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In this paper, we introduce the extended affinely adjustable robust counterpart to modeling and solving multistage uncertain
linear programs with fixed recourse. Our approach first reparameterizes the primitive uncertainties and then applies the
affinely adjustable robust counterpart proposed in the literature, in which recourse decisions are restricted to be linear in
terms of the primitive uncertainties. We propose a special case of the extended affinely adjustable robust counterpart—the
splitting-based extended affinely adjustable robust counterpart—and illustrate both theoretically and computationally that
the potential of the affinely adjustable robust counterpart method is well beyond the one presented in the literature. Similar
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tractable and scalable to multistage problems.
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1. Introduction
Decision making under uncertainty is the key ingredient
in many operations research problems, for example, sup-
ply chain management, revenue management, and financial
planning. One of the most important approaches for opti-
mization under uncertainty is stochastic programming, in
which objectives and constraints of optimization models are
defined by averaging over possible outcomes or considering
probabilities of events of interest. Over the past 50 years,
a variety of stochastic programming theory and algorithms
have been developed and some successful stochastic pro-
gramming applications have also been reported (see, e.g.,
Ruszczynski and Shapiro 2003, Birge and Louveaux 1997).
However, despite its immense modeling potential,

stochastic programming faces two significant challenges.
First, stochastic programs, especially multistage problems,
are notoriously difficult to solve to optimality, and, quite
often, even finding a feasible solution is already a hard
problem. Second, stochastic optimization problems require
full distributional knowledge in each of the uncertain data.
Unfortunately, such information may rarely be available in
practice. The lack of tractable methodology and the full
distributional requirement have restricted the applicability
of stochastic programming in many practical settings.
To cope with some of the challenges faced by stochas-

tic programming, robust optimization received considerable
attention in recent years as an alternative approach to deal
with optimization problems under uncertainty. The first step
in this direction was taken by Soyster (1973), who proposed

a worst-case model for linear optimization such that con-
straints are satisfied under all possible perturbations of the
uncertain data of the underlying model. Recent develop-
ments in robust optimization focused on more elaborate
uncertainty sets of uncertain data to alleviate overconser-
vatism in worst-case models, as well as to maintain com-
putational tractability of the proposed approaches (see, for
example, Ben-Tal and Nemirovski 1998, 1999, 2000; El-
Ghaoui and Lebret 1997; El-Ghaoui et al. 1998; Goldfarb
and Iyengar 2003; Bertsimas and Sim 2003, 2004a, b, 2006;
and Atamtürk 2006).
Most of the research on robust optimization focuses on

static settings, in which all decisions must be made before
the actual realization of the uncertain data (referred to
as the primitive uncertainties). To extend the robust opti-
mization methodology to dynamic settings, Ben-Tal et al.
(2004) proposed the adjustable robust counterpart (ARC),
in which the primitive uncertainties are assumed to vary
within an uncertainty set while some decisions (recourse
variables) can be made after the realization of the primitive
uncertainties and can be adjusted to its actual realization.
A closely related approach was proposed by Bertsimas and
Caramanis (2005). In this approach, they introduced the
concept of finite adaptability, which is based on the selec-
tion of a finite number of (constant) contingency plans to
incorporate the information revealed over time. Bertsimas
et al. (2006) applied it to model air traffic control. On the
other hand, under the adjustable robust counterpart frame-
work, Atamtürk and Zhang (2007) analyzed network design
problems under uncertainty.
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Because the general adjustable robust counterpart is in-
tractable, Ben-Tal et al. (2004) proposed a tractable ap-
proach for solving fixed-recourse instances using affine
decision rules—restricting recourse variables as affine func-
tions of the realization of the primitive uncertainties,
referred to as the affinely adjustable robust counterpart
(AARC). Even though the AARC has been successfully
applied to inventory management (Ben-Tal et al. 2004) and
supply contract problems (Ben-Tal et al. 2005), it is not
surprising that the performance of the AARC may not be
satisfactory under situations in which the recourse vari-
ables may exhibit high nonlinearity in terms of the primitive
uncertainties.
The goal of this paper is to illustrate that the potential

of the AARC method is well beyond the one presented by
Ben-Tal et al. (2004). Indeed, by reparameterizing the prim-
itive uncertainties and then applying the AARC method,
we end up with a new model, which allows us to relax
to a certain degree the linearity restriction imposed by
the AARC. Specifically, in our approach, we reparame-
terize the primitive uncertainties by introducing auxiliary
variables and represent the recourse variables as affine
functions of the auxiliary variables. By using these aux-
iliary variables, the model can now capture certain non-
linear responses of the recourse variables to the primitive
uncertainties. In the sequel, we refer to the AARC as the
AARC method directly applied on the primitive uncertain-
ties and the extended affinely adjustable robust counterpart
(EAARC) as the AARC method applied to the reparameter-
ized model.
Because the primitive uncertainties can be reparameter-

ized in a variety of different ways, the EAARC is rather
flexible and encompasses a broad class of decision rules. We
analyze a specific EAARC—the splitting-based EAARC—
in depth. In a simple setting, the splitting-based EAARC
essentially introduces auxiliary variables to represent the
positive and negative parts of the primitive uncertainties. We
demonstrate both theoretically and computationally that the
splitting-based EAARC may significantly improve upon the
AARC.
The idea of reparameterizing the original problem before

applying the robust counterpart has been used in several
papers for different purposes. For example, to avoid the
overconservatism incurred by working directly on the prim-
itive uncertainties, Ben-Tal et al. (1999) reparameterized
the original multiperiod portfolio selection problem and
then applied the robust counterpart approach. In Ben-Tal
et al. (2006), the authors used a reparametrization scheme
in a linear control problem to avoid a nonconvex robust
counterpart. It is also common in the robust optimiza-
tion literature, including Ben-Tal et al. (2004) and this
paper, to reparameterize the uncertainty data by a vector
of perturbations, referred to as the primitive uncertainties,
varying in a nonempty convex compact perturbation set.
Indeed, the AARC in Ben-Tal et al. (2004) first applies
the affine decision rule on the uncertain data, which are

then reparameterized in terms of the primitive uncertainties,
whereas in this paper we first reparameterize the primitive
uncertainties and then apply the AARC, which, interest-
ingly, results in a more flexible AARC.
Our splitting-based EAARC approach bears some sim-

ilarity to the approach suggested by Chen et al. (2007,
2008). Specifically, both approaches are built upon the
splitting of the primitive uncertainties to their negative parts
and positive parts. In addition, the segregated linear deci-
sion rule proposed by Chen et al. (2008) also represents
the recourse response as affine functions of these negative
parts and positive parts. Moreover, both approaches end up
with second-order conic programming problems.
However, the models analyzed by Chen et al. (2007,

2008) are fundamentally different from the one pro-
posed here. Indeed, Chen et al. (2007, 2008) started with
a (chance-constrained) stochastic program and proposed
tractable (convex) approximations to the stochastic program,
whereas here we start with an ARC and use the EAARC to
approximate the ARC. Therefore, in this paper, the primi-
tive uncertainties are restricted to an uncertainty set and thus
are nonstochastic, whereas in Chen et al. (2007, 2008), the
primitive uncertainties are stochastic with possibly known
mean, support, and some deviation measures, which require
totally different techniques for the analysis. Finally, even
though both approaches end up with second-order conic
programming problems, the formulations are different.
The rest of this paper is organized as follows. In §2,

we illustrate the limitation of the AARC and introduce the
EAARC. In §3, we present equivalent formulations for con-
straints derived from the EAARC. In §4, we introduce and
analyze the splitting-based EAARC and identify conditions
under which the splitting-based EAARC improves upon the
AARC. We then conduct numerical experiments to demon-
strate the advantage of the splitting-based EAARC over the
AARC in §5. Finally, we provide some concluding remarks
in §6.

2. Extended Affinely Adjustable
Robust Counterpart

Consider the following two-stage uncertain linear program-
ming problem1:

min c′x

s�t� Ax+By � b�

where c ∈�n, A ∈�r×n, B ∈�r×m, and b ∈�r are uncertain
data and c′ denotes the transpose of vector c. In this prob-
lem, decision variables are classified into two groups. The
first group, denoted by x, represents “here and now” deci-
sions, i.e., decisions made before the realization of uncertain
data �c�A�B�b�. The second group, denoted by y, repre-
sents “wait and see” decisions, i.e., decisions that can be
adjusted to the realization of uncertainty.
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A framework for modeling the two-stage uncertain lin-
ear programs is two-stage stochastic programming. In such
a framework, some stochastic structure is imposed on the
uncertain data �c�A�B�b� and the objective is to mini-
mize the expected cost such that the constraints are satisfied
with high probability. Unfortunately, multistage stochas-
tic programs are generally hard to solve to optimality. To
make things worse, specifying the stochastic structure of
the uncertain data may not be realistic in practice.
An alternative approach for modeling two-stage uncer-

tain linear programs is the adjustable robust counterpart
first introduced by Ben-Tal et al. (2004). In an ARC, the
constraints are satisfied for all the uncertain data varying in
a given uncertainty set, and the second-stage decisions can
be tuned to the realization of the uncertain data. Specifi-
cally, the two-stage ARC for the uncertain linear program
can be written as follows:
min c′x

s�t� ∀ �A�B�b� ∈� ∃y� Ax+By � b�
(1)

where � is the uncertainty set. Here, without loss of gener-
ality, we assume that the cost coefficient vector c is fixed.
If B is fixed in (1), then the above formulation defines

the ARC to an uncertain linear program with fixed recourse.
From now on, we focus on uncertain linear programs with
fixed recourse. In particular, we assume that B is fixed and
the uncertainty set can be parameterized affinely in terms
of the primitive uncertainties z ∈�N :

�=
{
�A�b�	 ∃z∈
��A�b�=�A0�b0�+

N∑
j=1

��Aj ��bj �zj

}
�

where �Aj �bj � ∈�r×n×�r , j = 0�1� � � � �N , are given, and

 is a nonempty closed convex subset in �N . Notice that,
because B is fixed, we remove B from the representation
of the uncertainty set.
Define m0�x�= A0x − b0. For a given x, let M�x� be a

matrix in �r×N with the jth column given by �Ajx−�bj .
The feasible set of the first-stage decision in problem (1)
can be written as

X0 = �x	 ∀ z ∈ 
� ∃y� m0�x�+M�x�z+By � 0��

In general, the ARC problem (1) is intractable (see Ben-
Tal et al. 2004). To overcome this difficulty, Ben-Tal et al.
(2004) proposed the AARC assuming that the “wait and
see” (or recourse) variables are affinely dependent on the
primitive uncertainties. That is,

y = y0+
N∑
j=1

yjzj �

which will render the problem tractable. In this case, the
feasible set X0 is approximated by

XAARC =
{

x	 ∃y0�yj � m0�x�+M�x�z+By0

+
N∑
j=1

Byjzj � 0 ∀ z ∈ 


}
�

It is clear that XAARC ⊆X0.

The AARC is motivated by the belief that the change
in recourse variables is often linear to small changes in
data uncertainty. However, the AARC may be too restric-
tive, particularly in cases where linear dependency fails to
be a good approximation, as illustrated in the following
example.

Example 1. Consider the following ARC:

min x

∀�z�1 � 1 ∃y s.t. −yi � zi� −yi �−zi� i= 1� � � � �N �

N∑
i=1

yi � x�

The example implies that �zi�� yi and hence x�
∑N

i=1 yi �
�z�1. Therefore, the optimal objective value of the ARC
is one.
If we employ the linear decision rule y = y0+∑N

j=1 yjzj ,
then the AARC is as follows:

min x

s�t� −
(
y0i +

N∑
j=1

y
j
i zj

)
� zi�

−
(
y0i +

N∑
j=1

y
j
i zj

)
�−zi� i= 1� � � � �N ∀�z�1 � 1�

N∑
i=1

(
y0i +

N∑
j=1

y
j
i zj

)
� x�

The first two constraints imply that �zi�� y0i +
∑N

j=1 y
j
i zj for

all �z�1 � 1. In particular, it is true for z =±ei, where ei

is the unit vector with one at its ith component. Therefore,

1� y0i + yi
i � 1� y0i − yi

i �

which implies that y0i � 1. In addition, if we let z = 0, the
last constraint then implies that x � N . Finally, if yj = 0
for j = 1� � � � �N and y0 = e where e is the all-ones vector,
then we know that the optimal objective value of the AARC
is N .

The purpose of this paper is to relax the restriction of
the AARC proposed in Ben-Tal et al. (2004), in which the
recourse variables depend on the primitive uncertainties in
an affine manner. Specifically, we introduce auxiliary vari-
ables u ∈�K for some dimension K, such that the recourse
variables can be represented as affine functions of the auxil-
iary variables u in addition to the primitive uncertainties z:

y = y0+
N∑
j=1

yjzj +
N+K∑

j=N+1
yjuj � (2)

where �z�u� ∈ �, uj is the jth component of u, and �,
referred to as the extended uncertainty set, is a nonempty
closed convex set in �N+K to be specified later.
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We now provide some motivation for using the above
formulation (2). As we illustrated in Example 1, it may
be too restrictive in certain settings to require the recourse
variables to be affine functions of the realization of the
primitive uncertainties. By introducing the new variables u,
we hope that they would capture certain nonlinearity of the
response functions. Ideally, it would be nice to represent
u as some nonlinear functions of z, say piecewise-linear
functions of z, which, however, usually leads to intractable
formulations. Thus, instead of representing u directly as
some nonlinear functions of z, we impose the constraint
�z�u� ∈�.
Letting y take the form in (2), we can write down an

approximation to problem (1) as follows:

min c′x

s�t� ∃y0�yj � m0�x�+M�x�z+By0+
K∑

j=1
Byjzj

+
N+K∑

j=N+1
Byjuj � 0 ∀ �z�u� ∈��

(3)

We call the problem the extended affinely adjustable robust
counterpart. In this problem, the feasible set of the first-
stage decision is

XEAARC 	=
{

x	 ∃y0�yj �m0�x�+M�x�z+By0+
K∑

j=1
Byjzj

+
N+K∑

j=N+1
Byjuj � 0 ∀ �z�u� ∈�

}
� (4)

which can be considered as an approximation of the feasi-
ble set X0. When necessary, we will also use XEAARC��� to
emphasize the extended uncertainty set �.
It is straightforward to show that if 
 ⊆ Projz���, where

Projz��� is the projection of � into the z space, then
XEAARC ⊆X0.
Because there are many different ways of choosing the

extended uncertainty set �, the EAARC is rather flexible.
For example, the AARC is a special case of the EAARC.
On the other hand, if the uncertainty set 
 itself is defined
through some auxiliary variables, then there is a natural way
of defining the extended uncertainty set�. Specifically, con-
sider the uncertainty set analyzed in Ben-Tal et al. (2004):


 = �z	 ∃U	 Zz+Uu �� d��

where � is a nonempty convex cone and x � y if and only
if y− x ∈�. In this case, it is natural to define

�= ��z�u�	 Zz+Uu �� d��

Finally, if we choose � appropriately, XEAARC may
recover the feasible set X0. Indeed, assume that the set 

is a polytope with extreme points, z1� � � � � zM . That is,


=
{

z	 z=
M∑
j=1

zjuj �
M∑
j=1

uj =1� uj �0 ∀ j=1�����M
}
� (5)

Choose K =M and let

�=
{
�z�u�	 z=

M∑
j=1

zjuj �
M∑
j=1

uj =1� uj �0∀ j=1�����M
}
�

(6)

In this case, we have

XEAARC =
{

x	 ∃y0�yj �m0�x�+By0

+
M∑
j=1

�M�x�zj +Byj �uj � 0 ∀ e′u = 1� u � 0
}
�

In this following, we show that XEAARC =X0.

Theorem 1. If 
 and � are given by (5) and (6), respec-
tively, then XEAARC =X0.

Proof. From the definition of 
 and �, we have 
 =
Projz���. Thus, XEAARC ⊆X0. It remains to show that X0 ⊆
XEAARC.
Recall the definition of X0 = �x	 ∀ z ∈ 
�∃y�m0�x� +

M�x�z+By � 0�. Hence, for a given x ∈X0, there exists yj

such that

m0�x�+M�x�zj +Byj
� 0 ∀ j = 1�2� � � � �M�

which implies that

m0�x�+
M∑
j=1

�M�x�zj +Byj �uj � 0 ∀ e′u = 1� u � 0�

Thus, x ∈XEAARC and X0 ⊆XEAARC. �

3. Constraint Reformulation
In the previous section, we showed that the EAARC is
rather flexible. In fact, if we define the extended uncertainty
set � using the extreme points of the original uncertainty
set 
 , we can recover the feasible set of the ARC. Unfor-
tunately, in general, for a polyhedral set defined by linear
equalities and inequalities, the number of extreme points
is exponential in terms of the number of constraints of
the polyhedral set, and we may end up with an intractable
formulation.
Because the EAARC is essentially the application of the

AARC on a reparameterized model, all of the theoretical
results for the AARC method carry over to the EAARC
verbatim as long as the extended uncertainty set is cho-
sen appropriately. In the following, we present equivalent
formulations for the robust constraints when the extended
uncertainty set � is defined as follows:

�= ��z�u�	 Zz+Uu � d��

Under this assumption and using the constraint reformula-
tion result of the AARC method (see Ben-Tal et al. 2004
for more details), we have that x ∈ XEAARC if and only if
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there exist W�y0�Yz�Yu such that the following linear
inequalities hold:

m0�x�+By0+Wd � 0�

WZ=M�x�+BYz�

WU = BYu�

W � 0�

(7)

Thus, problem (3) can be equivalently reformulated as the
following linear program:

min c′x

s�t� �7� holds.

If the set � has a polynomial size representation in terms
of the input data, then the above linear program and hence
its associated EAARC are tractable.
In the remainder of this section, we derive the dual of

the feasibility problem (7). This dual is useful when we
compare the feasibility set based on the EAARC and the
one based on the AARC for the extended uncertainty sets
proposed in the next section.

Lemma 2. The dual of problem (7) is given as follows	

min −�m0�x����− �M�x����
s�t� Z�′ +U�′

� d�′�

B′�= 0�

B′�= 0�

B′�= 0�

�� 0�

(8)

where � ∈�r , � ∈�r×N and �·� ·� denotes the inner prod-
uct (specifically, �M�x���� = trace�M�x�′�� denotes the
inner product of the two matrices). In addition, x ∈XEAARC
if and only if the optimal value of (8) is zero.

Proof. Define the Lagrangian function of the feasibility
problem (7):

L�y0�Yz�W�Yu�������

= �−m0�x�−By0−Wd���+ �WZ−M�x�−BYz���
+ �WU−BYu���

=−�m0�x����− �M�x����+ �W�Z�′ +U� ′ −d�′�
− �y0�B′��− �Yz�B′��− �Yu�B′���

Consider the dual function defined by

Q�������= max
W�0�y0�Yz�Yu

L�y0�Yz�W�Yu��������

The Lagrangian dual of the feasibility problem (7) is
given as

min
��0����

Q��������

which is equivalent to (8). It is clear that the feasibility
problem (7) is feasible if and only if its dual has an optimal
objective value zero. �

The sets 
 and � can be extended to incorporate conic
constraints. We have a result parallel to Lemma 2. Because
its proof is similar to the one for Lemma 2 and follows
directly from the conic programming duality theory, we
omit its proof.

Lemma 3. Assume that

�= ��z�u�	 Zz+Uu �� d��

and there exists �z�u� such that d − Zz − Uu lies in the
interior of �. Then, x ∈ XEAARC if and only if zero is the
optimal value of the following problem	

min −�m0�x����− �M�x����
s�t� Z�′ +U�′ �� d�′�

B′�= 0�

B′�= 0�

B′�= 0�

�� 0�

4. The Splitting-Based EAARC
In this section, we propose one way of choosing the
extended uncertainty set �. To illustrate the basic idea, we
consider a simple setting in which the uncertainty set 
 is
the intersection of a polyhedral set and a norm constrained
set, that is,


 = �z	 Lz � l�∩ �z	 �z���� (9)

for some norm �·�. The idea is essentially to split z into
two parts, which can be thought of as the positive part and
the negative part of z. Specifically, we let u = �v′�w′�′ and
z = v − w. That is, z is defined as the difference of two
auxiliary variables v and w, which represents the positive
part and the negative part of z, respectively. The extended
uncertainty set can be naturally defined as

�= ��z�u�	 Lz � l�∩ ��z�u�	 u = �v′�w′�′� z = v−w�

�v+w���� v � 0� w � 0��

Thus, instead of using affine decision rules in terms of z, we
consider decision rules that are affine in v and w (obviously,
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the affine part in z is automatically subsumed in this case),
namely,

y = y0+
N∑
j=1

�rjvj + sjwj��

where y0� rj , and sj are vectors to be determined. The
resulting EAARC is referred to as the splitting-based
EAARC.
We now apply the splitting-based EAARC to Example 1

to illustrate that the EAARC may significantly improve
upon the AARC.

Example 2. Consider the adjustable robust counterpart
presented in Example 1. In the EAARC decision rule, we
have z = v − w�v � 0�w � 0 and y = y0 +∑N

j=1�r
jvj +

sjwj�. Then, the EAARC is defined as follows:

min x

s�t� −
(
y0i +

N∑
j=1

�r
j
i vj + s

j
i wj�

)
� vi −wi�

−
(
y0i +

N∑
j=1

�r
j
i vj + s

j
i wj�

)
�−�vi −wi��

i= 1� � � � �N � ∀�v+w�1 � 1� v � 0� w � 0�
N∑
i=1

(
y0i +

N∑
j=1

�r
j
i vj + s

j
i wj�

)
� x�

The first two constraints imply that

�vi −wi�� y0i +
N∑
j=1

�r
j
i vj + s

j
i wj��

It is clear that y =∑N
j=1 ej �vj + wj� satisfies the first two

constraints. Furthermore, in this case,

x�
N∑
i=1

�vi +wi�= �v+w�1�

Hence, the optimal objective value of the EAARC is one.
This is exactly the optimal objective value of the ARC,
whereas the optimal objective value of the AARC is N .

Observe that in the above example the optimal response
function is yj�z�= �zj �, which is nonlinear in z. By intro-
ducing the positive and negative parts of z, we are able to
capture the nonlinearity in this specific example.
We now extend the splitting idea to more general uncer-

tainty sets. Specifically, we focus on the uncertainty set


 =
{

z	 ∃��u1�′������u �′�′ ∈�K1×···�K Zz+
 ∑

t=1
Utut

�d�

�z��0� ��0��ut��t� ��t� t = 1� � � � �  
}
�

where d ∈ �", Z ∈ �"×N , and Ut ∈ �"×Kt . Here �·��t�, t =
0�1� � � � �  are vector norms. In this paper, all of the vec-
tor norms �·��t� in the uncertainty set satisfy the following
condition:

�ut��t� = ��ut���t�� (10)

where �ut� is the vector with the jth component equal to
�uj � ∀ j ∈ �1� � � � �N �. For technical reasons, we assume that
the Slater condition holds. That is, there exists ut , t =
0�1� � � � �  , such that Zu0+∑ 

t=1 Utut � d with �ut��t� <�t

if �·��t� is not a polyhedral norm. This assumption would
allow us to employ Lemma 3 in the following analysis.
The representation of our uncertainty set is broad enough

to include many uncertainty sets commonly used in the
robust optimization literature. Obviously, the uncertainty set
(9) is a special case. More importantly, it also includes the
intersection of several general ellipsoids as a special case.
We now propose a specific extended uncertainty set

� by splitting �z�u� into its positive and negative parts.
Specifically, let v = ��v0�′� � � � � �v �′�′ ∈ �K0 ×· · ·�K , w =
��w0�′� � � � � �w �′�′ ∈ �K0×· · ·�K with K0 =N , and define
the extended uncertainty set as follows:

�=
{
�z� v�w�	 Zz+

 ∑
t=1

Ut�vt−wt��d� z=v0−w0� vt
�0�

wt
� 0� �vt +wt��t� ��t� t = 0�1� � � � �  

}
� (11)

Now instead of using affine decision rules in terms of the
primitive uncertainties z, we represent the recourse deci-
sion y affinely in v and w (again the affine part in z is
automatically subsumed in this case), i.e.,

y = y0+
 ∑

t=0

Kt∑
i=1

�rt� ivt
i + st� iwt

i �� (12)

We now formulate the EAARC as an equivalent conic
programming problem, whose proof follows from Theo-
rem 3.2 in Ben-Tal et al. (2004) and thus is omitted.

Theorem 4. The splitting-based EAARC with the extended
uncertainty set (11) and the affine decision rule (12) is
equivalent to the following conic programming problem	

min c′x

s�t� m0�x�+By0−%d � 0�

��t�′ ��t��ht�′�∗�t�� t = 0�1� � � � �  �
H0

�Br0+�Z+M�x��

H0
�Bs0−�Z−M�x��

Ht
�Brt +�Ut� t = 1�2� � � � �  �

Ht
�Bst −�Ut� t = 1�2� � � � �  �

Ht
� 0� t = 0�1� � � � �  �

�� 0�

(13)
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where � ∈ �r×", Ht ∈ �r×Kt , and �t ∈ �r . In addition,
��Ht�′�∗�t� is an r-dimensional row vector with its jth entry
equal to the conjugate norm of �·��t� taken over the jth
row of Ht .

Note that when all the vector norms �·��t� are 2-norms,
the above problem (13) becomes a second-order conic
program.
We are interested in identifying conditions under which

XEAARC��� improves upon XAARC when � is given in (11).
However, rather than directly comparing XEAARC��� and
XAARC, we will compare XEAARC��� and another extended
uncertainty set XEAARC��

0�, where

�0 =
{
�z�u�	 Zz+

 ∑
t=1

Utut
� d� �z��0� ��0�

�ut��t� ��t� t = 1�2� � � � �  
}

is the natural extension of the original uncertainty set.
Notice that Lemma 3 implies that x ∈XEAARC��

0� if and
only if zero is the optimal value of the following problem:

min −�m0�x����− �M�x����

s.t. Z�′ +
 ∑

t=1
Ut��t�′ � d�′�

B′�= 0�

�= �0�

B′�t = 0� t = 0�1� � � � �  �
���t�′��t� ��t�

′� t = 0�1� � � � �  �
�� 0�

(14)

Here � ∈ �r , � ∈ �r×N , �t ∈ �r×Kt , and ���t�′��t� is an
r-dimensional row vector with each entry equal to the norm
of the corresponding column in ��t�′.
Similarly, x ∈ XEAARC if and only if zero is the optimal

value of the following problem:

min −�m0�x����− �M�x����

s.t. Z�′ +
 ∑

t=1
Ut��t −�t�′ � d�′�

B′�= 0�

�=�0−�0�

B′�t = 0� t = 0�1� � � � �  �
B′�t = 0� t = 0�1� � � � �  �
���t�′ + ��t�′��t� ��t�

′� t = 0�1� � � � �  �
���t��t

� 0� t = 0�1� � � � �  �

(15)

Here �t��t ∈�r×Kt .

It is straightforward to see that for any given feasible
solution ��������� of problem (15), ������� with �′ =
�′ − �′ is feasible for problem (14). If, in addition, for
any given feasible solution ������� of problem (14), we
can find ����� such that ��������� is feasible for prob-
lem (15), then XEAARC���= XEAARC��

0�. However, if the
projection of the feasible set of problem (15) onto the
����� space is a true subset of the projection of the fea-
sible set of problem (14) onto the ����� space, then it is
possible that XEAARC��

0� and thus XAARC are true subsets
of XEAARC���. In the following, we compare the two sets
under several different cases. First, we assume that �t is
finite. The following theorem illustrates that, when we use
the infinity norm in the uncertainty set, the EAARC with
the extended uncertainty set � does not improve upon the
EAARC with the extended uncertainty set �0.

Theorem 5. If �·��t� = �·�� and �t < � for all t =
0�1� � � � �  , then the projection of the feasible set of prob-
lem (15) onto the ����� space coincides with the projec-
tion of the feasible set of problem (14) onto the �����
space. Thus, in this case, XEAARC���=XEAARC��

0�.

Proof. For any feasible solution ������� of problem (14),
we have that ���t�′�� ��t�

′. Define for t = 0�1� � � � �  ,
�t = 1

2 ��te�
′ +�t�

and

�t = 1
2 ��te�

′ −�t��

It is straightforward to check that ��������� is feasible
for problem (15) and gives the same objective value. Thus,
XEAARC���=XEAARC��

0�. �

The above proof can be easily extended to the case in
which �t =� for any t = 0�1� � � � �  .
Theorem 6. Assume that �t =� for all t = 0�1� � � � �  . If
�0 is bounded, then XEAARC���=XEAARC��

0�.

We now present an example to show that Theorem 6 may
fail if �0 is not bounded.

Example 3. Let r = N = 2, �0 = ��z1� z2� u1� u2�	 z1 −
z2 � 1� z = u�, and

B=
[
1 1

1 1

]
�

In this case, it is clear that B′� = 0, � � 0 implies that
�= 0. Thus, problem (15) has a unique solution
���������= 0. However, in addition to the feasible solu-
tion ������� = 0, problem (14) has a nonzero feasible
solution �������, in which �= 0, �= � and

�=
[
1 1

−1 −1

]
�

Therefore, the feasible set of problem (14) is a strict subset
of the feasible set of problem (15), and thus Theorem 6
does not hold.
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We now show that Theorem 5 fails if the norm is differ-
ent from the infinity norm. For this purpose, we need the
following result.

Lemma 7. Given a norm �·� with the property that �u� =
��u�� for any u,

�u�� �v� ∀ 0 � u � v�

Proof. Let ei be the unit vector with its ith component
being one. It suffices to show that

�u�� �v�

for any u � 0 and v = u+�ei for any i and � � 0.
Define a new vector �v such that

�v = u− �2ui +��ei�

It is clear that ��v� = �v�. In addition, u lies within the line
segment between �v and v. Thus,

�u��max���v���v��= �v�� �

In the following, we further assume that the vector norm
�·��t� satisfies the following conditions:

�ei��t� = 1 ∀ i�

Theorem 8. If �·��t� �= �·�� and �t is finite for some t,
then XEAARC��� may be a true subset of XEAARC��

0�. In
this case, the EAARC based on the extended uncertainty
set � may provide a strict improvement upon the AARC.

Proof. We prove this result by constructing an example.
Specifically, we construct an example in which, for a fea-
sible solution ������� of problem (14), we cannot find
����� such that ��������� is feasible for problem (15).
We consider the basic setting in which

�0 = ��z�u�	 Lz � l� z = u� �u�����

In this case, we have for a feasible solution ������� of
problem (14), � = �. Thus, it suffices to talk about the
feasible solution ����� of problem (14).
Let �= �&1 1'′�. Choose B such that the null space of

B′ is spanned by �= &1 1 1 1 1'′, �1 and �2, where

�= &�1��2'=




1 1

� 0

0 �

−� 0

0 −�



�

It is easy to verify that ����� is feasible for prob-
lem (14). Now assume that there exist � and � such that

��������� is feasible for problem (15). Because B′�= 0,
we have that

�j =(j�+)j�
1+ *j�

2� j = 1�2�
for some scalars (j�)j , and *j . Because �′ = �′ − �′, we
have that �= &�1 �2' with

�1 =(1�+ �1+)1��
1+ *1�

2

and

�2 =(2�+)2�
1+ �1+ *2��

2�

Thus, the jth column of �′ +�′ is given by[
2(1+ 2)1+1j + 2*1+2j ++1j

2(2+ 2)2+1j + 2*2+2j ++1j

]
�

Because ��′
j +�′

j����j and �� 0, letting j = 1 implies
that

(j +)j + *j = 0 for j = 1�2�
Similarly, letting j = 2�3 implies that
(1+�)1 = 0� (2+�*2 = 0�
The above equalities imply that

(1 =−�)1� *1 = ��− 1�)1�
and

(2 =−�*2� )2 = ��− 1�*2�
Letting j = 4�5, � � 0 implies that −)1 � 1/2 and

−*2 � 1/2. In addition, we have that∥∥∥∥∥
[−4)1�−�

−2�2*2

]∥∥∥∥∥���

∥∥∥∥∥
[ −2�2)1

−4*2�−�

]∥∥∥∥∥��� (16)

However, −4)1� − � � � and −2�2*2 � �2. The
above inequalities together with Lemma 7 imply that
�&1 �'′�� 1. Hence, �= 1 and �&1 1'′� = 1. Again, this
together with Lemma 7 implies that ��u1� u2�′� = 1 if and
only if ��u1� u2�′� = ��u1� u2�′�� for any u1 and u2. �

In the construction of the uncertainty set of the EAARC,
we essentially split the primitive uncertainty z and the aux-
iliary variable u to the positive parts and negative parts. We
may generalize the idea by further splitting u to more parts
as follows:

��K�=
{
�z�v�w�	 Zz+

 ∑
t=1

K∑
k=1

Ut�vt� k −wt� k�

� d� z =
K∑

k=1
�v0� k −w0� k�

}
∩

 ⋂
t=0

�t�K��
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where vt = &�vt�1�′ � � � �vt�K�′'′, wt = &�wt�1�′ � � � �wt�K�′'′,
and for t = 0�1� � � � �  ,

�t�K�=
{
�z�v�w�	

∥∥∥∥
K∑

k=1
�vt� k +wt� k�

∥∥∥∥
�t�

��t�

0 � vt� k
� at� k� 0 �wt� k

� bt� k� k= 1� � � � �K
}
�

One may conjecture that by introducing more flexibility
into the uncertainty set, we can make further improvement.
For a fair comparison, we require that for t = 0�1� � � � �  ,{
	=

K∑
k=1

�vt�k−wt�k�	 �z�v�w�∈�t�K�

}
=�		 �	��t���t��

(17)
Unfortunately, under these assumptions, ��K� may not
provide any improvement over ��1�. To see this, we con-
sider the dual associated with the uncertainty set ��K�,
which can be written as follows:

P�K�	 min −�m0�x����− �M�x����

s�t� Z�′ +
 ∑

t=1

K∑
k=1

Ut��t� k −�t� k�′ � d�′�

B′�= 0�

�=
K∑

k=1
��0� k −�0� k��

B′�t� k = 0�
t = 0�1� � � � �  � k= 1�2� � � � �K�

B′�t� k = 0�
t = 0�1� � � � �  � k= 1�2� � � � �K�∥∥∥∥

K∑
k=1

���t� k�′ + ��t� k�′�
∥∥∥∥
�t�

��t�
′�

t = 0�1� � � � �  �
0 ��t� k

� at� k�′�
t = 0�1� � � � �  � k= 1�2� � � � �K�

0 � �t� k
� bt� k�′�

t = 0�1� � � � �  � k= 1�2� � � � �K�

�� 0�

(18)

It is obvious that for any feasible solution of prob-
lem (18) for general K, we can construct a feasible solution
for problem (15) with the same objective value.
On the other hand, because (17) holds, we claim that

K∑
k=1

at� k
��te�

K∑
k=1

bt� k
��te�

Indeed, because ��te
i��t� = �t , there exist vt� k and wt� k

such that

0 � vt� k
� at� k�0 �wt� k

� bt� k�

∥∥∥∥
K∑

k=1
�vt� k +wt� k�

∥∥∥∥
�t�

��t�

and
∑K

t=1�v
t� k −wt� k�=�te

i. Because vt� k�wt� k � 0,

K∑
k=1

at�k
i �

K∑
k=1

vt�k
i ��t�

Thus,
∑K

k=1 at� k � �te. Similarly, we can show that∑K
k=1 bt� k

��te. For any feasible solution ��������� of
problem (15), Lemma 7 implies that

0 � ��j �′ ���′� 0 � ��j �′ ���′�

Therefore, there exists 0i
k � 0 and 1i

k � 0 such that

0� ��t� k
i �′ = 2t�k

i ��t
i �

′
� 2t�k

i �t�
′
� at�k

i �′�
K∑

k=1
2t�k

i = 1�

and

0� ��t� k
i �′ =1t�k

i ��t
i �

′
�1t�k

i �t�
′
� bt�k

i �′�
K∑

k=1
1t�k

i = 1�

Hence, ��������� is feasible for problem (18) for gen-
eral K, which implies that further splitting �z�u� does not
provide an improvement.

5. Numerical Experiment
In the previous section, we proposed one way of choosing
the uncertainty set in the EAARC and identified conditions
under which the EAARC improves upon the AARC. In this
section, we conduct numerical experiments to illustrate the
improvement on a project management problem.
A project management problem can be represented by

a directed graph with m arcs and n nodes. Each node on
the graph represents an event marking the completion of a
particular subset of activities. We denote the set of directed
arcs on the graph as E. Hence, an arc �i� j� ∈E is an activ-
ity that connects event i to event j . By convention, we use
node 1 as the start event and the last node n as the end
event.
We consider a project with several activities. The com-

pletion of activities must satisfy precedent constraints. For
example, activity e1 precedes activity e2 if activity e1 must
be completed before starting activity e2.
Each activity �i� j� ∈ E has an uncertain duration tij +

zij6ij in which tij and 6ij are constants and zij ∈ &−1�1' is
the primitive uncertainty. The value of zij is realized after
event i is completed. But before this realization, certain
resources can be allocated to the activity to shorten its dura-
tion. Specifically, we assume that if yij units of resource are
allocated to activity �i� j� ∈E, then the duration of activity
�i� j� would become tij + zij6ij − yij . Let bij be the cost of
using each unit of resource for the activity on the arc �i� j�.
Our goal is to find a trade-off of the completion time of the
project and the total cost of resource allocations.
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Mathematically, our project management problem can be
formulated as a multistage uncertain linear program:


min
∑
ij

bijyij +Cxn

s�t� xj − xi + yij − zij6ij � tij ∀ �i� j� ∈E�

yij � 0 ∀ �i� j� ∈E�

tij + zij6ij − yij �Mij ∀ �i� j� ∈E�

x1 = 0�
xn �D�




∀ zij �

In this model, C is the per-unit cost on the completion
time, and xi denotes the completion time of event i. The
first constraint implies that the completion time of event j
is no less than the completion time of event i plus the com-
pletion time of activity �i� j�. The third constraint requires
that the reduction of the completion time of an activity
cannot be arbitrarily large. In particular, in our experiment,
we assume that the minimum duration of project �i� j� ∈E
must be at least Mij . We also require that the completion
time of the entire project meets a strict deadline D.
If the distributional information of the uncertain data

is available, one would formulate the problem as a mul-
tistage stochastic programming problem. Unfortunately,
analysis of the project management problem within the
stochastic programming framework, such as determining
the expected completion time and quantile of completion
time, is notoriously difficult (Hagstrom 1988). A tractable
approximation is proposed by Chen et al. (2008) to a
two-stage project management problem with uncertainty,
which requires mild distributional knowledge of the uncer-
tain completion time tij .
In our experiment, instead of imposing distributional

assumptions on the uncertain data, we assume that the
uncertain data are restricted within some uncertainty set
and formulate the project management problem within the
adjustable robust counterpart framework. Specifically, the
uncertainty set 
 is defined as follows:


 = �z = �zij ��i� j�∈E	 − �w � z � �v� �z�2 ����

We will compare the performance of the AARC and the
splitting-based EAARC on the multistage project manage-
ment problem. In the splitting-based EAARC, we define
the uncertainty set � as follows:

�= {
�z�v�w�= �zij � vij �wij��i� j�∈E	 z = v−w�

− �w � v−w � �v� �v+w�2 ��� �v�w�� 0
}
�

In addition, the decision variables xi and yij are repre-
sented as

xi = x0i +
∑

�k� l�∈Ii
xkl� v
i vkl +

∑
�k� l�∈Ii

xkl�w
i wkl�

yij = y0ij +
∑

�k� l�∈Ii
ykl� v
ij vkl +

∑
�k� l�∈Ii

ykl�w
ij wkl�

(19)

where vkl and wkl can be regarded as the positive part and
negative part of the primitive uncertainty zkl, respectively. It
is clear that, when we impose the constraints xkl� v

i =−xkl�w
i

and ykl� v
ij =−ykl�w

ij , the EAARC reduces to the AARC.
Note that in the above formulations, instead of summing

�k� l� across all arcs, we take the summation only in a
selected set Ii. The set Ii is called the information set for
decision variable xi. By choosing the information set prop-
erly, we ensure that, at any stage of decision, the system
takes into account only information from previous realized
uncertainties. Furthermore, based on our assumption that
resource on an arc is allocated before the primitive uncer-
tainty on that arc is realized, arc �i� j� should always have
the same information set as node i.
Employing Theorem 4, the splitting-based EAARC can

be reformulated as a second-order conic program. However,
it seems more convenient to carry out the reformation using
the following result, which is shown in Chen et al. (2008).

Lemma 9. For a given scalar � and a vector a, the robust
constraint

�+ a′v+ b′w � 0 ∀ �v�w� ∈ ��v�w�	 − �w � v−w � �v�
�v+w�2 ��� �v�w�� 0�

can be equivalently written as

�+��u�2+ r′�v+ s′ �w � 0�

uj � aj − rj + sj ∀ j�

uj � bj + rj − sj ∀ j�

u� r� s � 0�

Because all of the constraints in the EAARC have the
same form as the robust constraint in Lemma 9, they are
referred to as robust constraints in the sequel, and we will
use Lemma 9 to reformulate all of the robust constraints
into their equivalent second-order conic constraints. But
before we do this, note that any primitive uncertainty not
in the information set should not have an influence on the
corresponding decision variable; therefore, we have the fol-
lowing constraints:

xkl� v
i = xkl�w

i = 0 ∀ �k� l�� Ii�

ykl� v
ij = ykl�w

ij = 0 ∀ �k� l�� Iij �

Similarly the constraint x1 = 0 means xkl� v
0 = xkl�w

0 = 0
∀ �k� l�.
The objective of minimizing

∑
ij bijyij +Cxn can be writ-

ten as minimizing a new variable  , subject to the robust
constraint  �

∑
ij bijyij + Cxn. Given the representation

of xi and yij in (19) and the extended uncertainty set �,
this robust constraint, together with the four other sets of
robust constraints, is turned into their equivalent second-
order conic constraints. The reformulations are presented
below for convenience.
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First set:

 �
∑
ij

bijyij +Cxn

becomes

 �Cx0n +
∑

�i� j�∈E
bijy

0
ij +��t�2+

∑
�k� l�∈E

�tklv v̄kl + tklw �wkl��

tkl �
∑

�i� j�∈E
bijy

kl� v
ij +Cxkl� v

n − tklv + tklw ∀ �k� l� ∈E�

tkl �
∑

�i� j�∈E
bijy

kl�w
ij +Cxkl�w

n + tklv − tklw ∀ �k� l� ∈E�

t� tr � tw � 0�

where t = �tkl��k� l�∈E , tv = �tklv ��k� l�∈E , and tw = �tklw ��k� l�∈E .

Second set:

xj − xi + yij − zij6ij � tij ∀ �i� j� ∈E

becomes

x0i −x0j −y0ij+tij+���ij�2+
∑

�k� l�∈E
��kl

v�ij v̄kl+�kl
v� ij �wkl��0

∀ �i� j� ∈E�

�kl
ij � xkl� v

i − xkl� v
j − ykl� v

ij + ;ij<
kl
ij −�kl

v� ij +�kl
w� ij

∀ �i� j� ∈E� �k� l� ∈E�

�kl
ij � xkl�w

i − xkl�w
j − ykl�w

ij − ;ij<
kl
ij +�kl

v� ij −�kl
w� ij

∀ �i� j� ∈E� �k� l� ∈E�

�ij ��v� ij ��w� ij � 0 ∀ �i� j� ∈E�

where �ij = ��kl
ij ��k� l�∈E , �v� ij = ��kl

v� ij ��k� l�∈E , �w� ij =
��kl

w� ij ��k� l�∈E , and <kl
ij = 1 if �i� j�= �k� l� and 0 otherwise.

Third set:

yij � 0 ∀ �i� j� ∈E

becomes

−y0ij+���ij�2+
∑

�k� l�∈E
��kl

v� ij v̄kl+�kl
w�ij �wkl��0 ∀�i�j�∈E�

�kl
ij �−ykl� v

ij −�kl
v� ij +�kl

w� ij ∀ �i� j� ∈E� �k� l� ∈E�

�kl
ij �−ykl�w

ij +�kl
v� ij −�kl

w� ij ∀ �i� j� ∈E� �k� l� ∈E�

�ij ��v� ij ��w� ij � 0 ∀ �i� j� ∈E�

where �ij = ��kl
ij ��k� l�∈E , �v� ij = ��kl

v� ij ��k� l�∈E , and �w� ij =
��kl

w� ij ��k� l�∈E .

Fourth set:

tij + zij6ij − yij �Mij ∀ �i� j� ∈E

becomes

y0ij +���ij�2+
∑

�k� l�∈E
�+kl

v� ij v̄kl ++kl
w� ij �wkl�� tij −Mij

∀ �i� j� ∈E�

+kl
ij � ykl� v

ij − ;ij<
kl
ij −+kl

v� ij ++kl
w� ij ∀ �i� j� ∈E� �k� l� ∈E�

+kl
ij � ykl�w

ij + ;ij<
kl
ij ++kl

v� ij −+kl
w� ij ∀ �i� j� ∈E� �k� l� ∈E�

�ij ��v� ij ��w� ij � 0 ∀ �i� j� ∈E�

where �ij = �+kl
ij ��k� l�∈E , �v� ij = �+kl

v� ij ��k� l�∈E , and �w� ij =
�+kl

w� ij ��k� l�∈E .

Fifth set:

xn �D

becomes

x0n +��
�2+
∑

�k� l�∈E
�2kl

v v̄kl +2kl
s �wkl��D�

2kl
� xkl� v

n −2kl
v +2kl

w ∀ �k� l� ∈E�

2kl
�−xkl�w

n +2kl
v −2kl

w ∀ �k� l� ∈E�


�
v�
w � 0�

where 
 = �2kl��k� l�∈E , 
v = �2kl
v ��k� l�∈E , and 
w =

�2kl
w ��k� l�∈E .

Putting all of the above together, we end up with a
second-order conic program, for which we use CPLEX ver-
sion 10 to solve. For our computational experiment, we
create a fictitious project with the activity network in the
form of a H by W grid (see Figure 1). There are a total of
�H +1�× �W +1� nodes, with the first node at the bottom
left corner and the last node at the upper right corner. Each
arc on the graph points either upward or to the right.
In an instance of the uncertain project management prob-

lem, the related parameters tij , Mij , bij are generated ran-
domly. Specifically, on horizontal arcs, tij is generated

Figure 1. Project management grid with height H = 3
and width W = 5.
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from U&6�10' (the uniform distribution in &6�10'), the
minimum duration time Mij is generated from U&1�5', and
the resource unit cost bij is generated from U&1�10'. On
the vertical arcs, tij is generated from U&4�6', Mij is gen-
erated from U&1�3', and bij is generated from U&1�5'. Let
6ij = tij −Mij . We also fix C = 0�3 and let v̄ij = 0+ and
�wij = 0− for some positive constants 0+ and 0− (the exact
values of 0+ and 0− will be specified later). It is clear
that 0+ and 0− measure the asymmetry of the primitive
uncertainties.
We use two difference criteria to compare the perfor-

mance of the EAARC and the AARC. In the first criterion,
we measure the improvement of the optimal objective value
of the EAARC relative to the AARC. In the second cri-
terion, we compare the simulated average costs incurred
using decision rules (19) derived from the EAARC and the
AARC. Here is a precise description of how this is done:
• For an instance of the uncertain project management

problem, we solve the EAARC and AARC, respectively, to
derive decision rules (19).
• Generate 100 samples of �zij ��i� j�∈E from U&−0−� 0+'

for the instance of the uncertain project management
problem.
• For each sample, compute the cost of the project man-

agement problem when the decisions xi and yij are deter-
mined by the decision rules (19) derived from solving the
EAARC and the AARC. The average costs of the EAARC
and the AARC are then defined as the average of the corre-
sponding costs of all samples. Because we assume that only
the primitive uncertainty z is observable, in the implemen-
tation of the EAARC decision rule, we let vkl =max�zkl�0�
and wkl =max�−zkl�0�.

• Compute the percentage of improvement:
percentage of improvement

= �average cost of EAARC�−�average cost of AARC�
�average cost of AARC�

×100%�

We now illustrate the impacts of the due date, the asym-
metry property of the primitive uncertainties, problem size,
information set, and level of robustness on the performance
of the EAARC and the AARC.

Experiment 1: Algorithm Improvement vs.
Due-Date Constraint

We use the 3× 4 grid network. Let �= 3�0, 0+ = 1, and
0− = 0�7. We also use the complete information set, i.e.,
for each event i, the information set Ii consists of the real-
ization of all past primitive uncertainties. We pick a range
of due dates D between 24 and 90. The percentage of
improvement versus due-date relation is shown in Figure 2.
Our experiment indicates that there is a lower bound l

on the due date (l= 24 in our example), below which the
due-date constraint would become so tight that both the
EAARC and the AARC become infeasible. On the other
hand, when the due date goes above an upper bound u

Figure 2. Algorithm improvement vs. due date.
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(u= 85 in our example), the time constraint becomes so
loose that no project needs to be shortened, and, therefore,
the EAARC and the AARC yield the same cost.
From Figure 2, we observe that the EAARC outperforms

the AARC under both criteria (simulated average or opti-
mal value). We also observe that the largest percentage of
improvement always appears somewhere in the middle of l
and u. For due dates near l or u, the costs derived from
the EAARC and the AARC are close. The explanation is
as follows: when the due date is too loose or too tight,
the problem becomes somewhat simplified; i.e., all projects
must be shortened (in the tight case) or no project needs to
be shortened (in the loose case). In either case, the EAARC
does not have a big advantage over the AARC.
Around the midpoint of l and u, however, it is not imme-

diately clear which project to shorten and how much to
shorten. This adds more variability to the problem, which
would in turn demand additional flexibility in the response
function. The seemingly erratic shape in the middle por-
tion suggests that the percentage of improvement is sen-
sitive to the due date. Especially, we observe that there
is a big jump at a due date around 71 in the graph. One
possible interpretation is that, when the due date becomes
rather loose, the optimal costs of both EAARC and AARC
decrease rapidly and thus their ratio and the percentage of
improvement become unstable. This is in fact a common
observation throughout our experiments. We also observe
that not surprisingly the percentage of improvement under
the two criteria demonstrates a certain degree of correla-
tion. The percentage of improvement under the simulated
average cost criterion, however, appears to be more volatile
than the other.

Experiment 2: Algorithm Improvement vs.
Asymmetric Uncertainty Set

As described before, our primitive uncertainty set can
model asymmetric uncertainties by adjusting 0+ and 0−.
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Table 1. Algorithm improvement vs. asymmetric
uncertainty.

0− 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Optimal (%) 0.0 2.3 3.7 4.5 4.8 4.9 4.6 3.9 2.9 0.5 0
Simulated (%) 0.0 2.1 2.9 3.4 3.5 3.5 3.3 2.9 2.3 1.4 0

We are interested in comparing the performances of the
EAARC and the AARC under different levels of asymme-
try. Without loss of generality, we fix 0+ to be 1 and let 0−
change. We set D= 60 and still use the 3×4 grid network
with � set to 3�0. The computational results are shown
in Table 1.
Surprisingly, when 0− = 1 (completely symmetric uncer-

tainty set), the EAARC and the AARC always give the
same cost in our experiment. On the other end, when
0− = 0, the uncertainty set lies completely in the positive
orthant, and therefore EAARC reduces to AARC (and gives
0% improvement). When 0− takes value in the middle
range, under both criteria, the percentage of improvement
gets higher and peaks at around 0− = 0�5.

Experiment 3: Algorithm Improvement vs.
Problem Size

We now evaluate the algorithm improvement with different
problem size. To do this, three grid networks are selected
with size 2 × 3, 3 × 3, and 3 × 4, respectively. The due
dates are set to be 25�30, and 35, respectively. Again, let
�= 3�0, 0+ = 1, and 0− = 0�7.
The percentages of improvements are listed in Table 2.

From this table, it is clear that the improvements in both
the optimal objective values and the simulation averages
of using the EAARC grow when the problem size grows.
Interestingly, the improvement of the simulated average
cost outperforms that of the optimal objective value.

Experiment 4: Algorithm Improvement vs.
Information Set

This experiment is carried out on a 3×4 grid network with
�= 3�0, D= 60, 0+ = 1, and 0− = 0�7. In the experiment,
we compare the performance of the EAARC and the AARC
using the complete information set, in which all of the past
information is available, and the partial information set, in
which information too distant away in the past is “lost.”
To be more precise, we define the degree of information

availability L as follows: for arc �i� j� to be in the infor-
mation set for node k, activity �i� j� must complete before
event k, and there is a path from event i to event k using

Table 2. Algorithm improvement vs. problem size.

Size 3× 4 4× 4 4× 5
Optimal (%) 1.3 2.4 3.8
Simulated (%) 2.6 3.5 5.1

Table 3. Algorithm improvement vs. information set.

D 0 1 2 3 4 5 6 7

Optimal (%) INF 3.1 3.2 3.2 3.2 3.2 3.2 3.2

Simulated (%) INF 4.4 4.6 4.6 4.6 4.6 4.6 4.7

no more than L arcs. In our experiment, we vary L from
zero (information becomes lost immediately, e.g., no infor-
mation is available) to 7 (for the 3× 4 grid, this means no
information is lost).
Results are listed in Table 3 (“INF” stands for infeasible).
As we can easily observe, the percentage of improvement

does not change much when information set shrinks. The
explanation is as follows: the decision on a node depends
heavily on the most “recent” information. Even though we
are shrinking the information set, the most recent infor-
mation is still kept. Therefore, the performance does not
change much. When L= 0, there is essentially no informa-
tion available, and both the EAARC and the AARC become
infeasible easily.
To further justify our explanation, we have also tried an

information set that includes all past information except the
most recent. Both algorithms become infeasible frequently
under this information set. This further confirms the intu-
ition that, for our project management problem, decision in
each stage relies mostly on recent information.

Experiment 5: Algorithm Improvement vs.
Level of Robustness ���

This experiment is conducted on the 3× 4 network with
D = 60, 0+ = 1, and 0− = 0�7. We vary the values for �
to adjust the level of robustness, and we report the results
in Table 4.
Clearly, the EAARC outperforms the AARC by larger

percentages when � is small. When � grows large, we
essentially put more value on robustness: both the EAARC
and the AARC need to attain feasibility for a larger portion
of primitive uncertainties of the problem. In this situation,
the flexibility of the EAARC is confined; therefore, the
percentage of improvement decreases as � grows.
In summary, the EAARC improves upon the AARC, and

its improvement depends on the tightness of the due date,
the asymmetric property of the uncertainty set, the informa-
tion set, the size of the problem, and the level of robustness.
Specifically, our experiment demonstrates that the EAARC
brings significant advantage over the AARC for due dates
that are not too tight or too loose, information sets that

Table 4. Algorithm improvement vs. level of
robustness.

� 2.0 2.5 3.0 3.5 4.0

Optimal (%) 13.6 8.1 5.0 3.2 1.7
Simulated (%) 10.4 6.3 4.0 4.5 3.3
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include the most recent history, larger problem size, and
less stringent robustness. However, it is less clear how this
improvement depends on the level of asymmetry of the
uncertainty sets.

6. Conclusion
In this paper, we propose the extended affinely adjustable
robust counterpart to modeling and solving a class of mul-
tistage uncertain linear programs with fixed recourse. Our
approach ends up with well structured conic programming
formulations, which are tractable and scalable to multistage
problems and allow for large-scale implementation. We
demonstrate both theoretically and computationally that the
splitting-based extended affinely adjustable robust counter-
part may significantly improve upon the affinely adjustable
robust counterpart.
Our extended affinely adjustable robust counterpart is

rather flexible. However, a significant challenge is how
to choose an appropriate extended affinely decision rule.
Specifically, the following question is of great interest:
For a given constant 0 � 1, can we construct a tractable
EAARC such that

XEAARC ⊆X0 ⊆ 0XEAARC?

Endnote
1. The approach presented here can be straightforwardly
extended to multistage uncertain linear programming
problems.

Acknowledgments
The authors thank Melvyn Sim for stimulating discus-
sions on robust optimization, especially the splitting-based
EAARC. The authors also thank the associate editor and
two reviewers for insightful comments and constructive
suggestions, which greatly improved the presentation of
this paper.

References
Atamtürk, A. 2006. Strong formulations of robust mixed 0-1 program-

ming. Math. Programming 108(2) 235–250.
Atamtürk, A., M. Zhang. 2007. Two-stage robust network flow and design

under demand uncertainty. Oper. Res. 55(4) 662–673.
Ben-Tal, A., A. Nemirovski. 1998. Robust convex optimization. Math.

Oper. Res. 23 769–805.

Ben-Tal, A., A. Nemirovski. 1999. Robust solutions to uncertain programs.
Oper. Res. Lett. 25 1–13.

Ben-Tal, A., A. Nemirovski. 2000. Robust solutions of linear program-
ming problems contaminated with uncertain data. Math. Program-
ming 88 411–424.

Ben-Tal, A., S. Boyd, A. Nemirovski. 2006. Extending the scope of robust
optimization: Comprehensive robust counterparts of uncertain prob-
lems. Math. Programming 107 63–89.

Ben-Tal, A., T. Margalit, A. Nemirovski. 1999. Robust modeling of multi-
stage portfolio problems. H. Frenk, K. Ross, T. Terlaky, S. Zhang,
eds. High Performance Optimization, Chapter 12. Kluwer Academic
Press, Rotterdam, The Netherlands, 303–328.

Ben-Tal, A., B. Golany, A. Nemirovski, J. P. Vial. 2005. Retailer-supplier
flexible commitments contracts: A robust optimization approach.
Manufacturing Service Oper. Management 7(3) 248–271.

Ben-Tal, A., A. Goryashko, E. Guslitzer, A. Nemirovski. 2004. Adjusting
robust solutions of uncertain linear programs. Math. Programming
99 351–376.

Bertsimas, D., C. Caramanis. 2005. Finite adaptability in linear opti-
mization. Technical report, Massachusetts Institute of Technology,
Cambridge, MA.

Bertsimas, D., M. Sim. 2003. Robust discrete optimization and network
flows. Math. Programming 98 49–71.

Bertsimas, D., M. Sim. 2004a. Price of robustness. Oper. Res. 52(1) 35–53.
Bertsimas, D., M. Sim. 2004b. Robust discrete opimization and down-

side risk measures. Working paper, National University of Singapore,
Singapore.

Bertsimas, D., M. Sim. 2006. Tractable approximations to robust conic
optimization problems. Math. Programming 107(1) 5–36.

Bertsimas, D., C. Caramanis, W. Moser. 2006. Multistage finite adaptabil-
ity: Application to air traffic control. Working paper, Massachusetts
Institute of Technology, Cambridge, MA.

Birge, J. R., F. Louveaux. 1997. Introduction to Stochastic Programming.
Springer, New York.

Chen, X., M. Sim, P. Sun. 2007. A robust optimization perspective on
stochastic programming. Oper. Res. 55(6) 1058–1071.

Chen, X., M. Sim, P. Sun, J. Zhang. 2008. A linear decision-based
approximation approach to stochastic programming. Oper. Res. 56(2)
344–357.

El-Ghaoui, L., H. Lebret. 1997. Robust solutions to least-square problems
to uncertain data matrices. SIAM J. Matrix Anal. Appl. 18 1035–1064.

El-Ghaoui, L., F. Oustry, H. Lebret. 1998. Robust solutions to uncertain
semidefinite programs. SIAM J. Optim. 9 33–52.

Goldfarb, D., G. Iyengar. 2003. Robust convex quadratically constrained
programs. Math. Programming Ser. B 97(3) 495–515.

Hagstrom, J. N. 1988. Computational complexity of PERT problems. Net-
works 18 139–147.

Ruszczynski, A., A. Shapiro, eds. 2003. Stochastic Programming, Hand-
book in Operations Research and Management Science. Elsevier Sci-
ence, Amsterdam.

Soyster, A. L. 1973. Convex programming with set-inclusive constraints
and applications to inexact linear programming. Oper. Res. 21(5)
1154–1157.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


