN � is called an efficient alloca-

tion for the game �N �V � if
∑

j∈N lj = V �N�. The core of
a cooperative game is a solution concept that requires that
no subset of players has an incentive to secede.

Definition 1. An efficient allocation l is in the core of the
game �N �V � if

∑
j∈N lj = V �N�, and for any subset S ⊆N ,∑

j∈S lj � V �S�.

A game �N �V � is called a convex �value� game if for
every pair of subsets S�T ⊆N , V �S�+V �T �� V �S∪T �+
V �S ∩ T �, or equivalently, V �S� is supermodular in S. It is
well known that the core of a convex (value) game is always
nonempty. Unfortunately, cooperative inventory centraliza-
tion games may not be convex. Indeed, the newsvendor
game (a cost game instead of a value game), which can be
easily shown to be equivalent to a special case of the above
cooperative inventory game, is not concave in general (see
Ozen et al. 2005).

4. Inventory Games with Linear
Ordering Cost

In this section, we assume that the ordering cost ci�yi� is
linear, and by slightly abusing the notation, we also use ci
to denote the unit ordering cost. Because the realized rev-
enue Rj�pj�	��	� is concave in pj�	� by Assumption 2
and fj�%� is convex, problem (2) is a concave maximiza-
tion problem with linear constraints, which allows us to
apply the elegant duality theory for convex minimization
problems with linear constraints. For this purpose, define
the Lagrangian function

LS�y�p� v� x�)�*�+�

=∑
j∈S

�E�Rj�pj�	��	�−fj�vj�	�−�j�	�+�j�	�pj�	����

− ∑
i∈∪j∈SZj

(
ciyi +

∑
j∈S

sijE�xij �	��

)

+ ∑
i∈∪j∈SZj

E
[
)i�	�

(
yi −

∑
j∈S

xij �	�

)]

+ ∑
j∈S
E
[
*j�	�

( ∑
i∈∪j∈S

xij �	�− vj�	�

)]

+ ∑
j∈S� i∈∪j∈SZj

E�+ij�	�xij�	��

=∑
j∈S

,j�pj� vj�*j�+
∑

i∈∪j∈SZj

yi�E�)i�	��− ci�

+ ∑
j∈S� i∈∪j∈SZj

E�xij �	��+ij�	�− sij −)i�	�+*j�	����

where y = �yi�i∈∪j∈SZj
, d = �dj�j∈S , v = �vj�j∈S , ) =

�)i�i∈∪j∈SZj
, *= �*j�j∈S , + = �+ij�j∈S� i∈∪j∈SZj

, and

,j�pj� vj�*j�= E�Rj�pj�	��	�− fj�vj�	�−�j�	�

+�j�	�pj�	��−*j�	�vj�	��� (3)

Consider the dual function -S�)�*�+� defined by

-S�)�*�+�= sup LS�y�p� v� x�)�*�+�

s.t. pj�·� ∈ Pj� j ∈ S�

The duality theorem for convex minimization problems
with linear constraints implies that V �S� is equal to the
optimal objective value of the dual problem (see, for exam-
ple, Bertsekas 1995, p. 299):

V �S�=min -S�)�*�+�

s.t. +ij�	�� 0� j ∈ S� i ∈⋃
j∈S

Zj� 	 ∈�� (4)

Let �)∗�*∗�+∗� be optimal for the dual problem (4) with
S =N . Then again, the duality theorem implies that

V �N�=max LN �y�p� v� x�)
∗�*∗�+∗�

s.t. pj�·� ∈ Pj� j ∈N�
(5)

Define for j ∈N ,

lj =max ,j�pj� vj�*
∗
j �

s.t. pj�·� ∈ Pj �

We claim that �l1� l2� � � � � ln� is in the core of the coop-
erative game �N �V �.

Theorem 1. The vector l= �l1� l2� � � � � ln� is in the core of
the cooperative game �N �V �.

Proof. Note that in the optimization problem (5), no con-
straint is imposed on the decision variables yi and xij�	�.
Thus, we must have

E�)∗
i �	��− ci = 0� i ∈ ⋃

j∈N
Zj� 	 ∈�� (6)

and

+∗
ij �	�− sij −)∗

i �	�+*∗
j �	�= 0�

j ∈N� i ∈ ⋃
j∈N

Zj� 	 ∈�� (7)

Therefore,

LS�y�p� v� x�)
∗�*∗�+∗�=∑

j∈S
,j�pj� vj�*

∗��
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This, together with (5), implies that∑
j∈N

lj = V �N��

In addition, because �)∗�*∗�+∗� is feasible for prob-
lem (4),∑
j∈S

lj = -S�)
∗�*∗�+∗�� V �S��

Thus, l = �l1� l2� � � � � ln� is in the core of the cooperative
game �N �V �. �

From the above proof, we know that the optimal dual
variables �)∗�*∗�+∗� must satisfy constraints (6) and (7).
We now provide some intuition of the dual variables and the
constraints. In the dual, we attempt to allocate the ordering
cost and the transportation cost to each unit goods received
by the retailers. Specifically, let the dual variable *∗

j �	� be
the charge for each unit of goods received by retailer j to
compensate for its ordering cost and transportation cost and
)∗
i �	� be a charge for each unit of goods sent out by ware-
house i to compensate its ordering cost if the market signal
turns out to be 	. Constraint (6) implies that the average
unit charge by warehouse i should be enough to cover its
ordering cost ci. Because +

∗
ij �	�� 0, the dual constraint (7)

implies that this unit charge *∗
j �	� at retailer j should be

no more than the unit price, )∗
i �	�, charged by warehouse i

plus the transportation cost sij . On the other hand, if there is
a shipment from warehouse i to retailer j , then +∗

ij �	�= 0
by the complementarity slackness condition, and the dual
constraint (7) implies that this unit charge *∗

j �	� is enough
to compensate the unit price, )∗

i �	�, charged by warehouse i
plus the transportation cost sij .

5. Inventory Games with
Quantity Discounts

In this section, we assume that the supplier provides quan-
tity discounts to encourage large orders, or a third-party
carrier provides volume discounts to encourage larger ship-
ments. Specifically, we make the following assumption.

Assumption 3. We assume that ci�y�/y is nonincreasing.
That is, the larger the ordering quantity, the lower the aver-
age unit ordering cost.

For technical reasons, we assume that ci�y� is lower
semicontinuous; that is, lim infy→x ci�y�� ci�x� for any x.
Further, we assume that ci�y� → � as y → �. Under
these assumptions, problem (2) has an optimal solution for
any S ⊂N .
Our assumption on the ordering cost is quite general.

Indeed, we do not require ci�x� to be continuous, mono-
tone, convex, or concave. Moreover, it includes several
comsmonly used discounts: incremental discounts and all-
unit discounts. The concave ordering cost analyzed in Chen
and Zhang (2009) and the LTL volume discount function

(see Muriel and Simchi-Levi 2003) are also important spe-
cial cases.
Given this general ordering cost structure, unfortunately,

the corresponding cooperative game may have an empty
core. Indeed, in a special case of the inventory centraliza-
tion games in which price is not a decision variable, Chen
and Zhang (2009) show that for a distribution system with
multiple warehouses, the core of the corresponding cooper-
ative game may be empty even if the ordering costs involve
only fixed costs and demand is deterministic.
Thus, in this section we focus on inventory centralization

games with a single warehouse �N �V �1�. Specifically, we
analyze the postponed pricing model with a single ware-
house and the nonanticipatory pricing model with a single
warehouse and symmetric retailers in two separate subsec-
tions. Because we analyze inventory games with a single
warehouse, in the following analysis we drop the index
associated with the warehouses.

5.1. Single Warehouse, Postponed Pricing

In this subsection, we analyze an inventory centralization
game �N �V �1� with postponed pricing. In this case, the
value of a coalition S can be defined as

V �S�=max −c�y�+ g�y� S�

s.t. y � 0�
(8)

where

g�y� S�= E�gS�y�	�� (9)

with

gS�y�	�=max
∑
j∈S

gj�pj� xj�	�

s.t. y−∑
j∈S

xj = 0�

xj � 0� j ∈ S�

pj � pj � p̄j � j ∈ S�

and

gj�pj� xj�	�

=Rj�pj�	�− fj�xj −�j�	�+�j�	�pj�− sjxj �

It is clear that, given the general quantity discount func-
tion c�y�, the objective function of the above optimization
problem is neither convex nor concave. Thus, analyzing it
directly appears to be quite challenging. To get around this
challenge, we construct another inventory centralization
game �N � �V � with a linear ordering cost, which is known
to have a nonempty core, such that �V �S� � V �S� for any
S ⊂N and �V �N� = V �N�. If this could be done, then
we could prove that any element in the core of the game
�N � �V � is in the core of the game �N �V �.
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To carry out the idea, we need the following result,
Lemma 1, which implies that the bigger a coalition is, the
larger the optimal ordering quantity should be. It is appro-
priate to point out that Lemma 1 involves the monotonic-
ity of optimal solutions for a parameterized collection of
optimization problems. A common approach to prove such
monotonicity uses the concept of supermodularity. How-
ever, it turns out that the concept of supermodularity does
not apply here. Indeed, because a newsvendor game (a cost
game) is not concave in general (see Ozen et al. 2005), V �S�
may not be supermodular. Thus, the function g�y� S� may
not be supermodular in �y� S�; otherwise, the supermodular-
ity of g�y� S� would imply that V �S� is supermodular in S
(see Topkis 1998, Theorem 2.7.6).
It is also important to point out that Lemma 1 is indepen-

dent of how the retailers’ demands are correlated. In addi-
tion, this result is true for any ordering cost as long as the
relevant quantities are well defined.

Lemma 1. For any given S ⊂ N , let y∗�S� be the small-
est optimal ordering quantity for the postponed pricing
model (8)–(9). Then, we have y∗�S1�� y∗�S2� for S1 ⊆ S2.

Proof. We prove this result by contradiction.
Assume that there exist S1� S2 ⊆ N with S1 ⊂ S2 such

that y∗�S1� > y∗�S2�. Let �x1j �	��p
1
j �	��j∈S1 be the optimal

inventory allocation and pricing associated with the optimal
ordering quantity y∗�S1� for problem (8)–(9) with S = S1.
Similarly, let �x2j �	��p

2
j �	��j∈S2 be the optimal inventory

allocation and pricing associated with the optimal ordering
quantity y∗�S2� for problem (8)–(9) with S = S2.
The definition of y∗�S1� and y∗�S2� implies that

−c�y∗�S1��+
∑
j∈S1

E�gj�p
1
j �	�� x

1
j �	��	��

>−c�y∗�S2��+
∑
j∈S1

E�gj�p
3
j �	�� x

3
j �	��	�� (10)

for any p3j �·� ∈ P
�p�
j and x3j �·� with

y∗�S2�=
∑
j∈S1

x3j �	� ∀	 ∈�� (11)

Similarly,

−c�y∗�S2��+
∑
j∈S2

E�gj�p
2
j �	�� x

2
j �	��	��

�−c�y∗�S1��+
∑
j∈S2

E�gj�p
4
j �	�� x

4
j �	��	�� (12)

for any p4j �·� ∈ P
�p�
j and x4j �·� with

y∗�S1�=
∑
j∈S2

x4j �	� ∀	 ∈��

Specifically, let

p4j �	�= p2j �	�� x4j �	�= x2j �	� ∀ j ∈ S2\S1� 	 ∈��

This, together with inequality (12), implies that

−c�y∗�S2��+
∑
j∈S1

E�gj�p
2
j �	�� x

2
j �	��	��

>−c�y∗�S1��+
∑
j∈S1

E�gj�p
4
j �	�� x

4
j �	��	�� (13)

for any p4j �·� ∈ P
�p�
j and x4j �·� with

y∗�S1�− y∗�S2�=
∑
j∈S1

�x4j �	�− x2j �	�� ∀	 ∈�� (14)

Adding the two inequalities (10) and (13) together gives
us that∑
j∈S1
E�gj�p

1
j �	��x

1
j �	��	�+gj�p

2
j �	��x

2
j �	��	��

>
∑
j∈S1
E�gj�p

3
j �	��x

3
j �	��	�+gj�p

4
j �	��x

4
j �	��	�� (15)

for any p3j �·��p4j �·� ∈ P
�p�
j , �x3j �·��j∈S1 satisfying (11) and

�x4j �·��j∈S1 satisfying (14).
Define

)�	�= y∗�S1�− y∗�S2�
y∗�S1�−

∑
j∈S1 x

2
j �	�

�

Because∑
j∈S1

x2j �	��
∑
j∈S2

x2j �	�= y∗�S2� < y∗�S1��

we have that )�	� ∈ �0�1�. For j ∈ S1, let

x3j �	�= �1−)�	��x1j �	�+)�	�x2j �	��

p3j �	�= �1−)�	��p1j �	�+)�	�p2j �	��

and

x4j �	�= )�	�x1j �	�+ �1−)�	��x2j �	��

p4j �	�= )�	�p1j �	�+ �1−)�	��p2j �	��

It is clear that �x3j �·��j∈S1 satisfies (11) and �x4j �·��j∈S1 sat-
isfies (14). In addition,

x3j �	�+ x4j �	�= x1j �	�+ x2j �	�

and

p3j �	�+p4j �	�= p1j �	�+p2j �	��

Thus, the concavity of the realized revenue function Rj

implies that

Rj�p
3
j �	��	�+Rj�p

4
j �	��	�

�Rj�p
1
j �	��	�+Rj�p

2
j �	��	��
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and the convexity of fj implies that

− fj�x
3
j �	�−�j�	�+�j�	�p

3
j �	��

− fj�x
4
j �	�−�j�	�+�j�	�p

4
j �	��

�−fj�x
1
j �	�−�j�	�+�j�	�p

1
j �	��

− fj�x
2
j �	�−�j�	�+�j�	�p

2
j �	���

Adding the two inequalities together and taking expectation
with respect to 	 gives us an inequality that contradicts
inequality (15). Thus, y∗�S1�� y∗�S2�. �

We now prove that we can construct a new inventory cen-
tralization game �N � �V �1� with linear ordering cost such
that for any S ⊂ N , �V �S�� V �S�, whereas �V �N�= V �N�
for the postponed pricing model (8)–(9). For this purpose,
we define for any given scalar ĉ � 0 an inventory central-
ization game �N �Vĉ�1� with the ordering cost being ĉx.
In this game, for any S ⊆N ,

Vĉ�S�=max −ĉy+ g�y� S�

s.t. y � 0�

Lemma 2. There exists a scalar ĉ∗ such that for any S ⊂N ,
Vĉ∗�S�� V �S� and Vĉ∗�N �= V �N�.

Proof. We consider two cases. First, assume that zero is an
optimal solution for problem (8) (together with (9)) for the
grand coalition, i.e., S = N in (8). Lemma 1 implies that
zero is an optimal solution for problem (8) for any S ⊆N .
On the other hand, if we choose a sufficiently large ĉ∗, say
ĉ∗ �maxj∈N max�p̄j � qj�, it is easy to see that zero is also
an optimal solution for problem maxy�0−ĉ∗y+ g�y� S�. In
this case, Vĉ∗�S�= V �S� for any S ⊆N .
We now assume that zero is not an optimal solution for

problem (8) for the grand coalition. Let y∗ be an optimal
solution for problem (8) for the grand coalition, i.e., S =N
in (8). Upon denoting c∗ = c�y∗�/y∗, we have that

V �N� = −c�y∗�+ g�y∗�N �

= −c∗y∗ + g�y∗�N �

� max
y�0

−c∗y+ g�y�N �

= Vc∗�N ��

On the other hand, because we assume that zero is not an
optimal solution for problem (8) for the grand coalition, we
have that

V �N� = max
y�0

−c�y�+ g�y�N �

> g�0�N �

= lim
ĉ→�

Vĉ�N ��

The continuity of Vĉ�N � as a function of ĉ, together with
the above two inequalities, implies that there exists a ĉ∗

such that V �N�= Vĉ∗�N �.

Define x̂= sup�x� 0� c�x�/x� ĉ∗�. Let ŷ∗ be the small-
est optimal solution for the problem miny�0−ĉ∗y+ g�y�N �.
We claim that ŷ∗ � x̂.
Assume to the contrary that ŷ∗ > x̂. The definition of x̂

together with the monotonicity of c�x�/x implies that
c�ŷ∗�/ŷ∗ < ĉ∗. Thus,

Vĉ∗�N � = −ĉ∗ŷ∗ + g�ŷ∗�N �

< −c�ŷ∗�+ g�ŷ∗�N �

� −c�y∗�+ g�y∗�N �

= V �N��

which contradicts the fact that V �N� = Vĉ∗�N �. Thus,
ŷ∗ � x̂.
Define a new function c̃�x� as follows:

c̃�x�=
{
ĉ∗x for 0� x < x̂�

c�x� otherwise.

The following properties of c̃�x� will be useful for our
analysis. First, c̃�x�� c�x� for any x. This follows directly
from the monotonicity of c�x�/x. Second, c̃�x� preserves
the lower semicontinuity of c�x�. To show this, it suffices to
prove that c̃�x� is lower semicontinuous at x= x̂. Note that

lim inf
y→x̂+

c̃�y�= lim inf
y→x̂+

c�y�� c�x̂�= c̃�x̂��

whereas

lim inf
y→x̂−

c̃�y�= ĉ∗x̂� lim inf
y→x̂+

x̂c�y�/y � c�x̂�= c̃�x̂�� (16)

where the first inequality and the second inequality fol-
low from the definition of x̂ and the lower semicontinuity
of c�x�, respectively. Note that (16) implies that

c̃�y�� ĉ∗y for any 0� y � x̂� (17)

Third, ŷ∗ is also optimal for the problem maxy�0−c̃�y�+
g�y�N �. Indeed, the definition of ŷ∗, together with the fact
ŷ∗ � x̂, implies that for any 0� y < x̂,

−c̃�ŷ∗�+ g�ŷ∗�N ��−ĉ∗ŷ∗ + g�ŷ∗�N �

�−ĉ∗y+ g�y�N �

=−c̃�y�+ g�y�N ��

where the first inequality follows from (17). For y � x̂,

−c̃�ŷ∗�+ g�ŷ∗�N ��−ĉ∗ŷ∗ + g�ŷ∗�N �

=−c�y∗�+ g�y∗�N ��−c�y�+ g�y�N �

=−c̃�y�+ g�y�N ��

where the first equality follows from the definition of ŷ∗

and ĉ∗. Thus, ŷ∗ is also optimal for the problem maxy�0−
c̃�y�+ g�y�N �.
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We are now ready to prove that for any S ⊂N , Vĉ∗�S��
V �S�. Let ỹ∗�S� be the smallest optimal solution for the
problem maxy�0−c̃�y�+ g�y� S�. Note that c̃�x� is lower
semicontinuous. Hence, ỹ∗�S� is well defined. Lemma 1
implies that for any S ⊂N , ỹ∗�S�� ŷ∗ � x̂.
We claim that

ĉ∗ỹ∗�S�= c̃�ỹ∗�S��� (18)

Indeed, if ỹ∗�S� < x̂, we have from the definition of c̃�·�
that ĉ∗ỹ∗�S� = c̃�ỹ∗�S��. On the other hand, if ỹ∗�S�= x̂
and ĉ∗ỹ∗�S� > c̃�ỹ∗�S�� = c�ỹ∗�S��, we have that ŷ∗ =
ỹ∗�S� and

Vc∗�N �=−ĉ∗ŷ∗ + g�ŷ∗�N � <−c�ŷ∗�+ g�ŷ∗�N �� V �N��

which is a contradiction. Thus, in this case, (18) follows
from (17).
Finally, we have that

Vĉ∗�S�=max
y�0

−ĉ∗y+ g�y� S�

�−ĉ∗ỹ∗�S�+ g�ỹ∗�S�� S�

=−c̃�ỹ∗�S��+ g�ỹ∗�S�� S�

=max
y�0

−c̃�y�+ g�y� S�

�max
y�0

−c�y�+ g�y� S�

= V �S��

where the second equality follows from (18) and the last
inequality from the fact that c̃�y�� c�y� for any y � 0.
The proof is now complete. �

We are now ready to present the main result of this paper.

Theorem 2. Under Assumption 3, the inventory centraliza-
tion game �N �V �1� with the characteristic value function
defined by (8)–(9) has a nonempty core. Let �N �Vĉ∗�1� be
the inventory centralization game with marginal ordering
cost ĉ∗, where ĉ∗ is defined in Lemma 2. Then, any element
in the core of �N �Vĉ∗�1� is also in the core of �N �V �1�.

Proof. The proof is straightforward. Let l = �lj�j∈N be
an element in the core of �N �Vĉ∗�1�. We have that for
any S ⊆N ,∑
j∈S

lj � Vĉ∗�S�� V �S��

In addition,∑
j∈N

lj = Vĉ∗�N �= V �N��

Hence, l= �lj�j∈N is also in the core of �N �V �1�. Because
�N �Vĉ∗�1� is an inventory centralization game with a liner
ordering cost, Theorem 1 implies that it has a nonempty
core. Thus, �N �V �1� has a nonempty core as well. �

5.2. Single Warehouse, Nonanticipatory Pricing,
Symmetric Retailers

In this subsection, we analyze the inventory centralization
game �N �V �1� with nonanticipative pricing. Unfortunately,
it is not clear whether Lemma 1, which plays a key role

in the analysis for the game �N �V �1� with postponed
pricing, can be extended to the game �N �V �1� with nonan-
ticipative pricing. Note that in the proof of Lemma 1,
we construct two price vectors defined by p3j �	� =
�1− )�	��p1j �	�+ )�	�p2j �	� and p4j �	�= )�	�p1j �	�+
�1−)�	��p2j �	� for j ∈ S1 to derive a contradiction. For the
nonanticipative pricing model, the feasible prices need to be
independent of the realization of 	. However, even if p1j �	�
and p2j �	� are independent of 	, the way that p

3
j �	� and

p4j �	� are constructed in the proof of Lemma 1 cannot guar-
antee that they would be independent of 	 because )�	�
may depend on 	. Thus, the proof of Lemma 1 may not be
easily extended to the nonanticipative pricing model, which
prohibits us from extending Lemma 1 and thus Lemma 2,
as well as Theorem 2, to the general nonanticipative pricing
model.
Interestingly, Lemma 1 can be extended to the special

case of the nonanticipative pricing model with symmetric
retailers. In this case, the retailers are assumed to have iden-
tical cost parameters, i.e., sj = s, hj = h, qj = q for j ∈N .
Under this assumption, the nonanticipative pricing model
is equivalent to the case that the aggregate demand of the
retailers will be directly satisfied by the inventory from the
central warehouse without explicitly allocating the inven-
tory to the retailers. Thus, in this case, the value of a coali-
tion S can be defined by (8) with

g�y� S�=max wS�y�p�

s.t. pj � pj � p̄j � j ∈ S�
(19)

where

wS�y�p�=
∑
j∈S
E�Rj�pj�	��

−E
[
f

(
y−∑

j∈S
�j�	�+

∑
j∈S

�j�	�pj

)]
− sy

and f �%�= h%+ + q�−%�+.
We can show that Lemma 1, the existence of monotone

optimal solutions, can be extended to the game �N �V �1�
with nonanticipative pricing and symmetric retailers with V
defined by (8) and (19) (see the appendix for the proof).
Note that Lemma 2 built upon the monotonicity of the opti-
mal solutions is independent of how g�y� S� is defined.
Hence, Lemma 2, and thus Theorem 2, can be directly ex-
tended with no modification in their proofs, which imme-
diately implies that the core of the game �N �V �1� with
nonanticipative pricing and symmetric retailers is nonempty.

6. Calculating an Allocation in the Core
for the Game �N�V �1�

Our approach to prove the nonemptiness of the core of a
cooperative game �N �V �1� with quantity discount suggests
a way to find an allocation in the core in three steps. First,
solve

V �N�=max
y�0

−c�y�+ g�y�N ��
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Second, given V �N�, find a ĉ∗ such that

V �N�=max
y�0

−ĉ∗y+ g�y�N ��

Third, find an allocation in the core of the inventory cen-
tralization game �N �Vĉ∗�1� with linear ordering cost by
employing the duality approach in §4. Theorem 2 implies
that this allocation is in the core of �N �V �1�.
We now give a detailed description of the algorithm.

Algorithm 1. Step 0. Set the tolerance 3 > 0.
Step 1. Solve

V �N�=max
y�0

−c�y�+ g�y�N ��

where g�y�N � is defined by (9) or (19) depending on
whether it is a postponed pricing model or a nonanticipative
pricing model. Let y∗ be an optimal solution.
If y∗ = 0 is optimal for the above problem, let ĉ∗ =

maxj∈N max�p̄j � qj� and go to Step 3. Otherwise, let c =
c�y∗�/y∗ and c̄=maxj∈N max�p̄j � qj�.
Step 2. Let ĉ= �c+ c̄�/2. Solve

Vĉ�N �=max
y�0

−ĉy+ g�y�N ��

If Vĉ�N �= V �N� or c̄−c < 3, let ĉ= ĉ and go to Step 3.
If Vĉ�N � < V �N�, c̄ = ĉ; if Vĉ�N � > V �N�, c = ĉ. Go to
Step 2.
Step 3. Solve the dual problem to get the optimal solu-

tion *∗:

min
∑
j∈N

-j�*j�

s.t. E�)�	��= ĉ�

*j�	�� )�	�+ sj � j ∈N� 	 ∈��

where

-j�*j�= sup ,j�pj� vj�*j�

s.t. pj ∈ Pj�

and ,j is defined in (3).

Define

lj = -j�*
∗
j ��

The vector l = �l1� l2� � � � � ln� gives an approximate core
allocation of �N �V �1�.

We now make some comments about the algorithm.
In Step 1, for general quantity discounts, the objective
function does not have a nice concavity property, and
thus there may not exist efficient algorithms. However, the
commonly used quantity discounts such as all-units dis-
count, incremental discount, and LTL cost structure are all
piecewise linear. Thus, we may solve the above optimiza-
tion problem for each linear piece and then find the highest

optimal objective values derived from all pieces. To be more
precise, let 0 = 41 < 42 < · · · < 4k < 4k+1 = � for some
integer k and assume that

c�y�= bi + ciy ∀y ∈ �4i� 4i+1�� i= 1�2� � � � � k�
for scalars bi and ci with bi+1 + ci+14i+1 � bi + ci4i+1 to
guarantee the lower semicontinuity of c�y�. Then,

V �N�= max
i=1�����k

max
4i�y�4i+1

−�bi + ciy�+ g�y�N ��

Note that the inner optimization is a concave maximization
problem, which can be solved efficiently.
In Step 2, for each ĉ derived from the binary search, we

solve a concave maximization problem, which again can
be solved efficiently. In Step 3, to derive the dual, we use
equalities (6) and (7) to simplify the formulation derived
in §4. The dual can be solved by a variety of dual meth-
ods for convex minimization problems (see Bertsakas 1995).
Finally, the allocation l is an approximate core allocation in
the sense that �∑j∈N lj −V �N��� 7 and

∑
j∈S lj � V �S�+7

for S ⊂ N for some small positive scalar 7 that depends
on 3, and the accuracy of solving the dual in Step 3.
We now illustrate the above algorithm through a simple

numerical example. Specifically, we assume that �j�	� and
�j�	�, j ∈N , are deterministic. In addition, p̄j = �j/�j and
pj = 0. The ordering cost is given by an all-units discount
with unit ordering cost c1 for order quantity below 4 and unit
ordering cost c2 for order quantity at or above 4 . We assume
that c1 > c2 + 3/2 > c2 > 0, c2 � �j/�j − 3/2 for j ∈N ,
and 4 �

∑
j∈N ��j − �jp

0
j � with p0j = ��j +�jc2�/�2�j�.

Choose hj and qj significantly larger than c1, c2, and �j ,
which implies that at optimality the order quantity equals
the total demand.
We are now ready to carry out the above algorithm.

In Step 1, it is easy to show that

V �N�=∑
j∈N

��j −�jc2�
2

4�j

�

In this case, the total ordering quantity is exactly 4 and the
optimal price of retailer j is given by p0j . In Step 2, even
though our choice of 4 immediately implies that ĉ∗ = c2,
our algorithm ends up with a ĉ such that ĉ ∈ �c2� c2+ 3/2�.
In Step 3,

-j�*j�= max
0�pj��j/�j � vj

pj��j −�jpj�

− fj�vj − ��j −�jpj��−*jvj �

Because hj and qj are sufficiently large, we have that at
optimality, vj = �j − �jpj . Through careful computation,
we have that

-j�*j�=




��j −�j*j�
2

4�j

if ��j*j �� �j�

−�j*j if �j*j �−�j�

0 otherwise�
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Finally, solving min*j�ĉ -j�*j� gives *
∗
j = ĉ. Thus, the vec-

tor l= �l1� l2� � � � � ln� with lj = ��j −�j ĉ�
2/�4�j� gives an

approximate core allocation of �N �V �1�.
Now let N = �1�2�3�� c1 = 2� c2 = 3� 4 = 5, �1 =5,

�2 = 7, �3 = 9, and �j = 1� j = 1�2�3. Let 3 be a very
small positive number. Then, ĉ would be very close to
c2 = 1. In this case, our algorithm computes an allocation
that approximates the core allocation l = �l1� l2� l3�= �4�
9, 16). We can also compute the characteristic value func-
tion V : V ��1��= 1� V ��2��= 5� V ��3��= 15� V ��1�2��=
13� V ��1�3��= 20� V ��2�3��= 25, and V ��1�2�3��= 29.
Observe that by placing orders together, all retailers receive
profits higher than what can be achieved by acting alone
(lj > V ��j��). However, a retailer with a smaller market
size (smaller �j ) benefits more (higher lj/V ��j�� from the
cooperation. In this specific example, one can also see that
l is the unique element of the core because V ��1�2�� +
V ��1�3��+V ��2�3��= 2V ��1�2�3��.

7. Concluding Remarks
In this paper, we analyze inventory centralization games
with price-dependent demand. We employ convex program-
ming duality theory to show that the core of an inven-
tory centralization game with price-dependent demand is
nonempty when the ordering cost is linear. This observa-
tion is true if the pricing decisions are made either before
or after observing the market signal. The duality approach
presented in this paper presents a mechanism to find an
allocation in the core.
Under the assumption that the replenishment is made

through a single warehouse, we show that the core is non-
empty for an inventory centralization game with quantity
discount based on either the nonanticipative pricing model
with identical cost parameters for all retailers or the post-
poned pricing model. In addition, our proof also suggests
a procedure to find an allocation in the core. This is quite
significant given the generality of the ordering cost function.
To prove the nonemptiness of an inventory centraliza-

tion game with a general quantity discount, we construct
another inventory game with linear ordering cost. In the
construction, we keep the maximal profit of the grand coali-
tion unchanged. Meanwhile, the maximal profit for each
coalition does not decrease. This construction allows one
to claim that any allocation in the core of the newly con-
structed inventory game is in the core of the inventory game
with quantity discount. We expect that this technique may be
applicable to other settings beyond inventory centralization
games.
It would be interesting to extend our model, results, and

analysis to more general settings. First, our model can be
easily extended to handle the three-stage inventory central-
ization game with demand update proposed in Ozen and
Sošić (2006). Specifically, all our results and analysis hold
with minor modification for the following three-stage inven-
tory centralization game. In this game, the demand function

is given by ��8� − ��8�p, where 8 is a random variable
different from 	. At the first stage, ordering decisions are
made. At the second stage, the retailers can collect mar-
ket information and receive a market signal 	. The retailers
then use the market signal to refine their estimation of the
random variable 8. At the last stage, after the revelation of
the market signal but before the realization of the random
variable 8, inventory is allocated to the retailers. Pricing
decision can be made either at the second stage before the
revelation of the market signal or at the third stage after
the revelation of the market signal but before the realiza-
tion of 8, which gives the nonanticipative pricing model and
the postponed pricing model correspondingly. It is appropri-
ate to point out that the three-stage inventory centralization
game analyzed in Ozen and Sošić (2006) does not incorpo-
rate pricing decision and quantity discount.
Second, extending our model to incorporate competing

retailers is appealing and significantly more complicated.
Indeed, in this case, even defining the value of a coalition
is tricky because the demand of each retailer depends on
the pricing decisions of all retailers, no matter whether they
are in the same coalition or not. To overcome this difficulty,
it might be reasonable to analyze the formation of coali-
tion structures. For related work, see Nagarajan and Sošić
(2007).
Third, as retailers band together to place joint orders

and share inventory at central warehouses, it is likely that
the handling cost at the central warehouses would increase.
How the cost increase impacts the collaboration among the
retailers depends on the cost structure and is an interesting
question for future exploration.
Finally, we would like to extend our model to multiple-

period settings. If the ordering costs are linear, we can sim-
ilarly employ the convex programming duality approach
used in §4 to show the nonemptiness of the core. Even
though we conjecture that multiple-period inventory cen-
tralization games with general quantity discounts may have
empty cores, it is possible that the core of a multiple-period
inventory centralization game with concave ordering cost is
nonempty. For some initial attempt along this direction, we
refer to Chen and Zhang (2006), who analyze the economic
lot-sizing game with concave ordering cost and determinis-
tic demand.

Appendix

Proof of the Extension of Lemma 1 to
the Case with Nonanticipatory Pricing
and Symmetric Retailers

Proof. By contradiction. Assume to the contrary that there
exist S1� S2 ⊆ N with S1 ⊂ S2 such that y

∗�S1� > y∗�S2�.
Let �p1j �j∈S1 be the optimal pricing associated with the opti-
mal ordering quantity y∗�S1� for problem (8) and (19) with
S = S1. Similarly, let �p

2
j �j∈S2 be the optimal pricing asso-

ciated with the optimal ordering quantity y∗�S2� for prob-
lem (8) and (19) with S = S2.
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It is clear that

−c�y∗�S1��+wS1
�y∗�S1��p

1�

>−c�y∗�S2��+wS1
�y∗�S2��p

1�

and

−c�y∗�S2��+wS2
�y∗�S2��p

2�

�−c�y∗�S1��+wS2
�y∗�S1��p

2��

Adding the two inequalities together, we have that

E
[
f

(
y∗�S1�−

∑
j∈S1

�j�	�+
∑
j∈S1

�j�	�p
1
j

)]

+E
[
f

(
y∗�S2�−

∑
j∈S2

�j�	�+
∑
j∈S2

�j�	�p
2
j

)]

< E
[
f

(
y∗�S2�−

∑
j∈S1

�j�	�+
∑
j∈S1

�j�	�p
1
j

)]

+E
[
f

(
y∗�S1�−

∑
j∈S2

�j�	�+
∑
j∈S2

�j�	�p
2
j

)]
�

Because f is convex, the above inequality contradicts the
fact that

f

(
y∗�S1�−

∑
j∈S1

�j�	�+
∑
j∈S1

�j�	�p
1
j

)

− f

(
y∗�S2�−

∑
j∈S1

�j�	�+
∑
j∈S1

�j�	�p
1
j

)

� f

(
y∗�S1�−

∑
j∈S2

�j�	�+
∑
j∈S2

�j�	�p
2
j

)

− f

(
y∗�S2�−

∑
j∈S2

�j�	�+
∑
j∈S2

�j�	�p
2
j

)
�

Thus, for the nonanticipative pricing model under the simpli-
fied conditions (8) and (19), we have y∗�S1�� y∗�S2�. �

Endnotes
1. Similar assumptions are made in Simchi-Levi et al.
(2004). It is appropriate to point out that relaxing this as-
sumption by allowing lost sales imposes a significant chal-
lenge because it destroys the concavity property of the
expected revenue function needed for our analysis in this
paper.
2. In the case where pricing is not a decision, it is straight-
forward to verify that a single-period lost-sales model can
be equivalently reformulated as a model with unsatisfied
demand being filled by an emergency order. Thus, the inven-
tory centralization games analyzed in the literature, which
assume that pricing is not a decision and unsatisfied demand
is lost, are special cases of the model analyzed in this paper.

3. In our assumption, demand is linear in price, which is
widely adopted in the literature. However, it is appropriate
to point out that this assumption can be relaxed. Indeed,
following Chen and Simchi-Levi (2004a, b), we may ana-
lyze demand functions of the following form:

d̃j =Dj�pj�	� �= �j�	�−�j�	�9j�pj��

where 9j�·� is a strictly increasing function. Of course,
to have a tractable model, certain technical conditions are
needed to guarantee the concavity of the revenue function
(see Simchi-Levi et al. 2004 for details). For simplicity, we
focus on the linear demand model in Assumption 2.
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