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We analyze an infinite horizon, single-product, periodic review model in which pricing and production/inventory
decisions are made simultaneously. Demands in different periods are identically distributed random variables that
are independent of each other, and their distributions depend on the product price. Pricing and ordering decisions
are made at the beginning of each period, and all shortages are backlogged. Ordering cost includes both a fixed
cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or
expected average, profit over the infinite planning horizon. We show that a stationary �s� S�p� policy is optimal
for both the discounted and average profit models with general demand functions. In such a policy, the period
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at the beginning of each period.
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1. Introduction. In recent years, scores of retail and manufacturing companies have
started exploring innovative pricing strategies in an effort to improve their operations and,
ultimately, the bottom line. Firms are employing methods such as dynamically adjusting
price over time based on inventory levels or production schedules, as well as segmenting
customers based on their sensitivity to price and lead time.
For instance, no company underscores the impact of the Internet on product pricing

strategies more than Dell Computers. The exact same product is sold at different prices on
Dell’s Web site, depending on whether the purchase is made by a private consumer, a small,
medium or large business, the federal government; or an education or health care provider.
A more careful review of Dell’s strategy (see Agrawal and Kambil 2000) suggests that even
the price of the same product for the same industry is not fixed; it may change significantly
over time.
Dell is not alone in its use of a sophisticated pricing strategy. Consider:
• Boise Cascade Office Products sells many products online. Boise Cascade states that

prices for the 12,000 items ordered most frequently online might change as often as daily
(Kay 1998).
• Ford Motor Co. uses pricing strategies to match supply and demand and target partic-

ular customer segments. Ford executives credit the effort with $3 billion in growth between
1995 and 1999 (Leibs 2000).
These developments call for models that integrate production decisions, inventory control,

and pricing strategies. Such models and strategies have the potential to radically improve
supply chain efficiencies in much the same way as revenue management has changed the
airline industry; see Belobaba (1987) or McGill and van Ryzin (1999). Indeed, in the airline
industry, revenue management provided growth and increased revenue by 5%, see Belobaba
(1987). In fact, if it were not for the combined contributions of revenue management and
airline schedule planning systems, American Airlines (Cook 2000) would have been prof-
itable only one year in the decade beginning in 1990. In the retail industry, to name another
example, dynamically pricing commodities can provide significant improvements in prof-
itability, as shown by Gallego and van Ryzin (1994).
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The coordination of replenishment strategies and pricing policies has been the focus
of many papers, starting with the work of Whitin (1955), who analyzed the celebrated
newsvendor problem with price-dependent demand. For a review, the reader is referred
to Eliashberg and Steinberg (1991), Petruzzi and Dada (1999), Federgruen and Heching
(1999), Yano and Gilbert (2002), Elmaghraby and Keskinocak (2003), or Chan et al. (2004).
Recently, Chen and Simchi-Levi (2004) considered a finite horizon, periodic review,

single-product model with stochastic demand. Demands in different periods are independent
of each other and their distributions depend on the product price. Pricing and ordering
decisions are made at the beginning of each period, and all shortages are backlogged. The
ordering cost includes both a fixed cost and a variable cost proportional to the amount
ordered. Inventory holding and shortage costs are convex functions of the inventory level
carried over from one period to the next. The objective is to find an inventory policy and
pricing strategy maximizing expected profit over the finite horizon.
Chen and Simchi-Levi (2004) proved that when the demand process is additive, i.e., the

demand process has two components, a deterministic part which is a function of the price
and an additive random perturbation, an �s� S�p� policy is optimal. In such a policy the
inventory strategy is an �s� S� policy: If the inventory level at the beginning of period t is
below the reorder point, st� an order is placed to raise the inventory level to the order-up-to
level, St . Otherwise, no order is placed. Price depends on the initial inventory level at the
beginning of the period. Unfortunately, for general demand models, including multiplicative
demand processes, Chen and Simchi-Levi showed that the �s� S�p� policy is not necessarily
optimal. To characterize the optimal policy in this case, Chen and Simchi-Levi developed a
new concept, the symmetric k-convexity, and employed it to prove that for general demand
processes, an �s� S�A�p� policy is optimal. In such a policy, the optimal inventory strategy
at period t is characterized by two parameters �st� St� and a set At ∈ 
st� �st+St�/2�, possibly
empty depending on the problem instance. When the inventory level xt at the beginning of
period t is less than st or xt ∈ At , an order of size St − xt is made. Otherwise, no order is
placed. Price depends on the initial inventory level at the beginning of the period.
In this paper we analyze the corresponding infinite horizon models under both the dis-

counted and average profit criteria. We make assumptions similar to those in Chen and
Simchi-Levi (2004), except that here all input parameters—i.e., demand processes, costs,
and revenue functions—are assumed to be time independent. Surprisingly, by employing the
symmetric k-convexity concept developed in Chen and Simchi-Levi (2004), we establish
that a stationary �s� S�p� policy is optimal for both additive demand and general demand
processes under the discounted and average profit criteria. Our approach is motivated by
the classic papers by Iglehart (1963a, b), Veinott (1966), and Zheng (1991).
Unfortunately, the analysis of an infinite horizon dynamic program is quite difficult in

general, since it usually involves the convergence of a sequence of finite horizon problems.
Observe that in the case of the standard stochastic inventory problem, it is natural to expect
that a stationary �s� S� policy is optimal for the infinite horizon model since an �s� S� policy
is optimal for its finite horizon counterpart. Thus, an approach that involves the convergence
of a sequence of finite horizon problems seems natural. This is exactly the approach applied
by Iglehart (1963a) for the discounted cost case. However, this approach does not apply for
the infinite horizon joint inventory and pricing model, since the optimal policy of the finite
horizon would suggest the optimality of a stationary �s� S�A�p� policy.
A different approach for proving the optimality of a stationary �s� S� policy for the

infinite horizon inventory control model was proposed by Zheng (1991) and is based on
characterizing properties of the best �s� S� policy. Unfortunately, while his novel approach
for the average case can be extended to analyze our model, his approach does not seem to
be appropriate for the discounted case. We discuss this issue in §6 and §9.
Our proof of the optimality of �s� S�p� for the infinite horizon joint inventory and

pricing model is essentially the same for both the discounted and average profit criteria.



Chen and Simchi-Levi: Coordinating Inventory Control and Pricing Strategies
700 Mathematics of Operations Research 29(3), pp. 698–723, © 2004 INFORMS

It involves: (1) Characterizing the best stationary �s� S�p� policy. (2) Proving that the infinite
horizon expected (discounted) profit function associated with the best stationary �s� S�p�
policy solves the optimality equation and showing that the best �s� S�p� policy achieves the
maximization in the optimality equation based on the concept of symmetric k-concavity.
(3) Employing the optimality of an �st� St�At� pt� policy for the finite horizon joint inventory
and pricing model and arguing that optimal parameters st and St are bounded by employ-
ing the technique proposed by Veinott (1966). (4) Using these bounds and the optimality
equation to prove that the infinite horizon profit function associated with the best station-
ary �s� S�p� policy is the maximum profit function and the best stationary �s� S�p� policy
solves the joint inventory and pricing model.
Thus, in essence, our approach is similar to the one applied by Iglehart (1963b) for

the average cost criterion. Of course, the pricing dimension in our model complicates the
analysis considerably. Also, unlike the traditional infinite horizon stochastic inventory prob-
lem, the lack of a simple explicit expression for the profit function associated with a given
stationary �s� S� policy and its corresponding optimal pricing strategy requires the applica-
tion of recursive arguments in our proof. This significantly increases the complexity of the
analysis. Finally, our proof employs the concept of symmetric k-concavity, while Iglehart
(1963a, b) used the concept of k-convexity.
To put this research in perspective, we point out that our model is similar to the one

proposed by Thomas (1974), who conjectures that an �s� S�p� policy is optimal for the
finite horizon case under fairly general conditions. Polatoglu and Sahin (2000) also analyze
a similar model in which unsatisfied demand is assumed to be lost. They show that an
�s� S�p� policy is not optimal in general and they provide some conditions for the optimality
of an �s� S�p� policy. These papers, as well as the paper by Chen and Simchi-Levi (2004),
focus on periodic review models, while Feng and Chen (2002) consider an infinite horizon
continuous review model under the average profit criterion in which the interarrival time
is assumed to be exponential and a function of the selling price. Prices are restricted to a
discrete set, and demand is assumed to be of unit size. For this model, the authors show that
an �s� S�p� policy is optimal and provide the structure of the selling price. Their model and
results are subsequently generalized by Chen and Simchi-Levi (2003). In fact, by employing
an approach similar to the one used in this paper, Chen and Simchi-Levi (2003) show that
an �s� S�p� policy is optimal for the infinite horizon continuous review model under both
the discounted profit and the average profit criteria. In particular, the demand process may
be price dependent and is quite general.
The paper is organized as follows. In §2 we review the main assumptions of our model

and the concepts of k-convexity and symmetric k-convexity. In §3, we define some notation
and show how one can find the best-pricing strategies for a given �s� S� inventory policy.
We start §4 by identifying properties of the best �s� S� inventory policy for both the dis-
counted and average profit cases. These properties, together with the concept of symmetric
k-convexity, enable us to construct solutions for the optimality equations of the discounted
and average profit problems in §5. In §6, we prove some useful bounds on the reorder level
and order-up-to level for a corresponding finite horizon problem. In §7 and §8, we apply
these bounds and the optimality equations to prove the optimality of a stationary �s� S�p�
policy for the infinite horizon problems with the discounted and average profit criteria,
respectively. Finally, in §9 we provide concluding remarks.

2. The model. Consider a firm facing stationary cost parameters and revenue functions
as well as a stationary demand process over the infinite horizon. For each period t, let

dt = demand in period t

pt = selling price in period t

p� p̄ are the common lower and upper bounds on pt , respectively.
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Throughout this paper, we concentrate on demand functions similar to those considered
in Chen and Simchi-Levi (2004). These demand functions are of the following form:

Assumption 1. For any t, the demand function satisfies

(1) dt =Dt�pt� �t� �= �tD�pt�+�t�

where �t = ��t��t�, and �t��t are two random variables with �t ≥ 0, E��t� = 1, and
E��t� = 0. The random perturbations, �t� are identically distributed with the same dis-
tribution as � = ����� and are independent across time. Furthermore, the function D is
continuous and strictly decreasing.

As observed in Chen and Simchi-Levi (2004), by scaling and shifting, the assumptions
E��t� = 1 and E��t� = 0 can be made without loss of generality as long as �t and �t

have finite means. A special case of this demand function is the additive demand function,
where the demand function is of the form dt = D�pt�+ �t� This implies that only �t is
a random variable, while �t = 1. Another special case is a model with the multiplicative
demand function. In this case, the demand function is of the form dt = �tD�pt�, where �t

is a random variable.
Let xt be the inventory level at the beginning of period t just before placing an order.

Similarly, yt is the inventory level at the beginning of period t after placing an order. Lead
time is assumed to be zero, and hence an order placed at the beginning of period t arrives
immediately before demand for the period is realized. The ordering cost function includes
both a fixed cost and a variable cost and is calculated for every t, t = 1�2� � � � , as

k��yt − xt�+ c�yt − xt��

where

��u� �=
{
1� if u> 0�

0� otherwise.

Unsatisfied demand is backlogged. Let x be the inventory level carried over from period
t to the next period. Since we allow backlogging, the state space for the inventory levels
is �−	�	�, and thus x may be positive or negative. A cost h�x� is incurred at the end of
period t, which represents inventory holding cost when x > 0 and shortage cost if x < 0.
Given a discount factor  with 0< ≤ 1, an initial inventory level, x1 = x� and a pricing

and replenishment policy, let

(2) V
 
T �x�=E

{ T∑
t=1

 t−1�−k��yt − xt�− c�yt − xt�−h�xt+1�+ptDt�pt� �t��

}
�

be the T -period total expected discounted profit, where xt+1 = yt −Dt�pt� �t�.
In the infinite horizon expected discounted profit model, the objective is to decide on

ordering and pricing policies so as to maximize

lim sup
T→	

V
 
T �x�

for 0<  < 1 and any initial inventory level x. Similarly, in the infinite horizon expected
average profit model, the objective is to maximize

lim sup
T→	

1
T
V

 
T �x��

for  = 1 and any initial inventory level x.
To find an optimal strategy that maximizes (2), let v t �x� be the maximum total expected

discounted profit over a t-period planning horizon when we start with an initial inventory
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level x. A natural dynamic program that can be applied to find the policy maximizing (2)
is as follows. For t = 1�2� � � � � T �
(3) v t �x�= cx+ max

y≥x� p̄≥p≥p
−k��y− x�+ f  

t �y�p�

with v 0 �x�= 0 for any x, where
f  
t �y�p� �=−cy+E�pDt�p� �t�−h�y−Dt�p� �t��+ v

 
t−1�y−Dt�p� �t����

Note that Assumption 1 implies that there is a one-to-one correspondence between the
selling price pt ∈ 
p� p̄� and the expected demand D�pt� ∈ 
d� d̄�� where

d=D�p̄� and d̄=D�p��

Therefore, we can present the formulation (3) only with respect to expected demand rather
than with respect to price. For that purpose, denote the expected demand at period t by
d=D�p�. Also, let

% 
t �x�= v t �x�− cx� h �y�= h�y�+ �1− �cy� and �R�d�=R�d�− cd�

where R is the expected revenue function with

R�d�= dD−1�d��

which is a function of expected demand d. These functions, % 
t �x��h

 �y�, and �R�d�, allow
us to transform the original problem to a problem with zero variable ordering cost.
Specifically, the dynamic program (3) can be written as

(4) % 
t �x�=max

y≥x −k��y− x�+ g t �y�d
 
t �y���

with % 
0 �x�=−cx for any x, where

(5) g t �y�d�=H �y�d�+ E�%
 
t−1�y−�d−����

H �y�d� �=−E�h �y−�d−���+ �R�d��
and

(6) d 
t �y� ∈ argmax

d̄≥d≥d
g t �y�d��

Thus, most of our focus is on the transformed Problem (4), which has a similar structure
to Problem (3). In this transformed problem one can think of h as being the holding and
shortage cost function, �R as being the revenue function, the variable ordering cost is equal
to zero, and % 

t �x� is the maximum total expected discounted profit over a t-period planning
horizon when starting with an initial inventory level x.
Let Q �x� be the single-period maximum expected profit when we start with an initial

inventory level x; i.e.,

(7) Q �x� �= max
d̄≥d≥d

H �x�d��

For technical reasons, we need the following assumptions on the revenue function and the
holding and shortage cost function.
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Assumption 2. The functions R and −h are concave. Therefore, H �x�d� is jointly
concave in �x�d�. As a consequence, Q �x� is concave. Furthermore, we assume that,

lim
�x�→	

Q �x�= lim
�x�→	

Q0�x�=−	�

In the above assumption, the concavity of function Q �x� follows from the joint concavity
of function H �x�d�, which is true because H is essentially a composition of a concave
function and an affine function. The convexity of the holding cost function is commonly
assumed in the standard stochastic inventory control literature. Finally, the revenue function
R is concave for Dt�p�= bt − atp �at > 0� bt > 0) or Dt�p�= atp

−bt �at > 0� bt > 1); both
functions are popular in the economic literature (Petruzzi and Dada 1999).
The following concept of symmetric k-convexity, introduced in Chen and Simchi-Levi

(2004), is important in the analysis of our model.
Definition 2.1. A real-valued function f is called sym-k-convex for k≥ 0, if for any

x0� x1 and , ∈ 
0�1�,
(8) f ��1−,�x0+,x1�≤ �1−,�f �x0�+,f �x1�+max�,�1−,�k�

A function f is called sym-k-concave if −f is sym-k-convex.
Observe that the classical concept of k-convexity introduced by Scarf (1960) is a special

case of symmetric k-convexity. The following lemma describes properties of symmetric
k-convex functions, which are introduced and proven in Chen and Simchi-Levi (2004).

Lemma 1. (a) A real-valued convex function is also sym-0-convex, and hence sym-k-
convex, for all k≥ 0. A sym-k1-convex function is also a sym-k2-convex function for k1 ≤ k2.
(b) If g1�y� and g2�y� are sym-k1-convex and sym-k2-convex, respectively, then for

���≥ 0, �g1�y�+�g2�y� is sym-��k1+�k2�-convex.
(c) If g�y� is sym-k-convex and w is a random variable, then E�g�y − w�� is also

sym-k-convex, provided E��g�y−w��� <	 for all y.
(d) Assume that g is a continuous sym-k-convex function and g�y�→ 	 as �y� → 	.

Let S be a global minimizer of g, and s be any element from the set

X �= {
x � x≤ S� g�x�= g�S�+ k and g�x′�≥ g�x� for any x′ ≤ x

}
�

Then we have the following results.
(i) g�s�= g�S�+ k and g�y�≥ g�s� for all y ≤ s.
(ii) g�y�≤ g�z�+ k for all y� z with �s+ S�/2≤ y ≤ z.

3. Preliminaries. Our objective in this section is twofold. First, given a stationary
�s� S�p� policy, we show how to determine the infinite horizon expected discounted or aver-
age profit. Second, given a stationary �s� S� inventory policy, we show how to construct the
optimal pricing strategy.
As pointed out earlier, there is a one-to-one correspondence between price and expected

demand through the mapping d=D�p�. Hence, from now on we use �s� S�d� and �s� S�p�
interchangeably, and we always assume s ≤ S when we refer to an �s� S� policy.
Given a stationary �s� S�d� policy, let I �s� x�d� be the expected  -discounted profit

incurred during a horizon that starts with initial inventory level x and ends, at this period
or a later period, with an inventory level less than s. Therefore, for x < s, I �s� x�d�= 0,
and for x≥ s,

(9) I �s� x�d�=H �x�d�x��+ E�I �s� x−�d�x�−��d���

Define 1�s� x�d� to be the number of periods it takes to drop the inventory level from x to
a level below s. Thus, we have 1�s� x�d�= 0 for x < s, and

1�s� x�d�= 1+ 1�s� x−�d�x�−��d�� for x≥ s�
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Finally, let M �s� x�d� be the expected  -discounted time to drop from initial inventory
level x to a level below s. Observe that whenever x < s, we have M �s� x�d�= 0. On the
other hand, when x≥ s we have

(10) M �s� x�d�= 1+ E�M �s� x−�d�x�−��d���

From the definition of 1 and M , we have that

(11) M �s� x�d�=E�1+ + · · ·+ 1�s� x�d�−1�= �1−E� 1�s� x�d���/�1− ��

Let

(12) c �s� x�d�= −k+ I �s� x�d�
M �s� x�d�

for x≥ s and c �s� x�d�= 0 for x < s.
The definitions of I �s� x�d��M �s� x�d�, and c �s� S�d� imply the following properties.

Lemma 2. Given a stationary �s� S�d� policy, if I �s� S�d� and M �s� S�d� are
bounded, then
(i) for  = 1, c �s� S�d� is the long-run average profit;
(ii) for 0< < 1, the function

c �s� S�d�/�1− �+ I �s� x�d�− c �s� S�d�M �s� x�d�

is the infinite horizon expected discounted profit starting with an initial inventory level x.

Proof. Notice that c �s� S�d� equals the ratio of the expected discounted profit in a
cycle to the expected discounted length of a cycle, where a cycle is defined as the time
between two periods in which the starting inventory level is less than s. Hence, part (i)
follows directly from the elementary renewal reward theory (see Ross 1970), and so does
the case x < s for part (ii).
We now focus on part (ii) with x ≥ s. The infinite horizon expected discounted

profit consists of two parts: the expected discounted profit accrued up to the first time
when we drop the inventory level from x to a level below s, which is I �s� x�d�,
and the expected discounted profit accumulated afterwards, which can be calculated as
E� 1�s� x�d��c �s� S�d�/�1 −  � since we start with an initial inventory level less than s.
Therefore, the infinite horizon expected discounted profit is

I �s� x�d�+E� 1�s� x�d��c �s� S�d�/�1− ��

Finally, the above observation, together with Equation (11), implies part (ii). �

To provide intuition about (ii), observe that c �s� S�d� is the expected discounted profit
per period for the infinite horizon expected discounted profit problem starting with an initial
inventory level less than s. Therefore, c �s� S�d�/�1−  � is the infinite horizon expected
discounted profit if we start with an initial inventory level, x, less than s, and this implies
that (ii) holds since in this case both I �s� x�d� and M �s� x�d� are equal to zero. For
x≥ s, observe that c �s� S�d�M �s� x�d� is the expected discounted profit incurred during
the expected discounted time M �s� x�d� if we start with an initial inventory level less
than s. Thus, the difference between the infinite horizon expected discounted profit starting
with an initial inventory level less s, and the infinite horizon expected discounted profit
starting with the initial inventory level x, equals

(13) I �s� x�d�− c �s� S�d�M �s� x�d��

Hence, (ii) follows. Finally, it is appropriate to point out that Zheng (1991) uses a formu-
lation similar to (12) and proves results similar to the one in Lemma 2.
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We continue by assuming that the period demand is positive. Formally, this assumption
says that for any realization of the random variables �= �����, �d+�≥ �d+�≥ 3 > 0
for some 3 and any d ∈ 
d� d̄�. This assumption will be relaxed later on.
In the following, we show how one can construct the best pricing strategy for a given

�s� S� inventory policy. For any given �s� S�, let c �s� S� be the optimal value of problem

(14) sup
d: d̄≥d�·�≥d

c �s� S�d��

Observe that the feasible set of Problem (14) consists of functions, d�·�.
Define

(15) % �x� s� S� s′�=

0� for x < s′�

sup
d̄≥d≥d

g �x� s� S� s′�d�� for x≥ s′�

where

g �x� s� S� s′�d�=H �x�d�− c �s� S�+ E�% �x−�d−�� s� S� s′���

Let % �x� s� S� = % �x� s� S� s�. Interestingly, as we explain at the end of this section,
% �x� s� S� is (up to a constant) the total expected discounted profit associated with a
stationary �s� S� inventory policy and its corresponding best pricing strategy.
Notice that, in the recursive function, (15), we optimize a variable d for a given x; thus,

our objective is to show that the recursive construction allows us to generate the function
d�·� that solves (14).
For this purpose, define

(16) 4 �x� s� S� s′�d�= I �s′� x�d�− c �s� S�M �s′� x�d�

for a given feasible expected demand function d and let 4 �x� s� S�d�= 4 �x� s� S� s�d�.
Then from the recursions for I (9) and M (10), we have that

(17) 4 �x� s� S� s′�d�=


0� for x < s′�

H �x�d�x��− c �s� S�
+ E�4 �x−�d�x�−�� s� S� s′�d��� for x≥ s′�

On the other hand, from the definition of c �s� x�d�, we have

(18) 4 �x� s� S� s′�d�= k+ �c �s′� x�d�− c �s� S��M �s′� x�d��

The definition of % �x� s� S� s′� and 4�x� s� S� s′�d� will be useful in Proposition 1 as we
compare the long-run average discounted profits c �s′� S� and c �s� S�. Notice the difference
between (13) and 4 .
Because we assume that the period demand is bounded below by a positive constant, it is

clear that all the quantities I �M �% � and 4 are well defined. In the following, we show
how an optimal solution of Problem (14) can be constructed recursively given its optimal
value c �s� S�.

Lemma 3. For any x,

sup
d: d̄≥d�·�≥d

4 �x� s� S� s′�d�=% �x� s� S� s′��

In particular, % �S� s� S�= k.
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Proof. We argue by induction that 4 �x� s� S� s′�d� ≤ % �x� s� S� s′� for any feasible
function d and any x. It is clearly true for x < s′, since in this case both functions equal
zero. Assume that it is true for any x with x ≤ y for some y. We prove that it is also true
for x≤ y+3. In fact, for x≥ s′,

4 �x� s� S� s′�d� = H �x�d�x��− c �s� S�+ E�4 �x−�d�x�−�� s� S� s′�d��

≤ H �x�d�x��− c �s� S�+ E�% �x−�d�x�−�� s� S� s′��

≤ sup
d̄≥d≥d

H �x�d�− c �s� S�+ E�% �x−�d−�� s� S� s′��

= % �x� s� S� s′��

where the first inequality is justified by the induction assumption. On the other hand, for
any given 5> 0, choose a function d5 such that for any x≥ s′,

g �x� s� S� s′�d5�x��≥% �x� s� S� s′�− 5�

We can prove by induction that 4 �x� s� S� s′�d5� converges to % �x� s� S� s′� uniformly
over any bounded set of x as 5 ↓ 0 since �d+�≥ 3 for any feasible d. Thus for any x,

sup
d: d̄≥d�·�≥d

4 �x� s� S� s′�d�=% �x� s� S� s′��

Finally, (18) implies that

4 �S� s� S�d�≤ k and sup
d
4 �S� s� S�d�= k�

Thus, % �S� s� S�= k. �

In the above lemma, supd: d̄≥d�·�≥d 4
 �x� s� S� s′�d� is taken over a function, while (15) tells

us how such a function can be constructed recursively. In fact, if for any x≥ s′ there exists
d0�x� such that g

 �x� s� S� s′�d0�x�� = % �x� s� S� s′�, then from the proof of Lemma 3
we have that 4 �x� s� S� s′�d0�= % �x� s� S� s′�. In particular, if s′ = s, 4 �S� s� S�d0�= k
implies that c �s� S�d0� = c �s� S�; i.e., d0 is an optimal solution for Problem (14). Fur-
thermore, one can think of % �x� s� S� being equal to (up to a constant) the total expected
discounted profit associated with a stationary �s� S� inventory policy and its corresponding
best pricing strategy. Thus, from now on, we mainly focus on characterizing the optimal
inventory policy.

4. Characterization of the best �s� S� inventory policy. In this section, we character-
ize the best stationary �s� S� inventory policy. This allows us to construct, in §5, a solution
for the optimality equation for the infinite horizon joint inventory and pricing models. By
the best, we mean the �s� S� inventory policy that gives the highest average discounted profit
per period among all stationary �s� S� inventory policies associated with their best-pricing
strategies.
Let c be the optimal value of the problem

(19) sup
�s� S�

c �s� S��

Define

F  �= ��s� S� � c �s� S�≥maxQ �x�− k�Q �s�= c �s� S� and Q �S�≥ c �s� S���

Observe that for �s� S� ∈ F  , we have Q �S� ≥ Q �s� ≥ maxQ �x� − k. Hence, by
Assumption 2, F  is a bounded set.
We prove in the following that the search for an optimal solution of (19) can be restricted

to the bounded set F  .
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Proposition 1. c = sup�s� S�∈F  c �s� S��

Proof. To prove the proposition, we make the following observations.
(i) c ≥ maxQ �x� − k. In fact, let x be any maximum point of Q �x�. Then

c �x − 3�x � = Q �x � − k, since I �x − 3�x �d� = H �x�d�x�� and M �x − 3�
x �d�= 1 for any expected demand function d. Hence,

c ≥ c �x −3�x �=maxQ �x�− k�

(ii) Q �s�= c �s� S�. The proof is by contradiction, by showing that if this is not true
that we can improve upon c �s� S�.

(a) If Q �s� < c �s� S�, let s1 be the smallest element in the set

�x � x≥ s�Q �x�= c �s� S���

Since % �S� s� S� = k ≥ 0, there exists x ∈ 
s� S� and d ∈ 
d� d̄� such that H �x�d� ≥
c �s� S�. This, together with the continuity of Q , implies that the above set is nonempty,
s1 is well defined, and s < s1 ≤ S. From the recursive definition of % �x� s� S� s1� we have
that for any x,

% �x� s� S� s1�≥% �x� s� S��

since % �x� s� S�≤ 0 for x ∈ 
s� s1�. In particular, % �S� s� S� s1�≥ k. We claim c �s1� S�≥
c �s� S�. In fact, Lemma 3, together with (18) and the fact that % �S� s� S� s1�≥ k, implies
that

c �s1� S�= sup
d: d̄≥d≥d

c �s1� S�d�≥ c �s� S�=Q �s1��

If c �s1� S� >Q �s1�, we repeat this process and end up with a sequence s1 < s2 < · · ·< S
with c �s� S� = Q �s1� < c �s1� S� = Q �s2� < · · · . If the process stops in finite steps,
say n steps, then c �s� S� ≤ c �sn� S� = Q �sn�. Otherwise, let s

∗ be the limit of this
sequence �sn� n= 1�2� � � � � and c̃ �s∗� S� be the limit of c �sn� S�. From the continuity of
Q as implied by its concavity, we have that Q �s∗�= c̃ �s∗� S�. We argue that c̃ �s∗� S�=
c �s∗� S�. Define

%̃ �x� s∗� S�=

0� for x < s∗�

sup
d̄≥d≥d

H �x�d�− c̃ �s∗� S�+ E�%̃ �x−�d−�� s∗� S��� for x≥ s∗�

One can prove by induction on x that % �x� sn� S� converges to %̃
 �x� s∗� S� uniformly for

x over any bounded set. Furthermore, we have that %̃ �S� s∗� S�= k since % �S� sn� S�= k.
Hence, from the definition (15) of % �x� s∗� S� and the fact that % �S� s∗� S�= k, we have
that c �s∗� S�= c̃ �s∗� S� and %̃ �x� s∗� S� is identical to % �x� s∗� S�. Therefore, Q �s∗�=
c �s∗� S�≥ c �s� S�.

(b) If Q �s� > c �s� S�, let s1 be the largest element in the set

�x � x≤ s�Q �x�= c �s� S���

The existence of s1 is guaranteed by Assumption 2. Then from the recursions of I (9) and
M (10), we have that for any x,

% �x� s� S� s1�≥% �x� s� S��

since % �x� s� S� s1�≥ 0 for x ∈ 
s1� s�. Following a similar argument to that for part (a), we
can show that there exists a point s∗ such that Q �s∗�= c �s∗� S�≥ c �s� S�.
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(iii) Q �S� ≥ c �s� S�. We prove this by contradiction. If Q �S� < c �s� S�, then from
the recursive definition of % (15) we have that

k=% �S� s� S� < sup
d̄≥d≥d

 E�% �S−�d−�� s� S��≤ sup
x≤S−3

% �x� s� S��

Therefore, there exists S1 with S1 ≤ S − 3 such that % �S1� s� S� > k. From (16), we have
c �s� S1� ≥ c �s� S1�d

 
�s�S�� > c �s� S�. If Q �S1� < c �s� S1�, we can repeat the argument

and find Si+1 ≤ Si −3, i= 1�2� � � � , such that c �s� Si+1� > c �s� Si� for i= 1�2� � � � . This
process has to be finite since we have s ≤ Si+1 ≤ Si −3. Assume we end up with Sn. Then,
Q �Sn�≥ c �s� Sn�≥ c �s� S�.
Observations (i)–(iii) imply that for the maximization Problem (19), it suffices to restrict

the feasible set of �s� S� policies to the set F  . �

For any �s� S� ∈ F  , since Q �s�= c �s� S�, one can show that % �x� s� S� is continuous
in x and

% �x� s� S�=

0� for x≤ s�

max
d̄≥d≥d

g �x� s� S� s�d�� for x≥ s�

Furthermore, for x≥ s, the function

d
 
�s�S��x� ∈ argmax

d̄≥d≥d
g �x� s� S� s�d�

is well defined and by (16), (17), and Lemma 3, solves Problem (14).
Now we are ready to characterize the properties of the best �s� S� inventory policy. The

characterization presented in the following lemma is key to our analysis of the discounted
and average profit problems.

Lemma 4. There exists an optimal solution �s � S � to Problem (19) such that the func-
tions % �x� �=% �x� s � S � and Q �x� (see (7) for the definition of this function), satisfy
the following properties.
(a) % �x�≤ k for any x and % �S �= k.
(b) Q �s �= c .
(c) Q �x�≥ c for x ∈ 
s � S �.
(d) % �x�≥ 0 for any x≤ S .
(e) s ≤ x for any maximum point x of Q �x�.
(f) y ≤ S for any minimum point y of h �y�.

Proof. Proposition 1 implies that for Problem (19), we can focus on �s� S� in the set
F  . As we already pointed out, F  is a bounded set. We now prove that it is also closed,
and hence compact. For this purpose, assume �s� S� is the limit of a sequence �sn� Sn� ∈ F  .
We claim that �s� S� ∈ F  . In fact, let c̃ �s� S� be the limit of a subsequence c �sni � Sni �.
Then from the continuity of Q , Q �S�≥Q �s�= c̃ �s� S�. Define

%̃ �x� s� S�=

0� for x≤ s�

max
d̄≥d≥d

H �x�d�− c̃ �s� S�+ E�%̃ �x−�d−�� s� S��� for x≥ s�

Since we assume the period demand is bounded below by a positive constant, one can
prove by induction that % �x� sni � Sni � converges to %̃ �x� s� S� uniformly for x over any
bounded set. Furthermore, we have that %̃ �S� s� S�= k since % �Sni � sni � Sni �= k. Hence,
from the definition (15) of % �x� s� S� and the fact that % �S� s� S� = k, we have that
c �s� S� = c̃ �s� S� and %̃ �x� s� S� is identical to % �x� s� S�. Therefore, c �sn� Sn� con-
verges to c �s� S�, which implies that �s� S� ∈ F  . As a consequence, F  is closed, and
hence compact.
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We are ready to prove the existence of the best �s� S� inventory policy. Assume that c 

is the limit of c �s̃n� S̃n� for a sequence �s̃n� S̃n� ∈ F  . From the compactness of F  there is
a subsequence �s̃ni � S̃ni � of the sequence �s̃n� S̃n�, such that

lim
i→	

�s̃ni � S̃ni �= �s � S �

for some �s � S � ∈ F  . As proven in the previous paragraph, we have

c �s � S �= lim
i→	

c �s̃ni � S̃ni �= c �

and thus �s � S � is the best �s� S� inventory policy.
Hence,
• Part (a) follows from (16) and the fact that �s � S � solves Problem (19). In fact, for

any �s� x�d� policy, we have

−k+ I �s� x�d�
M �s� x�d�

= c �s� x�d�≤ c �

• Parts (b) and (c) hold since �s � S � ∈ F  and Q is concave.
• Part (d) follows from part (c) and the recursive definition of % in (15).
• From the argument of Observation (ii) in the proof of Proposition 1, it is easy to see

that s can be chosen as the smallest element in the set �x �Q �x�= c �. Therefore, part
(c) implies that s ≤ x for any maximum point x of Q �x�, and hence part (e) holds.
We now prove part (f). For any minimum point y of h �x�, we prove by induction that

% �x� is nondecreasing for x≤ y , and consequently we can choose S such that y ≤ S .
Without loss of generality, assume that s ≤ y . First, % �x� is nondecreasing for x ≤ s .
Now assume it is true for any x with x ≤ y for some y ≤ y . Then for x and x′ such that
s ≤ x≤ x′ ≤min�y+3�y �, we have

% �x� = max
d̄≥d≥d

H �x�d�− c + E�% �x−�d−���

≤ max
d̄≥d≥d

H �x′�d�− c + E�% �x′ −�d−���

= % �x′��

where the inequality holds since x≤ x′ ≤ y , h �x� is convex, and % �x� is nondecreasing
for x ≤ y by induction assumption. Therefore, % �x� is nondecreasing for x ≤ y . Thus,
part (f) follows. �

To provide some intuition, recall that Q �x� is the single-period maximum expected
profit when we start with an inventory level x; c �s� S� can be viewed as the average
discounted profit per period for a given �s� S� policy and its associated best price strategy.
Thus, if (b) does not hold, one can change the reorder point, s , and improve the average
discounted profit per period. If (c) does not hold, one can decrease S and increase the
average discounted profit per period.
Lemma 4 is essentially parallel to the characterization of the best �s� S� policy, given

by Lemma 1 in Zheng (1991) for the standard infinite-horizon inventory control models.
Notice that the single-period maximum expected profit Q �x� plays the same role as the
single-period expected inventory holding and shortage cost G��x� in Zheng. Also, it is
easy to see from the proof of Lemma 4 that the result of the lemma can be generalized
to cases when Q �x� is quasi-concave; this is similar to the assumption that −G��x� is
quasi-concave in Zheng.
Of course, the proof for Lemma 4 is significantly more involved than the proof of

Lemma 1 in Zheng (1991). In fact, the pricing decision variable presented in our model
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makes it necessary to refer to the recursive techniques like the one used in (15) throughout
this paper, while in Zheng’s case, a closed form expression for the long-run average dis-
counted cost associated with a given �s� S� policy is readily available. Furthermore, dealing
with continuous state spaces significantly increases the complexity of the analysis here.
Finally, we point out other differences between Lemma 1 in Zheng and our Lemma 4. On
the one hand, Lemma 4 part (b) is stronger than Lemma 1 part (iii) in Zheng because we
deal with continuous inventory levels, while in Zheng the inventory level is discrete. On the
other hand, Lemma 4 part (e) and part (f) are weaker than Lemma 1 part (ii) in Zheng due
to the introduction of the pricing variable in our model.

5. Optimality equations. The characterization of the best �s� S� inventory policy iden-
tified in Lemma 4 allows us to construct a solution for the optimality equations for the
infinite horizon models under both the discounted profit and average profit criteria. This in
turn allows us to prove the optimality of a stationary �s� S� inventory policy for the dis-
counted (§7) and the average (§8) profit criteria. For this purpose, we start by showing that
the function % defined in Lemma 4 is symmetric k-concave.

Lemma 5. % is symmetric k-concave for the general demand model.

Proof. We prove, by induction, that % satisfies

(20) % �x,�≥ �1−,�% �x0�+,% �x1�−max�,�1−,�k

for any x0 < x1 and , ∈ 
0�1�, where x, = �1−,�x0+,x1.
Since % �x�= 0 for x ≤ s , it is obvious that (20) holds for x1 ≤ s . Now assume that

(20) holds for any x0 and x1 with x0 < x1 ≤ y for some y. We show that (20) also holds for
any x0 and x1 with x0 < x1 ≤ y+3. We distinguish between three cases.
Case 1. x0 > s . Letting d, = �1−,�d

 
�s �S ��x0�+,d

 
�s �S ��x1�, we have that

% �x,� ≥ H �x,�d,�− c + E�% �x,−�d,−���

≥ �1−,��H �x0�d
 
�s � S ��x0��− c + E�% �x0−�d

 
�s �S ��x0�−����

+,�H �x1�d
 
�s � S ��x1��− c + E�% �x1−�d

 
�s �S ��x1�−����

− max�,�1−,�k

≥ �1−,�% �x0�+,% �x1�−max�,�1−,�k�

where the second inequality follows from the concavity of H , the fact that for any feasible
d, x0−�d−�≤ x1−�d−�≤ y, and the induction assumption.
Case 2. x0 ≤ s and x, ≤ S . (20) holds because by Lemma 4 parts (a) and (d),

% �x1�≤ k and % �x,�≥ 0.
Case 3. x0 ≤ s ≤ S ≤ x,.

% �x,� ≥ �1−:�% �S �+:% �x1�−max�:�1−:�k

≥ :�% �x1�− k�

≥ ,�% �x1�− k�

≥ �1−,�% �x0�+,% �x1�−max�,�1−,�k�

where : is chosen such that x, = �1− :�S + :x1 with 0 ≤ : ≤ ,. The first inequality
follows from Case 1, the second inequality holds because % �S �= k by Lemma 4 part (a),
the third inequality holds because 0 ≤ : ≤ , and, by Lemma 4 part (a), % �x1� ≤ k, and
the last inequality follows from the fact that % �x0�= 0 since x0 ≤ s .
Therefore, by induction, % is symmetric k-concave. �
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Remark. In the special case of additive demand functions, we can show that % is
k-concave. For a proof, the reader is referred to Chen (2003).
We are ready to prove that �% � c � satisfies the equation

(21) % �x�+ c =max
y≥x

{
max
d̄≥d≥d

−k��y− x�+H �y�d�+ E�% �y−�d−���
}

and that �s � S � is the policy that attains the first maximization in Equation (21).
Notice that when  = 1, (21) is the optimality equation for the average profit problem.

On the other hand, when 0< < 1, define

%̂ �x�= c /�1− �+% �x��

Then, (21) implies that

%̂ �x�= max
y≥x� d̄≥d≥d

−k��y− x�+H �y�d�+ E�%̂ �y−�d−����

which is the optimality equation for the  -discounted profit problem for 0 <  < 1, i.e.,
Problem (4).

Theorem 5.1. �% � c � satisfies Equation (21) and �s � S � attains the first maximiza-
tion in Equation (21).

Proof. For any x, define

O �x� �= max
d̄≥d≥d

H �x�d�− c + E�% �x−�d−����

From (15) and Lemma 4 part (b), one can see that O �x�=Q �x�− c for x ≤ s and
O �x�=% �x� for x≥ s . We have the following observations.
(a) O �x� ≤ O �s �= 0 for x ≤ s . This follows from Lemma 4 parts (b) and (e), the

concavity of Q , and the fact that O �x�=Q �x�− c for x≤ s .
(b) O �x� ≤ O �S � = k for any x. This result follows from part (a) and Lemma 4

part (a) because O �x�=% �x� for x≥ s .
(c) O �y� ≥ O �z�− k, for any y� z with s ≤ y ≤ z. Since O �x�= % �x� for x ≥ s ,

we only need to show that % �y�≥% �z�− k. For y ≤ S , we have

% �y�≥ 0≥% �z�− k

by Lemma 4 parts (a) and (d). For y ≥ S , % �y� ≥ % �z� − k follows from Lemma 4
part (a), Lemma 5, and Lemma 1 part (d).
Observations (a), (b), and (c) imply that the optimal y in Equation (21) follows the

�s � S � policy: If x≤ s , then y = S , otherwise y = x. Thus, �% � c � satisfies (21). �

The above results are proven under the assumption that �d+�≥ 3 > 0. This assumption
can be relaxed for the discounted case. Furthermore, all the results also hold for the average
case if Pr��d+�= 0� < 1. See Appendix A for the proof in each case.

6. Bounds. In §5, we constructed a solution for the optimality Equation (21) and proved
that the �s � S � policy attains the first maximization in (21). Unfortunately, this does not
necessarily imply the optimality of a stationary �s� S� inventory policy. Indeed, for the
average profit criterion, the function %1�x� is unbounded, and no conclusion can be drawn
easily by using standard dynamic programming arguments. Similarly, in the case of the
discounted profit criterion, when  ∈ �0�1�, the infinite horizon problem is the so-called
undiscounted dynamic program under Assumption P in Bertsekas (1976). In this case, one
might try to apply Proposition 10, p. 260 in Bertsekas (1976), as was done by Zheng
(1991) for his problem. However, it is not clear that this proposition can be applied because
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Proposition 10 in Bertsekas requires that the optimality equation holds for the optimal
cost function, while here %̂ is the expected discounted profit function associated with
the stationary �s � S � inventory policy. We are not aware of any result that characterizes
conditions under which we can claim the optimality of a stationary �s� S� inventory policy
directly from the optimality Equation (21).
Thus, we need a different argument. In particular, we establish some connection between

the finite horizon model and the solution for the optimality equation for the discounted (§7)
and average (§8) profit criteria to prove the optimality of the stationary �s � S � inventory
policy. For this purpose, we need some bounds on some of the parameters of the optimal
policy for the finite horizon model. Our approach in this section is motivated by the classical
work of Veinott (1966). In fact, Veinott suggested a different way to prove the optimality of
an �s� S� policy for the standard inventory control problem. Even though we are not able to
prove the optimality of an �s� S�p� policy for the joint inventory and pricing models based
on Veinott’s approach, it provides us with a very useful technique to derive lower bounds
and upper bounds for the optimal parameters.
Consider the dynamic program (4). A straightforward extension of the analysis in Chen

and Simchi-Levi (2004) shows that an �s� S�A�p� policy is optimal for this problem.
For every t, t = 1� � � � , let �s t � S t �A 

t � p
 
t � be the parameters of the optimal policy. We

show that s t and S
 
t are uniformly bounded. Specifically, define

S = min
d̄≥d≥d

{
argmax

x

H �x�d�� argmax
x

H 0�x�d�
}
� and s̄ = max

d̄≥d≥d

{
argmax

x

H �x�d�
}
�

s =max�x � x≤ S �H:�S �d�≥H:�x�d�+ k� for := 0�  and all feasible d��
and

�S =min�x � x≥ s̄ �H �s̄ � d�≥H �x�d�+ k� for all feasible d��

The existence of s and �S follows from Assumption 2.

Lemma 6. For t ≥ 1,
%
 
t �x�≥%

 
t �x

′�− k� for x≤ x′�(22)

g
 
t �y

′�d�− g
 
t �y�d�≤H �y′�d�−H �y�d�+ k� for y ≤ y′�(23)

and

(24) g t �y
′�d 

t �y
′��≤ g t �y�d

 
t �y��+ k� for y′ ≥ y ≥ s̄ �

Proof. By induction. For t = 0, % 
t �x�=−cx is nonincreasing since the variable order-

ing cost c ≥ 0. Hence, (22) holds for t = 0. For t ≥ 1, (22) follows directly from (4). (23)
follows from (5) and (22) for period t− 1. (24) follows from (23), the definition of s̄ , and
the concavity of H . �

Lemma 7.

g
 
1 �y

′�d�− g
 
1 �y�d�=H 0�y′�d�−H 0�y�d�≥ 0� for y ≤ y′ ≤ S �(25)

g
 
t �y

′�d�− g
 
t �y�d�≥H �y′�d�−H �y�d�≥ 0� for y ≤ y′ ≤ S and t > 1�(26)

g
 
t �y

′�d 
t �y

′��≥ g
 
t �y�d

 
t �y��� for y ≤ y′ ≤ S and t ≥ 1�(27)

and

(28) % 
t �x

′�≥% 
t �x�� for x≤ x′ ≤ S and t ≥ 1�
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Proof. Equation (25) follows from the definition of S and the fact that g 1 �y�d� =
H 0�y�d�. We prove the remaining three inequalities by induction. Assume that (26) holds
for some t > 1. Equation (27) follows directly from (25) (if t = 1) or (26) (if t > 1).
Furthermore, for any x≤ x′ ≤ S ,

% 
t �x

′� = max
{
g t �x

′�d 
t �x

′���−k+max
y>x′

g t �y�d
 
t �y��

}
≥ max

{
g t �x�d

 
t �x���−k+max

y>x
g t �y�d

 
t �y��

}
= % 

t �x��

where the inequality follows from (27). This proves inequality (28). Finally, (5), (28),
and the definition of S imply that (26) holds for t + 1 and any feasible d, since H is
concave. �

We are ready to present our bounds on s t and S
 
t .

Lemma 8. For every t, s t ∈ 
 s � s̄ � and S
 
t ∈ 
S � �S �.

Proof. We first show that for every t and y ≤ s ,

g t �y�d
 
t �y��≤−k+ g t �S

 �d 
t �S

 ���

which implies that an order is placed for this level of inventory, y, and hence s t ≥ s .
For t > 1, we have that for y ≤ s ,

g t �y�d
 
t �y�� = H �y�d 

t �y��+ E�%
 
t−1�y−�td

 
t �y�−�t��

≤ −k+H �S �d 
t �y��+ E�%

 
t−1�S

 −�td
 
t �y�−�t��

≤ −k+H �S �d 
t �S

 ��+ E�%
 
t−1�S

 −�td
 
t �S

 �−�t��

= −k+ g t �S
 �d 

t �S
 ���

where the first inequality follows from the definition of s and (28) and the second inequal-
ity from the definition of d 

t .
Consider now t = 1. Using the fact that g t �y�d�=H 0�y�d� and the definition of d 

t �x�,
s , and S , we have g t �y�d

 
t �y��≤−k+ g

 
t �S

 
t � dt�S

 
t �� for y ≤ s .

To show that s t ≤ s̄ , we apply inequality (24), which implies that no order is placed
when y ≥ s̄ . Hence, s t ∈ 
 s � s̄ �.
To show that S t ≤ �S , it suffices to show that for y ≥ �S we have

g t �s̄
 � d 

t �s̄
 ��≥ g t �y�d

 
t �y���

In fact, for y ≥ �S ,
g t �s̄

 � d 
t �s̄

 �� = H �s̄ �d 
t �s̄

 ��+ E�%
 
t−1�s̄

 −�td
 
t �s̄

 �−�t��

≥ H �s̄ �d 
t �y��+ E�%

 
t−1�s̄

 −�td
 
t �y�−�t��

≥ k+H �y�d 
t �y��+ E�%

 
t−1�y−�td

 
t �y�−�t��− k

≥ g t �y�d
 
t �y���

where the first inequality follows from the definition of d 
t , the second inequality from the

definition of �S and (22), and the last inequality from definition (5).
Finally, inequality (27) implies that the function g t �y�d

 
t �y�� is nondecreasing for y ≤ S .

Hence, S t ≥ S , and as a result, S t ∈ 
S � �S �. �
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7. Discounted profit case. Consider the discounted profit case with a discount factor
0 <  < 1 and recall the definition of %̂ �x�. Lemma 2 tells us that %̂ �x� is the infinite
horizon expected discounted profit for the stationary �s � S �d 

�s � S �� policy when starting
with an initial inventory level x.
The following convergence result relates the t-period maximum total expected discounted

profit function, % 
t �x�, and %̂ �x�.

Theorem 7.1. For any M ≥max��S � S � and any t ≥ 1, we have that

(29) max
x≤M

�% 
t �x�− %̂ �x�� ≤  t−1 max

x≤M
�% 

1 �x�− %̂ �x���

Proof. By induction. For t = 1, inequality (29) holds as equality. Consider t > 1. From
(4) and (21), we have that for any x≤M ,

% 
t �x�− %̂ �x� = max

M≥y≥x�d̄≥d≥d
−k��y− x�+H �y�d�+ E�%

 
t−1�y−�d−���

− max
M≥y≥x�d̄≥d≥d

−k��y− x�+H �y�d�+ E�%̂ �y−�d−���

≤ max
M≥y≥x

−k��y− x�+H �y�d 
t �x��+ E�%

 
t−1�y−�d 

t �x�−���

− �−k��y− x�+H �y�d 
t �x��+ E�%̂ �y−�d 

t �x�−����

=  max
M≥y≥x

E�%
 
t−1�y−�d 

t �x�−��− %̂ �y−�d 
t �x�−���

≤  t−1 max
x≤M

�% 
1 �x�− %̂ �x���

where the first equation follows from Theorem 5.1, Lemma 8, and the assumption that M ≥
max��S � S �; the first inequality from the definition of d 

t (see (6)); and the last inequality
from the induction assumption.
By employing a similar approach, we can prove that for x≤M ,

%̂ �x�−% 
t �x�≤  t−1 max

x≤M
�% 

1 �x�− %̂ �x���

Hence, (29) holds for all t. �

The theorem thus implies that the t-period maximum total expected discounted profit
function, % 

t �x�, converges to the infinite horizon expected discounted profit function,
%̂ �x�, associated with the stationary �s � S �d

 
�s � S �� policy, and as a consequence, this

policy is optimal for the infinite horizon expected discounted profit problem.

8. Average profit case. In this section we analyze the average profit case, and hence
assume that  = 1. To prove that a stationary �s� S�d� policy is optimal for the average profit
case, we apply a similar approach to the one used by Iglehart (1963b) for the traditional
stochastic inventory model. Specifically, we show that the long-run average profit of the best
�s� S�d� policy, c1, is the limit of the maximum average profit per period over a t-period
planning horizon.

Theorem 8.1. For any x,

%1t �x�/t− c1 → 0� as t→	�

Proof. We prove by induction that for any given M ≥max��S1� S1�, there exist r and R
such that

(30) tc1+%1�x�+ r ≤%1t �x�≤ tc1+%1�x�+R� for x≤M and any t�
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First, for x ≤min�s1� s1�, %1�x� and %1t �x� are constants. Hence, for t = 1, there exist
two parameters r and R such that (30) holds for x≤M .
Second, assume (30) is true for t− 1. Since S1t ≤ �S1 ≤M , for x≤M we have

%1t �x�= max
M≥y≥x�d̄≥d≥d

−k��y− x�+H 1�y�d�+E�%1t−1�y−�d−����

and hence

%1t �x� ≤ max
M≥y≥x�d̄≥d≥d

−k��y− x�+H 1�y�d�+E�%1�y−�d−���+ �t− 1�c1+R

≤ max
y≥x�d̄≥d≥d

−k��y− x�+H 1�y�d�− c1+E�%1�y−�d−���+ tc1+R

= %1�x�+ tc1+R�

where the first inequality follows from the induction assumption (30), the second inequal-
ity holds because we removed the constraint M ≥ y, and the equality follows from the
optimality equation, (21).
The left-hand-side inequality (i.e., the lower bound) of (30) can be established in a similar

fashion.
By choosing M arbitrarily large, (30) implies that

%1t �x�/t− c1 → 0� as t→	
for any x. �

The theorem thus suggests that starting with any initial inventory level, the maximum
average profit per period over a t-period planning horizon converges to a constant c1, the
long-run average profit of the best �s� S�d� policy. Therefore, the best �s� S�d� policy, the
stationary �s � S �d 

�s � S �� policy, is optimal for the infinite horizon average profit problem.

9. Concluding remarks. In this section we summarize our main results. Recall that for
the finite horizon case, Chen and Simchi-Levi (2004) proved that an �s� S�p� policy is not
necessarily optimal for general demand processes. Indeed, by developing and employing
the concept of symmetric k-convex functions, Chen and Simchi-Levi showed that in this
case an �s� S�A�p� policy is optimal.
Surprisingly, in the current paper we show, using the concept of symmetric k-convexity,

that a stationary �s� S�p� policy is optimal in the infinite horizon case for both the dis-
counted and average profit criteria. This result holds for the general demand process defined
by Assumption 1, which includes additive and multiplicative demand functions; both are
common in the economics literature.
One limitation of the models analyzed in this paper as well as in the paper by Chen

and Simchi-Levi (2004) is the zero lead-time assumption. This is not the case for standard
stochastic inventory control problems. For these problems, the structural results of the opti-
mal policy can generally be extended to models with deterministic lead time. The idea is to
transfer a model with positive lead time to one with a similar structure, but zero lead time
(Scarf 1960). However, this technique is not valid in our case because for our models with
positive lead time, the two decisions, the ordering decision and the pricing decision, will
take effect at different times.
As pointed out in §6, the optimality equation characterized in Equation (21) is not suffi-

cient for proving the optimality of a stationary �s� S�p� policy. Indeed, the technique applied
by Zheng (1991) for the discounted cost criterion does not work in our case. Thus, we
developed lower and upper bounds on the reorder points and order-up-to levels in §6 to
prove that a stationary �s� S�p� policy is optimal for the discounted profit case. However,
the technique developed by Zheng for the average cost case does work for our models. In
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fact, this technique allows us to prove without invoking §§5, 6, and 8 (see Appendix B)
that a stationary �s� S�p� policy is optimal for the average profit criterion even if Q is only
assumed to be quasi-concave.
An interesting question is whether we can extend the results of the continuous pricing

model to a discrete price environment. This question is addressed in Appendix C, where
we demonstrate that a stationary �s� S� inventory policy is not necessarily optimal for our
demand model with discrete prices. This is consistent with the counterexample provided
by Thomas (1974), which shows that with discrete prices, an �s� S� inventory policy is not
necessarily optimal even for a single-period problem. This has important computational con-
sequences. Indeed, to solve those models numerically, we first have to discretize the inven-
tory variables and the pricing variables; unfortunately, our counterexample in Appendix C
suggests that this may destroy the structure of the optimal policy. However, for the aver-
age profit case, one can apply the following: First, discretize the inventory variables, and
then for each discretized inventory level x, choose the price d�x� ∈ argmaxd̄≥d≥d H �x�d�.
Notice that by doing that, we can maintain the concavity or quasiconcavity of Q for the
discretized model, therefore the optimality of a stationary �s� S�p� policy still holds. Finally,
we point out that the counterexample provided in Appendix C illustrates that, in the case
of discrete prices, even if a stationary �s� S�p� policy is optimal for the average profit case,
a stationary �s� S�p� policy might not be optimal for the discounted profit case.
Upon finishing the first revision of this paper, we were notified of a working paper by

Feng and Chen (2003), which analyzes a similar model to ours. Assuming that the single-
period profit functions are quasiconcave and focusing on discrete prices, they propose an
algorithm to find the best �s� S�p� policy and prove that a stationary �s� S�p� policy is opti-
mal under the average profit criterion. One problem with their approach is that with discrete
prices, a stationary �s� S�p� policy may fail to be optimal, as illustrated by Appendix C.
Indeed, in order to guarantee the quasi concavity of their single-period profit functions,
Feng and Chen (2003) require the price decision variable to be continuous. Unfortunately,
in their discrete price model, there is no guarantee that the single-period profit function is
still quasi concave.

Appendix A. In this appendix we show that all the results in §3, §4, and §5 hold for
the discounted case and for the average case if Pr��d+�= 0� < 1.
To do that, we construct a sequence of random variables �3 such that
(Ra) E��3�= 1;
(Rb) �3 is bounded below by a positive constant;
(Rc) �3 converges to � in distribution as 3 ↓ 0.
Let F �x� be the cumulative probability distribution of �. Without loss of generality,

assume that
∫ 	
1 x dF �x� > 0, and for any 3 < 1, let

q3 =
1− F �3�∫ 	

3
�x−3�dF �x�

∫ 3

0 �3− x�dF �x�

F �3�
�

and

p3 =
q3F �3�

1− F �3�
�

Since for 0<3< 1,
∫ 	
3
�x−3�dF �x�≥ ∫ 	

1 x dF �x�−3�1−F �3�� and
∫ 3

0 �3−x�dF �x�≤
3F �3�, we have q3 = O�3� and p3 = O�3�. (Note that here we use O�·� to denote the
big-O notation, which should be distinguished from the function O used in Theorem 5.1.)
Furthermore,

(31) F �3��1+ q3�+ �1−p3��1− F �3��= 1�
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and

(32) 3F �3��1+ q3�+ �1−p3�
∫ 	

3
x dF �x�=

∫ 	

0
x dF �x�= 1�

Define a function F3 such that

F3�x�=
{
0� for x < 3�

�1+ q3�F �3�+ �1−p3��F �x�− F �3��� for x≥ 3�

Equation (31) implies that F3 is a distribution function. Let �3 be a random variable with
distribution F3. Then by (32), E��3� = 1 and the requirements (Ra), (Rb), and (Rc) are
satisfied.
We are ready to relax the assumption that �d+� is bounded below by a positive constant.

For this purpose, consider a similar model with � replaced by �3 for 3 > 0. We refer to
this model as the modified problem.
In the modified problem, �3d+� is bounded below by a positive constant. Let c 3�s� S�

be the average discounted profit per period for the stationary �s� S� policy associated with
the best price under this modified model. Define

F  
3 �= {

�s� S� � c 3�s� S�≥−k+maxQ 
3�x��Q

 
3�s�= c 3�s� S� and Q

 
3�S�≥ c 3�s� S�

}
�

where Q 
3�x�=maxd̄≥d≥d H 

3 �x�d� and H
 
3 �x�d�= �R�d�−E�h �x−�3d−���. From the

construction of �3, one can directly verify that H
 
3 �x�d� converges to H

 �x�d� uniformly
over any bounded set of x as 3 → 0, which in turn implies that Q 

3 converges to Q 

uniformly over any bounded set of x as 3→ 0. Therefore, by Assumption 2, F  
3 is uniformly

bounded for 0<3≤ 3̄.
Let �s 3� S

 
3� be the best �s� S� policy under the modified model with parameter 3, and

let c 3 = c 3�s
 
3� S

 
3�. Define

(33) % 
3�x�=


0� for x≤ s 3�

max
d̄≥d≥d

H 
3 �x�d�− c 3 + E�% 

3�x−�3d−���� for x≥ s 3 �

Since F  
3 is uniformly bounded for 0<3≤ 3̄ for some 3̄ > 0, there exists a limit point,

say �s
 
0 � S

 
0 �, for some subsequence �s

 
3i
� S 3i �, where 3i → 0 as i → 	. As we prove in

Lemma 9 (which is presented at the end of this appendix), there exists a subsequence of
�% 

3i
� (without loss of generality, assume the sequence itself) that converges to a continuous

function % 
0 uniformly over any bounded set of x.

Lemma 4 part (b), together with the fact that Q 
3 converges to Q uniformly over a

bounded set as 3 → 0, implies that c 3i converges to a point c
 
0 . This property, together

with the fact that % 
3i
converges to a function %

 
0 uniformly over any bounded set of x

as i→	, implies that % 
0 satisfies the recursion (33) with 3 = 0, where H

 
0 �x�d� =

H �x�d� and �0 = �. Furthermore, since % 
3�S

 
3� = k, % 

0 �S
 
0 � = k, and hence c

 
0 =

c �s
 
0 � S

 
0 �. Therefore, Lemma 4 and Lemma 5 hold and �%

 
0 � c

 
0 � satisfies (21). Moreover,

the technique used in Lemma 9 allows us to prove that I �s� x�d� and M �s� x�d� are well
defined. Thus, all the results in §3, §4, and §5 hold for the discounted case and for the
average case if Pr��d+�= 0� < 1.
Lemma 9. There exists a subsequence of �% 

3i
� that converges to a continuous function

uniformly over any compact set of x as 3i → 0, if 0 <  < 1 or  = 1 and Pr��d +
�= 0� < 1.
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Proof. We employ the Arzela-Ascoli Theorem (that can be found in most standard
textbooks on functional analysis), which states that if a sequence of continuous functions
defined in a compact metric space is uniformly bounded and equicontinuous, then it has a
uniformly convergent subsequence.
Let x≤ inf0<3≤3̄ s 3 , x̄ be any point with x̄≥ x, and I = 
x� x̄�. We will prove
(1) Uniform boundedness: There exists a constant M such that �% 

3�x�� ≤ M for any
0<3≤ 3̄, and x ∈ I .
(2) Equicontinuity: For any given � > 0, there exists a constant � > 0 such that for any

x ∈ I and y ∈ I with �x− y�<�, �% 
3�x�−% 

3�y��< � for any 0<3≤ 3̄.
We will distinguish between the discounted case and the average case. First we focus on

the discounted case. We show the following:
(a) Uniform boundedness. From Lemma 4, we have % 

3�x� ≤ k for any x and 3 > 0.
Now assume that M =minx∈I� d̄≥d≥d�0<3≤3̄ H 

3 �x�d�−c 3 . Then we have that for any x≥ s 3 ,

% 
3�x� = max

d̄≥d≥d
H 

3 �x�d�− c 3 + E�% 
3�x−�3d−���

≥ M + min
y∈I

% 
3�y��

which implies that miny∈I % 
3�y�≥ M/�1− �. Therefore, �% 

3�x�� is uniformly bounded for
any x ∈ I and 0<3≤ 3̄.
(b) Equicontinuity. For any constant �> 0, if x� y ≥ s 3 with �x− y�<�, we have that

(34) % 
3�x�−% 

3�y�≤ max
d̄≥d≥d

H 
3 �x�d�−H 

3 �y�d�+ max
�x′−y′ �<�

�% 
3�x

′�−% 
3�y

′���

and if x≥ s 3 ≥ y with �x− y�<�, we have

(35) % 
3�x�−% 

3�y�≤ max
d̄≥d≥d

H 
3 �x�d�− c 3 + max

�x′−y′ �<�
�% 

3�x
′�−% 

3�y
′���

Notice that H 
3 �x�d� is continuous for any �3�x�d� with 3≥ 0. Hence, for any � > 0, there

exists a constant �> 0 such that for any d ∈ 
d� d̄�, �x− y�<�, and 0≤ 3≤ 3̄,

�H 
3 �x�d�−H 

3 �y�d��< ��

and for any �x− s 3 �<� and 0≤ 3≤ 3̄,

�Q 
3�x�− c 3 �< ��

This, together with inequalities (34) and (35), imply that for any 3 > 0,

max
�x′−y′ �<�

�% 
3�x

′�−% 
3�y

′�� ≤ �/�1− ��

Therefore, �% 
3�0<3≤3̄ is equicontinuous over set I .

Now we concentrate on the average case. We have the following:
(a) Uniform boundedness. From Lemma 4, %13�x� ≤ k for any 3 > 0 and x. Assume

that M = minx∈I� d̄≥d≥d�0<3≤3̄ H 1
3�x�d� − c13. If M ≥ 0, %13�x� ≥ 0 for any x ∈ I . If

M < 0, we have that for any x≥ s13,

%13�x�≥ max
d̄≥d≥d

M +E�%13�x−�d−����

Construct a function 4 such that

4�x�=
{
0� for x≤ s13�

M +E�4�x−�d̄−���� for x≥ s13�
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Since the above recursion is the renewal-type equation, we have that 4�x� = M�1 +
m�x − s13��, where m�x� =

∑	
n=1 Fn�x� and Fn�x� is the distribution of the summation of

n independently and identically distributed random variables, each of which has the same
distribution as �d̄+�. Since Pr��d+�= 0� < 1, we have m�x� <	. (See Ross 1970 for
related results about the renewal theory and the renewal-type equation.) Furthermore, it is
easy to see that %13�x�≥ 4�x� for any x. Therefore, for any x ∈ I , we have

%13�x�≥ 4�x�= M�1+m�x− s13��≥ M�1+m�x̄− x���

Hence, �%13�0<3≤3̄ is uniformly bounded over set I .
(b) Equicontinuity. H 1

3�x�d� is continuous in �3�x�d� and hence, H
1
3�x�d� is uniformly

continuous over any bounded set of �3�x�d�. Thus, for any given � > 0, we can choose
�> 0, satisfying the following two requirements:

— �H 1
3�x�d�−H 1

3�y�d��< � for any 0 < 3 < 3̄, any x� y ∈ I with �x− y�< � and
d ∈ 
d� d̄�;

— �Q1
3�x�− c13�< � for any �x− s13�<�.

For any x� y ≥ s13, we have that

(36) %13�x�−%13�y�≤ max
d̄≥d≥d

H 1
3�x�d�−H 1

3�y�d�+E�%13�x−�d−��−%13�y−�d−����

and for x≥ s13 ≥ y, we have that

(37) %13�x�−%13�y�≤ max
d̄≥d≥d

H 1
3�x�d�− c13 +E�%13�x−�d−��−%13�y−�d−����

Construct a function 4 such that

4�x�=
{
0� for x≤ s13 − ��

�+E�4�x−�d−���� for x≥ s13 − ��

As before, this recursion is a renewal-type equation. Hence, we have that 4�x� = ��1+
m�x− s13 + ���, where m�x�=∑	

n=1 Fn�x� and Fn�x� is the distribution of the summation
of n independently and identically distributed random variables, each of which has the
same distribution as �d+ �. Since Pr��d+ �= 0� < 1, we have m�x� <	 and 4�x� is
a nondecreasing function of x. (Again, see Ross 1970 for related results about the renewal
theory and the renewal-type equation.) Since 4�x� is nondecreasing in x, we have

4�x�=

0� for x≤ s13 − ��

max
d̄≥d≥d

�+E�4�x−�d−���� for x≥ s13 − ��

Furthermore, one can show that for any x� y ∈ I with x ≥ y and �x − y� < �, �%13�x� −
%13�y�� ≤ 4�x�. Therefore, inequalities (36) and (37) imply that for x� y ∈ I with x≥ y and
�x− y�<�,

�%13�x�−%13�y�� ≤ 4�x�= ��1+m�x− s13 − ���≤ ��1+m�x̄− x+ ����

Hence, �%13�0<3≤3̄ is equicontinuous over set I .
We now construct a subsequence of �% 

3i
�	i=1 that converges to a continuous function

uniformly over any bounded set by using the famous diagonization procedure as follows.
First, we have that �% 

3�0<3≤3̄ is uniformly bounded and equicontinuous over set I . There-
fore, there exists a subsequence of �% 

3i
�	i=1, say �%

 
0� i�

	
i=0, which converges to a continuous

function uniformly over set I (in the sense of �·�	). Similarly, there exists a subsequence
of �% 

0� i�
	
i=0, say �%

 
1� i�

	
i=0, which converges to a continuous function uniformly over set


x� x̄+1�. Continuing with this process, we can construct a subsequence of �% 
n−1� i�

	
i=0, say

�%
 
n� i�

	
i=0, which converges to a continuous function uniformly over set 
x� x̄+n�. Then the

following subsequence �% 
n�n�

	
n=0 converges to a continuous function uniformly over any

compact set. �
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Appendix B. In this appendix, we show that the quasi concavity of Q suffices for the
optimality of a stationary �s� S�p� policy under the average profit criterion.
The idea, which is proposed by Zheng (1991), is to focus on a relaxed model, i.e., a

model where negative orders are allowed and a fixed cost k is charged whenever a negative
order is placed. Here is the optimality equation for the relaxed model.

(38) %̂ �x�+ c =max
y

{
max
d̄≥d≥d

−k���y− x��+H �y�d�+ E�%̂ �y−�d−���
}
�

Lemma 4 allows us to construct a solution for (38) as follows:

(39)

%̂ �x�= 0� for x < s �

%̂ �x�= �O �x�� for x ∈ 
s � S ��
%̂ �x�=max�0� �O �x��� for x > S �

where �O �x� = maxd̄≥d≥d H �x�d�− c +  E�%̂ �x − �d − ���, which is similar to the
function O defined in the proof of Theorem 5.1. Again, we can start by assuming that
�d + � ≥ 3 for some 3 > 0 and relax this assumption by employing the same technique
used in Appendix A. Since the argument is essentially the same, the analysis is omitted.
Now we show that �%̂ � c � is a solution for (38). First, we claim that �O �x� ≤ k for

any x and �O �S � = k. Since for x ≤ S , �O �x� = O �x� ≤ k, we only need to prove
�O �x�≤ k for x > S .
Assume to the contrary that �O �x∗� > k for some x∗ > S . Then there exists some

y with y ≤ x∗, such that �O �y� < 0; otherwise, %̂ �x� = % �x� for s ≤ x ≤ x∗, and
Lemma 4 part (a) implies that k < �O �x∗�= %̂ �x∗�≤ k. Let y∗ = inf�y� �O �y� < 0�. Then
we have y∗ ≥ S and Q �y∗�≤ c . However, by induction one can show %̂ �x�≤ k for any
x≥ y∗, which contradicts the fact that %̂ �x∗�= �O �x∗� > k. Hence, �O �x�≤ k for x > S .
Now we are ready to show that �%̂ � c � is a solution for (38). In fact, the definitions

of %̂ and �O , together with Lemma 4, imply that �O �x�≤ 0 for x ≤ s , �O �S �= k, and
�O �x�≤ k for any x. Therefore, it is easy to see that the function %̂ defined in (39), together
with c , is a solution for the optimality Equation (38) for the relaxed model. The following
modified �s � S � policy attains the first maximization of the optimality Equation (38): Place
an order to increase the inventory level to S when the initial inventory level is less than s ;
make a negative order to reduce the inventory level to S or do nothing (depending on which
one is more profitable) when the initial inventory level is above S ; and do nothing when
the initial inventory level is between s and S . Thus, by employing Theorem 2.1 from
Ross (1983, p. 93), this stationary modified �s � S � inventory policy solves the relaxed
model since %̂ is bounded. (Notice that Theorem 2.1 in Ross 1983 is proven for discrete
state spaces. However, one can extend this result by essentially following the proof given
in Ross 1983 to problems involving even continuous state spaces.)
Finally, we prove that the stationary �s1� S1� inventory policy is optimal for the original

model under the average profit criterion. The argument goes as follows: For the relaxed
model, the stationary modified �s1� S1� inventory policy suggested in the above paragraph
differs from the stationary �s1� S1� inventory policy in at most one period when a negative
order is placed to reduce the inventory level to S1. Once the inventory level is below S1,
it will never exceed S1 again. Hence, the two inventory policies, the stationary modified
�s1� S1� inventory policy and the stationary �s1� S1� inventory policy, give the same long-
run average profit per period, which implies that the stationary �s1� S1� inventory policy is
also optimal for the relaxed model. Thus, it is optimal for the original model. Finally, it is
appropriate to point out that our result holds when Q is only assumed to be quasi-concave
because it suffices for Lemma 4, as we already observed.
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Appendix C. In this appendix we demonstrate that a stationary �s� S� inventory policy
is not necessarily optimal for the infinite horizon joint inventory control and pricing problem
with discrete prices.
Consider the following example with deterministic demand:

(40) c= 0� d ∈ �3�4�� R�d�= d�7+ 5−d�� h�x�= ?�x��
where ?> 0, and 5 is sufficiently small. We will investigate two examples.
First, let k= 0 and 5< 0. Assume by contradiction that a stationary base stock policy is

optimal. Then,

Q �x�=
{
12+ 35−?�x− 3�� for x≤ 3�5+ 0�55/?�
12+ 45−?�x− 4�� otherwise�

Since 3 is the global maximizer of Q �x�, one can see that in this case the optimal base
stock level is s = 3 and c = 12+ 35. However, the function

%�x�=
{
0� if x≤ 3�
max�−?�x− 3� + %�x− 3�� 5−?�x− 4� + %�x− 4��� if x≥ 3�

does not satisfy the optimality Equation (21). In particular, when x = 3�5, it is optimal
to place an order because making an order to raise the inventory level to y = 4 yields a
higher expected profit. Therefore, a stationary base stock policy may not be optimal for the
discounted case. However, the stationary base stock policy with base stock level s = 3 is
still optimal for the average case because in a finite number of periods the inventory level
will drop to below the base stock level, and from then on the inventory level will never
exceed the base stock level. We notice that even though the stationary base stock policy is
optimal for the average case, the base stock policy does not achieve the maximization in
the optimality Equation (21).
We now show, by looking at a modified example, that a stationary �s� S� may not be

optimal for the average profit case � = 1). Assume that k > 5 > 0 and ?� 1 in (40).
In addition, we introduce a small random perturbation to the demand. Specifically, in this
case, the realized demand is �d, where d ∈ �3�4� and Pr��= 1�= 1− 2�3+32�, Pr��=
0�25�= 3, Pr��= 1�75�= 3, Pr��= 0�2�= 32, Pr��= 1�8�= 32. Hence, E��d�= 1. Let
Q1

3�x� be the single-period maximum expected profit for a given inventory level x for this
modified model. In the following, we assume that ?3 is sufficiently small.
Notice that S0 = 4 is the global maximizer of function Q1. For any feasible expected

demand function, the inventory level will drop from S0 = 4 to a level no more than S0−0�6
in just one period. Thus, the average profit per period associated with the stationary policy
�s∗� S0�, s∗ = S0 − 0�5 and its corresponding best pricing strategy is ĉ = −k +Q1

3�S0� =
−k + Q1�S0� + O�?3�. Let s0 = 3 − �k− 5�/?�a0 = 3 + �k− 5�/?�b0 = 4 − k/?, and
d0 = 4+ k/?. It is easy to see that s0� a0� b0, and d0 are the solutions for the equation
Q1�x�=−k+Q1�S0�.
In the following, we argue by contradiction that a stationary �s� S� policy is not optimal.

In fact, assume that a stationary �s� S� policy is optimal and c13 is the average profit per
period associated with the optimal stationary �s� S� policy. Since ?3 is sufficiently small,
there are four solutions for the equation Q1

3�x�= ĉ, which are denoted by s3� a3� b3, and
d3 with s3 ≤ a3 ≤ b3 ≤ d3. Also notice that Q

1
3 and Q1 are piecewise linear functions

and the difference between Q1
3 and Q

1 is O�?3�, which implies that the differences between
s3� a3� b3�d3 and s0� a0� b0�d0 are O�?3�, respectively. Following a proof similar to the one
of Lemma 4, one can see that there exist optimal s and S such that Q1

3�S�≥Q1
3�s�= c13 ≥ ĉ.

Therefore, s� S ∈ 
s3� a3�∪ 
b3�d3�.
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Notice that the inventory level will drop from S to a level below s in exactly
one period with probability no less than 1 − 3 − 32. Thus, from the definitions of
I �s� x�d��M �s� x�d�, and c �s� S�d� in (9), (10), and (12), we have c1�s� S� = −k +
Q1

3�S�+O�?3�. Since S0 = 4 is the global maximizer of Q1, S = S0 +O�?3� and at the
inventory level S, the expected demand associated with the best-pricing strategy is d�S�= 4.
Let

x1 = S− 0�25d�S�= S− 1 and x2 = S− 0�2d�S�= S− 0�8�
Since ?3 is sufficiently small, s3 < x1 <a3 < x2 < b3 < S < d3 and x1 = 3+O�?3�.
We now argue that s ∈ 
s3� x1�. This is done by distinguishing between three cases.
Case (a). s ∈ 
b3�d3�. In this case, M

1�s� S�d� = 1 and I 1�s� S�d� ≤ Q1
3�S� for any

feasible d. Hence, c1�s� S�d�≤−k+Q1
3�S�.

Case (b). s ∈ �x1� a3�. The inventory will drop from S to x2 with probability 3
2 and to

a level less than s with probability 1−32 in just one period. Thus, from the definitions of
I �s� x�d��M �s� x�d�, and c �s� S�d� in (9), (10), and (12),

c1�s� S�= −k+Q1
3�S�+32Q1

3�x2�

1+32
�

Case (c). s ∈ 
s3� x1�. The inventory will drop from S to x1 with probability 3, to x2 with
probability 32, and to a level less than s with probability 1−3−32 in just one period, and
within one additional period, the inventory level will drop to below s from inventory level
x1 or x2. Again, from the definitions of I

 �s� x�d��M �s� x�d�, and c �s� S�d� in (9), (10),
and (12), it is easy to see that

c1�s� S�= −k+Q1
3�S�+3Q1

3�x1�+32Q1
3�x2�

1+3+32
�

Since Q1
0�x1� >−k+Q1

0�S� >Q1
0�x2� and O�?3� is sufficiently small,

−k+Q1
3�S�+3Q1

3�x1�+32Q1
3�x2�

1+3+32
>−k+Q1

3�S� >
−k+Q1

3�S�+32Q1
3�x2�

1+32
�

Thus, s ∈ 
s3� x1�, c
1
3 = 
−k+Q1

3�S�+ 3Q1
3�x1�+ 32Q1

3�x2��/�1+ 3+ 32�, and S = S0 +
O�?3�.
We now show that the stationary �s� a3� b3� S� inventory policy and its associated best-

pricing strategy yields an average profit per period strictly greater than c13. In such a policy,
we raise the inventory level to S when the initial inventory level is less than s or in 
a3� b3�;
otherwise, no order is placed. To compute the average profit per period associated with the
stationary �s� a3� b3� S� inventory policy, we define I and M similarly to the definitions
I �s� S�d� and M �s� S�d� in (9) and (10). In particular, for the �s3� a3� b3� S�d� policy
with d�S�= 4�d�x1�= 4�d�x2�= 3, let I�x� be the expected profit incurred during a hori-
zon that starts with initial inventory level x and ends, at this period or a later period, with an
inventory level less than s, and let M�x� be the expected time to drop from initial inventory
level x to a level below s. Therefore, I�x�=M�x�= 0 for x < s,

I�S�=Q1
3�S�+3I�x1�+32I�x2�� I�x1�=Q1

3�x1�� I�x2�=−k+Q1
3�S��

and
M�S�= 1+3M�x1�+32M�x2�� M�x1�= 1� M�x2�=M�S��

Therefore, the average profit per period associated with the stationary �s� a3� b3� S�d� policy
is

c̃= −k+ I�S�

M�S�
= −k+Q1

3�S�+3Q1
3�x1�

1+3
�

It is easy to see that c̃ > c13. This is a contradiction, which implies that a stationary �s� S�
policy is not optimal.
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