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a b s t r a c t

We analyze a joint inventory and pricing model of a single product over a finite planning horizon with
deterministic demand. In this model, an ordering quantity and a price are decided simultaneously at the
beginning of each period, demand of the period depends on the price, and a price adjustment cost is
incurred if the price is changed from the previous period. We develop polynomial time algorithms to
maximize the total profit and discuss their computational complexity.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Thanks to the development of new technologies, there is grow-
ing literature in developing and analyzing sophisticated mathe-
matical models that integrate pricing and inventory decisions (see
[4] for an up-to-date review). A predominate assumption in the lit-
erature is that price adjustment is costless. Yet, as evidenced by
various empirical studies in economics, changing prices requires
a significant amount of resources and the associated costs cannot
be ignored in many business settings. For example, Levy et al. [16]
notice in their study of supermarket chains that the price adjust-
ment cost takes up asmuch as 35% of the reported profits. Zbaracki
et al. [24] study the pricing practices of a one-billion-dollar indus-
trial firm and observe that ‘‘the price adjustment costs comprise
1.22% of the company’s revenue and 20.03% of the company’s net
margin’’. Similar observations are also made by Slade [18], Aguir-
regabiria [2] and Kano [14].

The purpose of this paper is to develop and analyze a joint
pricing and inventory model with price adjustment costs and
deterministic demands. Specifically, we consider a single product
periodic reviewmodel over a finite planning horizon. In thismodel,
an ordering quantity and a price are decided simultaneously at the
beginning of each period. The demand of a period depends on the
price in the current period. Similar to the classical economic lot
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sizing model, the replenishment incurs a fixed ordering cost and
a variable ordering cost. After the demand of a period is satisfied,
left over inventory is carried over to the next period incurring an
inventory holding cost. In contrast to themajority of the literature,
we assume that a price adjustment cost is incurred if the current
price is changed from the previous period. The objective is to
determine a joint ordering and pricing plan so as to maximize the
total profit over the planning horizon.

The paper belongs to the rapidly growing literature on joint
inventory and pricing models. Recently, significant progress has
been made on analyzing joint inventory and pricing models
without price adjustment cost (see, e.g., [5,6] for stochastic
models, and [8,11,10] for deterministic models). Our contribution
is to introduce costs associated with price adjustment into joint
inventory and pricing models in deterministic settings, which
are predominately ignored in the literature. The only exceptions
are Aguirregabiria [2] and Chen et al. [7], who analyze the
stochastic counterpart of our model. Two other related papers
are Netessine [17] and Celik et al. [3], where Netessine [17]
recognizes the importance of the impact of price adjustment
costs on inventory and pricing decisions and formulates a
deterministic continuous-time model to optimize the timing of
a fixed number of price changes, and Celik et al. [3] analyze a
continuous-time stochastic revenue management problem with
costly price changes, which however does not consider inventory
replenishment decisions and thus does not capture the intricate
interaction of ordering and pricing.

As we illustrate in the next section, our model includes several
integrated inventory and pricingmodels in the literature as special
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cases. For example, if price can be changed freely without any
associated cost, it reduces to the joint inventory and dynamic
pricingmodel analyzed in [22,19]. If the price adjustment cost is so
high that prohibits any price change, ourmodel reduces to the joint
inventory and static pricing model analyzed in [15,12,20]. As we
will demonstrate later, our model with general price adjustment
costs becomes much more difficult. Nevertheless, we manage
to develop polynomial time algorithms to finding the optimal
coordinated pricing and ordering plan under a variety of settings.
The remainder of the paper is organized as follows. The problem
statement and associated mathematical formulation are given in
Section 2. In Section 3, we develop algorithms to determine the
optimal ordering and pricing decisions. Finally, we conclude with
several remarks in Section 4.

2. Model and preliminaries

Consider a firm that makes joint ordering and pricing decisions
to satisfy a sequence of demands of a single product over a plan-
ning horizon with T periods. At the beginning of each period, an
ordering quantity y ≥ 0 and a price p ∈ P are determined simul-
taneously, where P is a closed interval. The replenishment incurs
a fixed ordering cost Kδ(y) and a variable ordering cost cy, where
δ(0) = 0 and δ(y) = 1 for y > 0. Suppose that orders are deliv-
ered instantaneously and no backlogging is allowed. Inventory left
at period t , denoted by It , is carried over to the next period with
a marginal holding cost h. The demand of period t is modeled as a
deterministic function of p by Dt(p) = atd(p), where at ≥ 0 and
d(p) is decreasing in p.

In contrast to most papers in the literature on joint inventory
and pricingmodels, we assume that a cost f (p̃−p) incurs if p and p̃
are prices in two consecutive periods, where f (0) = 0, f (x) = u+

if x > 0 and f (x) = u− if x < 0 for some u+, u−
≥ 0. Similar

price adjustment cost structures have been proposed and analyzed
in the literature. For example, Aguirregabiria [2] and Kano [14]
consider the symmetric case u+

= u−. These costs, referred to
as the menu costs or physical costs, are associated with activities
like ‘‘constructing new price lists, printing and distributing new
list prices and monthly supplemental price sheets, and notifying
suppliers [24]’’. Our model allows asymmetric price adjustment
costs to reflect the fact that firms may take different actions in
response to price markdown and price markup.

Suppose that the initial inventory level I0 = 0. The objective
of the firm is to decide ordering quantities yt and prices pt in all
periods so as tomaximize the total profit. Mathematically, the firm
faces the problem:

max
pt ,yt ,It

T
t=1

atptd(pt) −

T
t=2

f (pt − pt−1)

−

T
t=1

[Kδ(yt) + cyt + hIt ] (1a)

s.t. It = It−1 + yt − atd(pt), ∀1 ≤ t ≤ T , (1b)
It ≥ 0, yt ≥ 0, pt ∈ P , ∀1 ≤ t ≤ T , (1c)

where the three terms in (1a) represent the total revenue, price
adjustment costs and inventory-related costs, respectively. The
inventory balance equation (1b) and It ≥ 0 in (1c) ensure that
no demand is backlogged. The feasible sets of variables are given
in (1c). It should be mentioned that our analysis and results hold
under more general settings (e.g. the cost parameters K , c, h are
time-dependent); see the discussion in Section 4.

Several important inventory (and pricing) models can be cast
as special cases of the above problem. First, when P is a singleton
set, (1) reduces to the economic lot sizing problem first analyzed
in [23]. The authors show that it can be solved in O(T 2) by
finding a shortest path in an appropriately constructed acyclic
network. More efficient algorithms with a running time O(T log T )
are proposed by Aggarwal and Park [1], Federgruen and Tzur [9]
and Wagelmans et al. [21]. In addition, if there is no speculative
motive on holding inventories, i.e. ct + ht ≥ ct+1 for all t < T ,
then a T -period economic lot sizing problem can be solved in an
O(T ) time as proved in, e.g., [9]. In the literature, the so-called zero
inventory ordering property plays a very key role. It says that in
an optimal plan an order is placed only when the inventory level
drops to zero. The property also implies that if t is a reorder period,
then the optimal ordering plan over periods {1, 2, . . . , t − 1} can
be determined independently of that over {t, t + 1, . . . , T }.

Second, if no price adjustment cost is incurred, i.e., f (x) = 0,
then (1) reduces to the joint inventory and dynamic pricing model
studied by Wagner and Whitin [22] and Thomas [19]. The basic
idea is to construct an equivalent longest path problem on some
network in a similarway asWagner andWhitin [23]. Such problem
can be solved in an O(T 2) time.

Finally, if the price adjustment cost is very high, i.e., f (x) = +∞

for any x ≠ 0, then (1) reduces to the joint inventory and static
pricing model analyzed by Kunreuther and Schrage [15] in which
a constant price is determined at the beginning of the planning
horizon. In this case, problem (1) becomes

max
p∈P

[R(p, 1, T + 1) − C(d(p))],

where R(p, s, s̃) =


s≤t<s̃ atpd(p) denotes the total revenue
obtained from periods s to s̃− 1, and C(d) defined below indicates
the total inventory-related cost:

C(d) = min
yt ,It

T
t=1

[Kδ(yt) + cyt + hIt ] (2)

s.t. It = It−1 + yt − atd, ∀1 ≤ t ≤ T ,

I0 = 0, It ≥ 0, yt ≥ 0, ∀1 ≤ t ≤ T .

Kunreuther and Schrage [15] show that C(d) is concave and piece-
wise linear. Gilbert [12] illustrates that C(d) consists of at most T
linear pieces.Moreover, vandenHeuvel andWagelmans [20] prove
the following result.

Lemma 1. The function C(d) defined by (2) consists of at most T
linear pieces and its expression can be obtained in O(T 2) time.

3. Main results

In this section, we will derive polynomial time algorithms for
problem (1) under various conditions, where the main idea is to
construct an equivalent longest path problem. Recall that it is well
known from the network flow literature that a longest path in an
acyclic network with n links can be found in O(n) time.

Throughout this paper, we make the following assumption on
the function d(p).

Assumption 1. For any given constants A1 and A2, the function
pd(p) + A1d(p) + A2p has O(1) local maximizers in P , and it takes
O(1) time to find all of them.

Observe that van den Heuvel and Wagelmans [20] implicitly
use a weaker assumption that a global maximizer of the function
ϕ(p) = pd(p)+A1d(p)+A2p can be found in O(1) time. As wewill
see later, it is not sufficient to consider only the global maximizer
in our algorithm. Nevertheless, when d(p) is linear and strictly
decreasing, the associated ϕ(p) is strictly concave and hence the
two assumptions hold and are equivalent.

Beforewe proceed, several definitions are introduced as follows
to simplify the discussion. First, observe that we can equivalently
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express the price adjustment cost f (P̃ − P) = uα̃ whenever P ≠ P̃ ,
where α̃, called the price adjustment indicator from P to P̃ , satisfies
that

α̃ ∈ {+1, −1} and α̃(P̃ − P) > 0. (3)

Moreover, for any given {pt : 1 ≤ t ≤ T }, notice that it corresponds
to a unique sequence {(sn, αn, Pn) : 1 ≤ n ≤ N} such that the
following conditions hold:

(a) Any two consecutive triples (s, α, P) and (s̃, α̃, P̃) in the
sequence satisfy (3) and

1 ≤ s < s̃ ≤ T + 1 and α, α̃ ∈ {−1, +1}. (4)

(b) s1 = 1, sN = T + 1 and α1 = +1;
(c) pt = Pn when sn ≤ t < sn+1.

Later we call such sequence a pricing plan and sn are price
adjustment periods, where 1 and T + 1 are treated as artificial price
adjustment periods for convenience.

3.1. Zero fixed ordering cost case

To illustrate the idea more clearly, we first consider the special
case that no fixed ordering cost is charged (i.e., K = 0), then
move to the general case. Observe that it is optimal to order in
every period when K = 0, and the minimal total inventory-
related cost is

T
t=1 cDt for any demand sequence {Dt}. It remains

to determine the optimal pricing plan {(sn, αn, Pn) : 1 ≤ n ≤ N}.
For this purpose, we partition the planning horizon according to
price adjustment periods sn and rewrite the associated total profit
as
N

n=1

G(Pn, sn, αn, sn+1, αn+1),

where G(p, s, α, s̃, α̃) defined below represents the total profit
obtained in periods s, s + 1, . . . , s̃ − 1:

R(p, s, s̃) − uα
−


s≤t<s̃

c[atd(p)].

LetP (s, α, s̃, α̃) be the set of localmaximizers ofG(p, s, α, s̃, α̃)
in term of p ∈ P . Since that Pn−1 ≠ Pn and Pn ≠ Pn+1 by
(3), slightly modifying Pn does not change the associated sequence
{(sn, αn) : 1 ≤ n ≤ N}. It implies that Pn ∈ P (sn, αn, sn+1, αn+1)
by the optimality of the pricing plan. This observationmotivates us
to convert (1) to an equivalent longest path problem.

Specifically, construct a directed network (V, E) with the node
set V and the link set E respectively given by

V = {v = (P, s, α, s̃, α̃) : P ∈ P (s, α, s̃, α̃)

and (4) holds} ∪ {v0, ve},

E = {

v, ṽ


: v = (P, s, α, s̃, α̃) ∈ V and

ṽ = (P̃, s̃, α̃, s′, α′) ∈ V satisfy (3)},

where v0 = (p0, 1, +1, 1, +1) and ve = (p0, T+1, −1, T+1, −1)
for some p0 < minP . For each


v, ṽ


∈ E , we assign the length

ℓ

v, ṽ


= 0 if v = v0 and G(P, s, α, s̃, α̃) if v = (P, s, α, s̃, α̃) ≠ v0.

In the network, v0 and ve are artificial nodes introduced as the
origin and the destination of the longest path to be constructed.
There is neither an incoming link to v0 nor an outgoing link to ve by
(3); hence (V, E) is an acyclic network. A typical node v ∉ {v0, ve}
specifies consecutive price adjustment periods s < s̃, associated
price change indicators α, α̃, and a constant price P ∈ P (s, α, s̃, α̃)
from period s to period s̃ − 1. Furthermore, a path from v0 to ve
specifies a feasible pricing plan {(sn, αn, Pn) : 1 ≤ n ≤ N}, and
its length is equal to the total profit associated with the pricing
plan. On the other hand, an optimal pricing plan {(sn, αn, Pn) : 1 ≤

n ≤ N} of problem (1) corresponds to some path from v0 to ve.
Thus determining an optimal pricing plan is equivalent to finding
a longest path from v0 to ve in the acyclic network (V, E).

We next discuss the computational complexity. To obtain a link
length, it suffices to maximize some function G(p, s, α, s̃, α̃) of p
overP , whereG has the form A0Pd(P)+A1d(P)+A2P+A3 for some
A0 ≥ 0. By Assumption 1, each P (s, α, s̃, α̃) has O(1) elements
and can be determined in O(1) time. Therefore it takes O(T 2) time
to prepare for all link lengths. In addition, the network has O(T 3)
links and the longest path can be found in O(T 3) time. In summary,
it follows the results below.

Theorem 1. Problem (1) can be solved in O(T 3) time if Assump-
tion 1 holds and there is no fixed ordering cost.

3.2. General case

Unlike the case with zero fixed ordering cost, the optimal
ordering plan depends on realized demands and hence cannot
be determined independent of pricing plans. It makes solving the
general problem much more involved than the case with K = 0.
To circumstance the difficulty, we take into account the reorder
period associated with each price adjustment period.

Specifically, consider two consecutive price adjustment periods
s < s̃ with pt = P for s ≤ t < s̃. Let d = d(P) and τ , τ̃ be reorder
periods associated with s, s̃, respectively. There are two cases as
follows:

either τ = τ̃ ≤ s < s̃ or τ ≤ s < τ̃ ≤ s̃. (5)

The first case in (5) indicates that all demands from periods s to
s̃−1 are satisfied by an order at period τ . Hence the total inventory-
related costs from s to s̃ − 1 is

C0(d, τ , s, s̃) = K(τ , s, s̃) +


s≤t<s̃

c(τ , t)(atd + bt),

where K(τ , s, s̃) = K if s = τ < s̃ and 0 otherwise, and

c(s, t) = c + (t − s − 1)h

represents themarginal cost to satisfy the demand of period t by an
order at period s. Note that the definition K(τ , s, s̃) implies that the
fixed cost incurred at period τ is included in the total inventory-
related costs from s to s̃ − 1 only when s = τ .

For the second case in (5), demands fromperiod τ to period s are
satisfied by an order at period τ , and demands from periods τ̃ to s̃
are satisfied by the order at period τ̃ . By the zero inventory ordering
property, the minimal inventory-related cost incurred to satisfy
the demands from periods s to τ̃ − 1, denoted by C1(d, τ , s, τ̃ ),
can be expressed as

min
yt ,It

[K(τ , s, τ̃ ) + c(τ , s)ys + hs Ĩs]

+


s<t<τ̃

[Kδ(yt) + cyt + hĨt ]

s.t. Ĩt = Ĩt−1 + yt − atd, ∀s ≤ t < s̃,

Ĩs−1 = 0, Ĩt ≥ 0, yt ≥ 0, ∀s ≤ t < s̃.

Notice that here the fixed ordering cost incurred at period τ is
assigned to the total inventory related cost from period s to period
s̃ − 1 only when s = τ . We also observe that the total inventory-
related costs from period τ̃ to period s̃ − 1 is C0(d, τ̃ , τ̃ , s̃).

To summarize the two cases in (5), the minimal inventory-
related cost fromperiod s to period s̃−1, denoted by C(d, τ , s, τ̃ , s̃),
can be expressed by
C0(d, τ , s, s̃), if τ = τ̃ ,

C1(d, τ , s, τ̃ ) + C0(d, τ̃ , τ̃ , s̃), if τ < τ̃ .
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From the above discussion, we know that for an optimal pricing
plan {(sn, αn, Pn) : 1 ≤ n ≤ N}, if the demand of period sn is
satisfied by an order at period τn, then the maximal total profit can
be expressed by
N

n=1

G(Pn, τn, sn, αn, τn+1, sn+1, αn+1),

where G(P, τ , s, α, τ̃ , s̃, α̃) defined below represents the maximal
total profit from periods s to s̃ − 1:

R(P, s, s̃) − uα
− C(d(P), τ , s, τ̃ , s̃).

We are ready to convert problem (1) to a longest path problem.
Let P (τ , s, α, τ̃ , s̃, α̃) be the set of all local maximizers of the
function G in term of p ∈ P . Construct a network (V, E) with

V = {(P, τ , s, α, τ̃ , s̃, α̃) : P ∈ P (τ , s, α, τ̃ , s̃, α̃),

(4) and (5) hold} ∪ {v0, ve},

E = {

v, ṽ


: v = (P, τ , s, α, τ̃ , s̃, α̃) ∈ V and

ṽ = (P̃, τ̃ , s̃, α̃, τ ′, s′, α′) ∈ V satisfy (3)},

where v0 = (p0, 1, 1, +1, 1, 1, +1) and ve = (p0, T + 1, T +

1, −1, T +1, T +1, −1) for some p0 < minP . For each

v, ṽ


∈ E ,

assign the length ℓ

v, ṽ


= 0 if v = v0 and G(P, τ , s, α, τ̃ , s̃, α̃) if

v = (P, τ , s, α, τ̃ , s̃, α̃) ≠ v0.
By a similar argument as the previous subsection, one can see

that determining an optimal pricing plan is equivalent to finding
a longest path in (V, E). Furthermore, once the optimal pricing
plan is specified, the optimal ordering plan can be determined by
solving an economic lot sizing problem of the form (2).

We now consider the computational complexity. To construct
the network, we need the expressions of linear functions
C0(d, τ , s, t) and piecewise linear functions C1(d, τ , s, t) for all
combinations (τ , s, t), where the former can be obtained in
O(T 3), and the latter in O(T 5) time by Lemma 1. Therefore all
C(d, τ , s, τ̃ , s̃) can be determined in O(T 5) time and each of them
consists of at most T linear pieces. It implies that the function
G(P, τ , s, α, τ̃ , s̃, α̃) of P consists of O(T ) pieces of the form
A0Pd(P) + A1d(P) + A2P + A3 for some A0 ≥ 0. By Assumption 1,
the setP (τ , s, α, τ̃ , s̃, α̃) hasO(T ) elements and can be obtained in
O(T ) time. Therefore the network has O(T 5) nodes and O(T 8) links
whose lengths can be obtained in O(T 5) time. Thus, it takes O(T 8)
time to find the optimal pricing plan plus an additional O(T ) time
for the optimal ordering plan. In summary, we have the following
results.

Theorem 2. Determining the optimal pricing plan of problem (1) is
equivalent to finding a longest path from v0 to ve in the network
(V, E), where the network has O(T 5) nodes and O(T 8) links whose
lengths can be determined in O(T 5) time if Assumption 1 holds.
Furthermore, it takes O(T 8) time to determine the optimal pricing plan
plus an additional O(T ) time to obtain the optimal ordering plan of the
form (2).

4. Concluding remarks

In this paper, we present a joint pricing and inventory man-
agement model with deterministic demand and price adjustment
cost, and develop polynomial time algorithms to solve problem
(1), where the basic idea is to construct an acyclic network such
that determining the optimal pricing plan of problem (1) is equiv-
alent to finding the longest path in the network. The same idea also
works for the general problem with time-dependent cost param-
eters Kt , ct , ht , u±

t and the demand model Dt(p) = atd(p) + bt .
Note that under the general settings the function C(d) previously
defined by (2) becomes
C(d) = min
yt ,It

T
t=1

[Ktδ(yt) + ctyt + ht It ]

s.t. It = It−1 + yt − (atd + bt), ∀1 ≤ t ≤ T ,

I0 = 0, It ≥ 0, yt ≥ 0, ∀1 ≤ t ≤ T .

The computational complexity to solve the general problem
depends on how many linear pieces the above function C(d)
has. If C(d) consists of ST linear pieces, then its expressions
can be determined by solving ST economic lot sizing problems
with the same parameters at , bt , Kt , ct and ht by van den Heuvel
and Wagelmans [20] (they in fact claim that ST = O(T 2);
however, there is a flaw in their proof according to our private
communicationwith van den Heuvel). Recall that solving a general
economic lot sizing problem takes O(T log T ) time. Similar to
Theorem 2, if Assumption 1 holds then the acyclic network has
O(STT 4) nodes andO(S2T T

6) linkswhose lengths can be constructed
in O(STT 4 log T ) time. Furthermore, the optimal pricing and
ordering plan can be determined in O(S2T T

6) time.
We provide several additional remarks as below, where the

detailed discussions can be found in [13].

Remark 1. In the model we assumed that the price can take
all possible values within the interval P . However, for practical
purposes, one often focus on finite number of predetermined
price levels. In the case that P has SP elements, the problem can
be handled in a similar way. The only difference is that when
constructing the network, we can simply focus on all SP price
levels rather than finding local maximizers of the function G of p.
Specifically, solving the problem is equivalent to finding a longest
path in an acyclic network;moreover, it takes anO(SPT 4 log T ) time
to construct the network and an O(S2P T

4) time to find the desirable
longest path.

Remark 2. In general, ST could be large and hence we may have
an extremely large acyclic network. Interestingly, as demonstrate
numerically in [13], we observe that the ordering plan is quite
stable under different discretization levels of the prices. This
suggests the following efficient heuristics: we first solve the joint
inventory and pricing problem with a coarse discretization of the
prices to identify an ordering plan; then fix the ordering plan and
solve the joint inventory and pricing problem with zero ordering
cost, which based on Theorem 1 can be solved very efficiently.

Remark 3. Celik et al. [3] argue that the price adjustment cost
may also depend on inventory level I on hand. Specifically, they
consider a price adjustment cost of the form f (p̃−p)+ f0(I), where
f0(I) = K0+c0I denotes the inventory-related cost. In fact, themain
idea of our approach alsoworks for price adjustment cost functions
in the following form:

f (p̃, p, I) =


u+(I) + v+(p̃) + w+(p) if p̃ > p,
u−(I) + v−(p̃) + w−(p) if p̃ < p,

where u±(I), v±(p) and w±(p) can be general continuous func-
tions such that u±(I) ≥ 0.

Remark 4. In the case u+
= u−, the price adjustment cost is

independent of price adjustment directions and hence we do not
need to verify condition (3) when construct the network. The
problem in this case can be solved more efficiently. Specifically,
when there is no fixed ordering cost, it is equivalent to finding a
longest path in an acyclic network, and it takes an O(T 2) time in
total to solve the problem. In addition, solving the general problem
is equivalent to finding a longest path in another network, and it
takes an O(STT 5 log T ) time in total to solve the problem.

There are several interesting extensions along different direc-
tions. First, it is interesting to see the algorithms can be improved.
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Observe that when we construct the acyclic networks, a variety
of optimization subproblems with small differences have to be
solved. Thus, one direction is to eliminate possible redundant com-
putations in solving these subproblems. Moreover, solving such a
subproblem indeed corresponds to deciding the optimal price for
some joint static pricing and inventory model. In the general case
we assume that C(d) defined by T -period problem (2) consists of
ST linear pieces. However, it is not clear if ST is polynomial in T ,
which may constitute another direction. Finally, it remains a chal-
lenge to incorporate ordering capacity constraints into our model.
In this case, breaking down the total profit to terms involving single
constant prices becomes impossible because the zero inventory or-
dering property does not hold anymore. Even if this could be done,
it is likely that we have to solve the joint static pricing and inven-
tory model with capacity constraints as a subroutine, which itself
is challenging.

References

[1] A. Aggarwal, J.K. Park, Improved algorithms for economic lot size problems,
Operations Research 41 (3) (1993) 549–571.

[2] V. Aguirregabiria, The dynamics of markups and inventories in retailing firms,
Review of Economic Studies 66 (1999) 275–308.

[3] S. Celik, A. Muharremoglu, S. Savin, Revenue management with costly price
adjustments, Operations Research 57 (2009) 1206–1219.

[4] X. Chen, D. Simchi-Levi, Pricing and inventory management, in: Ozer Philips
(Ed.), Handbook of Pricing Management, 2011.

[5] X. Chen, D. Simchi-Levi, Coordinating inventory control and pricing strategies
with random demand and fixed ordering cost: the finite horizon case,
Operations Research 52 (2004) 887–896.

[6] X. Chen, D. Simchi-Levi, Coordinating inventory control and pricing strategies
with random demand and fixed ordering cost: the infinite horizon case,
Mathematics of Operations Research 29 (2004) 698–723.

[7] X. Chen, S. Zhou, Y. Chen, Integration of inventory and pricing decisions with
costly price adjustments, Operations Research 59 (5) (2011) 1144–1158.
[8] S. Deng, C.A. Yano, Joint production and pricing decisions with setup costs and
capacity constraints, Management Science 52 (2006) 741–756.

[9] A. Federgruen, M. Tzur, A simple forward algorithm to solve general dynamic
lot sizing models with n periods in O(n log n) or O(n) time, Management
Science 37 (8) (1991) 909–925.

[10] J. Geunes, Y. Merzifonluoglu, H.E. Romeij, Capacitated procurement planning
with price-sensitive demand and general concave revenue functions, Euro-
pean Journal of Operations Research 194 (2) (2008) 390–405.

[11] J. Geunes, H.E. Romeijn, K. Taaffe, Requirements planning with pricing and
order selection flexibility, Operations Research 54 (2006) 394–401.

[12] S.M. Gilbert, Coordination of pricing and multiple-period production across
multiple constant priced goods, Management Science 46 (2000) 1602–1616.

[13] P. Hu, Coordinated dynamic pricing and inventory management, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, 2011.

[14] K. Kano, Menu costs, strategic interactions, and retail price movements,
Working Paper.

[15] H. Kunreuther, L. Schrage, Joint pricing and inventory decisions for constant
priced items, Management Science 19 (7) (1973) 732–738.

[16] D. Levy, M. Bergen, S. Dutta, R. Venable, The magnitude of menu costs: direct
evidence from large US supermarket chains, Quarterly Journal of Economics
112 (1997) 791–825.

[17] S. Netessine, Dynamic pricing of inventory/capacity with infrequent price
changes, European Journal of Operations Research 174 (2006) 553–580.

[18] M.E. Slade, Optimal pricing with costly adjustment: evidence from retail-
grocery prices, The Review of Economic Studies 65 (1998) 87–107.

[19] J. Thomas, Price-production decisions with deterministic demand, Manage-
ment Science 16 (11) (1970) 747–750.

[20] W. van den Heuvel, A.P.M. Wagelmans, A polynomial time algorithm for
a deterministic joint pricing and inventory model, European Journal of
Operations Research 170 (2) (2006) 463–480.

[21] A.P.M. Wagelmans, S.V. Hoesel, A. Kolen, Economic lot sizing: an O(n log n)
algorithm that runs in linear time in the Wagner–Whitin case, Operations
Research 40 (1992) S145–S156.

[22] H. Wagner, T. Whitin, Dynamic version of the economic lot size model,
Management Science 5 (1958) 89–96.

[23] H. Wagner, T. Whitin, Dynamic problems in the theory of the firm, Naval
Research Logistics Quarterly 5 (1) (1958) 53–74.

[24] M. Zbaracki, M. Ritson, D. Levy, S. Dutta, M. Bergen, Managerial and customer
costs of price adjustment: direct evidence from industrial markets, Review of
Economics and Statistics 86 (2) (2004) 514–533.


	Joint pricing and inventory management with deterministic demand and costly price adjustment
	Introduction
	Model and preliminaries
	Main results
	Zero fixed ordering cost case
	General case

	Concluding remarks
	References


