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1. Introduction

The concept of supermodularity provides a convenient tool in deriving monotone comparative

statics in parameterized optimization problems. In many Markovian decision processes, one is

concerned whether supermodularity can be preserved under dynamic programming recursions to

derive structural results of optimal polices. One of the key preservation properties states that if

X and Y are lattices, D is a sublattice of X × Y , and g(x,y) is supermodular in (x,y) ∈D,

then the function f(x) = maxy[g(x,y) : (x,y) ∈D] is supermodular on the set of x for which the

maximization is well defined (see Topkis 1998, Theorem 2.7.6). Under the above conditions, one

can also show that the optimal solution set is increasing in x. The above preservation property

is powerful and widely used in many problems. However, to apply it, the set D is required to

be a sublattice. Relaxing the lattice requirement has been proven a significant challenge. Indeed,
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without the lattice condition, the analysis becomes much more complicated even in some very

simple settings in which supermodularity can be preserved.

The objective of this paper is to establish a new preservation property of supermodularity under

optimization operations when the constraint set may not be a lattice. Specifically, consider the

following optimization problem parameterized by two dimensional vectors x∈S = {Ay : y ∈D},

f(x) = maximize
y

{
g(y) :Ay=x,y ∈D

}
, (1)

where A is a 2 × n matrix, D is a closed convex sublattice of <n and g is an n-dimensional

function defined on D. Throughout of this paper, we assume that the maximization is well defined

whenever x∈S. Our main result Theorem 1 shows that f is concave and supermodular on S if A

is non-negative and g is concave and supermodular on D. Several extensions are also presented.

The significance of the above result is that the constraint set {(x,y) :Ay = x,y ∈D} is not a

lattice in general and may not be mapped to become one by a variable transformation. Of course,

by relaxing the lattice requirement, we have to assume concavity of the objective function and

impose a requirement on the dimension of the parameter vector. In addition, in general the optimal

solution set is not monotone in x. Though it may appear restrictive, relaxing the above assumptions

even slightly may render the preservation property invalid. More importantly, the property and its

extensions include several existing results in the literature as special cases, and they prove quite

powerful as we illustrate their applications to several operations models.

Our first application is a two-product coordinated pricing and inventory control problem with

cross-price effects over a finite planing horizon. In this model, the retailer observes the initial

inventories of two products at the beginning of each period, and then simultaneously decide their

prices and the ordering quantities. The demand of each product during a period is stochastic

and depends not only on its own price but also the price of the other product. The objective

is to maximize the total expected profit over the planning horizon assuming zero lead time and

backlogging of unfilled demand.

In the second application, we consider a two-stage coordinated dynamic pricing and inventory

control problem over a finite planning horizon. In the model, the firm observes the initial raw

material inventory level and the finished product inventory level at the beginning of each period,

and then decides the amount of raw material to be purchased, the amount of product produced

from the raw material, and the selling price of product. Demand of the product is stochastic and

depends on its price. There is no lead time for delivery and unused inventory is carried over to the

next period. The objective is to maximize the total profit over the whole horizon.

In the third application, we consider a self-financing retailer who sells a single product over a

finite planning horizon with its operational decisions limited by its cash flow. At the beginning of

each period, the retailer observes the initial inventory level of the product and its available capital
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on hand, and then decides the amount of product to be ordered such that the ordering costs do

not exceed the available capital. The delivery is immediate, unused capital is deposited to the

savings account. After demand during the period is realized, unused inventory is carried over to

the next period and unsatisfied demand is lost. The retailer obtains its profit by either depositing

the unused capital or selling the product. The objective is to maximize the total profit over the

planning horizon.

Our first and second applications fall into the fast growing literature on integrated inventory and

pricing models, for which we refer to Chen and Simchi-Levi (2011) for an up-to-date survey. Papers

directly related to our first application include Zhu and Thonemann (2009), Song and Xue (2007)

and Ceryan et al. (2009), who analyze models with substitutable products and develop structural

properties of the optimal policies. Our second and third applications are extension of Yang (2004)

and Chao et al. (2008), respectively.

Compared with these papers, our approach based on the results developed in this paper is

significantly simpler and provides additional insights to these applications. For instance, for our first

application, Zhu and Thonemann (2009), Song and Xue (2007) and Ceryan et al. (2009) prove the

submodularity of the profit-to-functions by analyzing the first-order optimality condition (the KKT

condition) of the optimization problems resulted from the dynamic programming recursion. Their

proofs are lengthy and unfortunately not very insightful. They also require smoothness assumptions

on objective functions and can only deal with simple feasible sets. In fact, for tractability, all these

three papers ignore the lower and upper bound constraints on prices when they analyze the KKT

conditions, even though such constraints are indispensable in particular for linear demand models.

Our approach allows us to treat integrated inventory and pricing models with complementary

products and substitutable products in a unified framework and derives new structural results.

Yang (2004) analyzes a model related to our second application without pricing decisions. Again,

his approach is also based on complicated analysis on the first-order optimality condition of the

optimization problems resulted from the dynamic programming recursion.

This paper is organized as follows. In Section 2, we present our main result, its special cases and

extensions. In Section 3, we apply our main result to the three mentioned applications. Section 4

summarizes this paper and provides some future research problems. Throughout this paper, many

proofs are provided in the appendix unless otherwise specified.

Before we proceed, we introduce the notations and basic concepts used in this paper. Sets are

expressed by boldface capital letters (e.g., D and S), matrices by regular capital letters (e.g., A

and B), vectors by boldface lowercase letters (e.g., x and y) and real numbers by regular lowercase

letters. We also write A= [ai,j]m,n or x= [xi]n sometimes to emphasize entries of A or components

of x, where subscripts outside the bracket indicate the size of A or the dimension of x. All vectors

are column vectors, and 0,e are the vectors with all components 0,1, respectively.
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Given any m×n matrix A, subset D of <n, vectors x= [xi]n and y = [yi]n, denote by A≥ 0 if

all its entries are non-negative, |A| the determinant of A when m= n, A(D) = {Ax :x∈D} ⊂<m,

x≤ y if xi ≤ yi for all i, x∨y = [max(xi, yi)]n and x∧y = [min{xi, yi}]n. D is called a convex set

if λx+ (1− λ)y ∈D for all x,y ∈D and 0 ≤ λ≤ 1, and a sublattice (of <n) if x,y ∈D implies

that x∧y,x∨y ∈D. For example, [l,u] = {x : l≤x≤u} forms a convex sublattice of <n, where

some components of vectors l,u could be −∞,+∞, respectively (if ui = +∞, for example, xi ≤ ui

is to be understood as xi <+∞).

Given a function f defined on a subset S of <n (in case S is not specified, we implicitly assume

S = <n), we say f is increasing if x ≤ y ∈ S implies that f(x) ≤ f(y), supermodular if S is a

sublattice and f(x) + f(y)≤ f(x∧ y) + f(x∨ y) for all x,y ∈ S, and concave if S is convex and

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y) for all 0 ≤ λ ≤ 1 and x,y ∈ S. We say f is decreasing,

convex or submodular if −f is increasing, concave or supermodular. f is monotone if it is either

increasing or decreasing, bimonotone if it is a bivariate function increasing in one variable and

decreasing in the other, a valuation if it is submodular and supermodular. When referring to a

convex function, we assume it is well-behaved (i.e., closed, proper and lower semi-continuous) and

may take the value +∞. For details on these concepts, we refer to Rockafellar (1970), Topkis (1998)

and Simchi-Levi et al. (2005).

2. Main results

In this section, we first show in Theorem 1 that concavity and supermodularity can be preserved in

problem (1) if A≥ 0. We then present a preservation property of components-wise concavity and

supermodularity in Proposition 1 on a special case of problem (1) and an extension of Theorem 1 by

replacing the constraint Ay=x with Ay=Bx for some matrix B with two columns in Proposition

2. From Corollary 2 to Corollary 3 we discuss another special case of problem (1) and show several

preservation properties. Finally, the applicability and limitation of our results are demonstrated

on several examples including linear programs and quadratic programs. We point out that several

results in the literature can be directly derived from ours as we go along.

Theorem 1. Assume that A is a non-negative 2× n matrix in problem (1). If D is a closed

convex sublattice, then so is S; if g is concave and supermodular on D, then so is f on S.

Proof: It is straightforward to see S = A(D) is closed and convex. Concavity of f on S fol-

lows from Theorem 5.4, Rockafellar (1970). It remains to prove that S is a sublattice and f is

supermodular on S, i.e., x∧ x̃,x∨ x̃∈S and f(x) + f(x̃)≤ f(x∧ x̃) + f(x∨ x̃) for any x, x̃∈S.

Let y and ỹ be the optimal solutions associated with x and x̃ in problem (1), respectively.

Because D is a sublattice, y ∧ ỹ,y ∨ ỹ ∈D and a = A(y ∧ ỹ),b = A(y ∨ ỹ) ∈ S. Since A ≥ 0,

a≤x∧ x̃ hence x∧ x̃ belongs to the convex hull of {a,x, x̃} (see Figure 1 for the illustration). We

know from the convexity of S that x∧ x̃∈S. Similarly, we also have x∨ x̃∈S.
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x∧ x̃
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Figure 1 Relative positions of a,b,x,x and x∧ x̃,x∨ x̃ in the proof of Theorem 1

Denote x∧ x̃= λa+µx+ νx̃ for some 0≤ µ,ν,λ≤ λ+µ+ ν = 1. Then x∨ x̃= λb+µx̃+ νx by

a+ b=x∧y+x∨y=x+ x̃. The concavity of f implies that

λ[f(a) + f(b)] + (1−λ)[f(x) + f(x̃)]≤ f(x∧ x̃) + f(x∨ x̃).

In addition, the definition of f and the supermodularity of g lead to

f(x) + f(x̃) = g(y) + g(ỹ)≤ g(y ∧ ỹ) + g(y ∨ ỹ)≤ f(a) + f(b).

By combining the above two inequalities, we conclude that f(x)+f(x̃)≤ f(x∧ x̃)+f(x∨ x̃). �

Remark 1. Theorem 1 still holds when the equality constraints Ay = x in (1) are replaced

by inequality constraints. Indeed, it suffices to add non-negative slack or surplus variables to the

inequality constraints and apply Theorem 1 in the current format to establish the same result.

Remark 2. The statement of Theorem 1 remains valid for some discrete cases. Specifically,

suppose all entries of A are integers, D = [l,u]∩Zn, where Z denotes the set of all integers and

l,u ∈ Zn. We can show that if g is supermodular on D and integrally concave (see Section 3.4,

Murota 2003) then so is f on S. The proof is almost identical except that we now deal with the

concave extensions of g and f instead.

Note that in the proof of Theorem 1, we only need the supermodularity of g and the concavity

of f (not the concavity of g) to ensure the supermodularity of f . The concavity of g does provide a

sufficient condition for the concavity of f though. One may ask whether the concavity of g can be

replaced by component-wise concavity such that supermodularity can still be preserved. Though

the answer is negative in general as we illustrate later in this section on an unconstrained quadratic

program, the concavity of g can be weakened for a special case of problem (1). The key is to observe

that in the proof of Theorem 1, we construct a such that x ∧ x̃ can be expressed as a convex

combination of a,x and x̃, and then apply the concavity of f on S. If one can guarantee that x∧ x̃
and a lie on the same vertical line, then the concavity of f(x1, x2) in x2 is sufficient to complete

the proof. This observation motivates the proposition below.
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Proposition 1. Consider the optimization problem parameterized by x= [x1, x2]∈S:

f(x1, x2) = maximize
y

{g(x1,y) : α1x1 +α′y= x2, (x1,y)∈D} ,

where D ⊂ <n, S = {(y1, a1y1 +α′y) : (y1,y) ∈D}, α1 ≥ 0 and α ≥ 0. If D is a sublattice and

D(y1) = {y : [y1,y]∈D} is convex for any y1, then S is a sublattice and S(x1) = {x2 : [x1, x2]∈S}
is convex for any x1. Moreover, if g(y1,y) is supermodular on D and concave in y on D(y1) for

all y1, then f(x1, x2) is supermodular on S and concave in x2 on S(x1) for all x1.

When n= 2, A≥ 0 and |A|> 0, Theorem 1 implies that if g on D is concave and supermodular,

then so is g(Px) on A(D), where P =A−1. Notice that the matrix P has non-negative diagonal

entries and non-positive off-diagonal entries (any matrix with this property will be referred to as

an L0-matrix thereafter). A stronger result can be obtained from Proposition 1, which provides a

sufficient condition such that supermodularity is preserved under linear variable transformations.

Corollary 1. For any 2× 2 L0-matrix P , if D is a convex sublattice in <2, then so is the set

S = {x : Px ∈D}; if a function g on D is component-wise concave and supermodular, then so is

the function g(Px) on S.

The following proposition presents an extension of problem (1).

Proposition 2. Given some m×n matrix A and m× 2 matrix B such that B′A≥ 0 and B′B

is an L0-matrix, closed convex sublattice D of <n, and concave and supermodular function g on

D, define f(x) as below on S = {x : ∃y ∈D such that Ay=Bx}:

f(x) = maximize
y

{
g(y) :Ay=Bx,y ∈D

}
.

Then S is a closed convex sublattice and f is concave and supermodular on D.

Next we consider a special case of problem (1) below. Given convex sublattices Dn of <2 and

real-valued functions fn defined on Dn for n= 1,2, · · · ,N , let S be the Minkowski sum of Dn, i.e.,

S = {
∑N

n=1 yn : yn ∈Dn,∀n}, and for any x∈S,

f(x) = maximize
y1,··· ,yN

{∑N

n=1
fn(yn) :

∑N

n=1
yn =x,yn ∈Dn, ∀n

}
. (2)

When all Dn =<2, −f is called the infimal convolution of −fn (see Rockafellar 1970, Section 5).

The following result is an immediate corollary of Theorem 1. We omit its proof.

Corollary 2. Suppose P is a non-singular 2× 2 matrix. For problem (2), if all P−1(Dn) are

convex sublattices of <2, and fn(Px) are concave and supermodular on P−1(Dn), then P−1(S)

forms a convex sublattice of <2, and f(Px) is concave and supermodular on P−1(S).
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When P is the identity matrix, Corollary 2 states the preservation of concavity and supermodu-

larity in problem (2). In general, we may have some flexibility of choosing the matrix P depending

on applications. Three interesting instances of P are listed below:

J =

1 0

0 −1

 , J1 =

1 −1

0 −1

 , J2 =

−1 0

−1 1

 .
Note that all these linear transformations are projections, i.e., J(Jx) = J1(J1x) = J2(J2x) =x.

The linear transformation J maps a vector [x1, x2] to [x1,−x2]. Geometrically, J(S) is the reflec-

tion of the set S at the horizontal axis. Interestingly the transformation shows a simple but useful

relation between two dimensional submodular functions and supermodular functions, whose proof

follows directly from the definitions of supermodularity and submodularity and thus is omitted.

Lemma 1. When both S and J(S) are sublattices of <2, f(x) is supermodular on S if and only

if f(Jx) is submodular on J(S).

This above lemma allows us to convert a statement on supermodularity to the related statement

on submodularity. For example, we know from Corollary 1 that if g is component-wise concave and

submodular on <2 then so is the function g(Bx) in x for any 2× 2 non-negative matrix B.

The other two transformations J1 and J2 map a vector [x1, x2] to [x1−x2,−x2] and [−x1, x2−x1],

respectively. We will use them in the following to analyze a closely related concept, L\-concavity,

which finds applications in inventory models (see, for instance, Zipkin 2008).

Definition 1. The function f is L\-concave on <n if f(x−ξe) is supermodular in (x, ξ)∈<n+1.

Our definition of L\-concavity follows from Murota (2003). As pointed out by Murota (2003), an

L\-concave function f is also concave and supermodular. Moreover, its Hessian matrix ∇2f(x),

provided the existence, has non-positive diagonal entries and non-negative off-diagonal entries,

and possesses the diagonal dominance property, i.e., the summation of entries in each row is non-

positive. It should be mentioned that depending on applications, one may also assume ξ ≤ 0 or

ξ ≥ 0 in the definition of L\-concavity. For example, Zipkin (2008) uses {ξ : ξ ≤ 0} as the domain

of ξ when he applies it to inventory models with lost sales. However, our definition allows us to

easily characterize L\-concavity through supermodularity in <2.

Lemma 2. Suppose the function f is defined on <2. The four statements are equivalent: (a) f is

L\-concave; (b) f(J1x) is L\-concave; (c) f(J2x) is L\-concave; (d) f(x), f(J1x) and f(J2x) are

supermodular.

By Lemmas 1, 2 and all above discussions, we have the following result on problem (2) from

Corollary 2, where the proof is omitted.

Corollary 3. Assume in problem (2) that all Dn are convex sublattices of <2.
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(a) If all fn are concave and supermodular on Dn, then so is f on the convex sublattice S.

(b) If all J(Dn) are sublattices of <2 and all fn are concave and submodular on Dn, then f is

concave and submodular on the convex sublattice S.

(c) If all Dn =<2 and all fn are L\-concave, then so is f on S =<2.

It should be mentioned that in Corollary 3(b) the condition on J(Dn) is indispensable. Actually

it may fail if J(Dn) are not sublattices. For example, consider the problem below for all x1, x2 ≥ 0:

f(x1, x2) = maximize {y1 : y1 + z1 = x1, y2 + z2 = x2, 0≤ y1 ≤ y2, z1, z2 ≥ 0} .

Note that the objective is a valuation and the set D1 = {[y1, y2] : 0≤ y1 ≤ y2} forms a sublattice.

Solving this optimization problem gives us f(x1, x2) = min{x1, x2}, which is supermodular as is

consistent with Corollary 3(a). However, we cannot apply Corollary 3(b) because J(D1) is not a

sublattice. In fact, f is not submodular since f(0,0) + f(1,1) = 0 + 1> 0 + 0 = f(0,1) + f(1,0).

We demonstrate the applicability and limitation of our results on a few examples.

Example 1. The following optimization problem is presented in Chao et al. (2009) when they

develop and analyze dynamic capacity expansion models:

f0(x1, x2) = maximize {g0(x1, y2) : x2 ≤ y2 ≤ x1 +x2} .

They prove that if g0(x1, x2) is submodular and concave in x2, then so is f0(x1, x2), which serves as

the key technical tool in their analysis. Chao et al. (2009) comment that it is usually challenging

to prove the preservation of submodularity under maximization.

We now show that it follows directly from our results. Define g(x) = g0(Jx), f(x) = f0(Jx) and

rewrite the above problem as

f(x1, x2) = maximize
{
g(x1, y2) : y1 + y2 = x2,0≤ y1 ≤ x1

}
.

Since the submodularity of g0, f0 is equivalent to the supermodularity of g, f , we immediately

obtain the key technical result of Chao et al. (2009) from Proposition 1.

Example 2 (Linear Programs). Zipkin (2003) considers the linear programming problem

f(x) = maximize
y

{p′y :Ay≤x,0≤ y≤u} ,

where p,u are two given n-dimensional vectors and A is a 2×n matrix. Using intricate geometrical

argument, he shows that f(x) is supermodular in x over x≥ 0 if A is non-negative. Interestingly,

this result immediately follows form Remark 1 of Theorem 1.

Zipkin (2003) also proves that as long as the maximization below is well defined for all x≥ 0,

f(x) = maximize
y

{p′y :Ay≤x,Cy≤ 0,y≥ 0} ,
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f(x) is supermodular over x≥ 0 for arbitrary matrices A and C with proper sizes. Unfortunately,

our result does not cover this case. As we show later in Example 4, it does not work even for the

case of quadratic objective. It is interesting to observe that f(x) is not necessarily supermodular

if x is not restricted in the non-negative orthant. Here is an example:

p= [−1,0,0,−1], C = 0, A=

 1 1 −1 −1

−2 −1 2 1

 .
Calculation shows f(x1, x2) = min{0, x1 +x2,2x1 +x2,3x1 +2x2}. One can verify the submodularity

of f . However, f is not supermodular since f(0,0) + f(1,−1) = 0 + 0>−2 + 0 = f(0,−1) + f(1,0).

This example also indicates that without the condition A ≥ 0, Theorem 1 may fail even if the

objective function in problem (1) is linear.

Example 3 (quadratic programs I). Suppose P,Q are n×n symmetric matrices such that

P +Q is negative definite. Define g(y,z) = 1
2
y′Py+ 1

2
z′Qz and for all x∈<n,

f(x) = maximize
y,z

{g(y,z) : y+z =x} .

Calculation shows that y(x) = (P +Q)−1Qx solves the problem, and f is quadratic associated with

the Hessian matrix ∇2f(x) = P (P +Q)−1Q. When n= 2, we further have

∇2f(x) = P (P +Q)−1Q= |Q|
|P+Q|P + |P |

|P+Q|Q.

There are some interesting observations on Example 3. First, it is a special case of problem (1)

when n= 2. From the expression of ∇2f(x), we know that if g is supermodular then so is f , which

is consistent with the statement of Theorem 1. This result does not seem to follow directly from

Theorem 2.7.6, Topkis (1998) since the constraint set does not form a sublattice. One may simplify

the example by eliminating z and the constraints. However, even when all entries of P are zero and

Q has positive off-diagonal entries, we know that g(y,z) is supermodular in (y,z) but g(y,x−y)

is neither submodular nor supermodular in (x,y).

Second, we can not weaken the concavity assumption on g in Theorem 1 to component-wise

concavity. Consider Example 3 with P,Q and ∇2f(x) given below.

P =

−9 4

4 −1

 , Q=

−1 4

4 −9

 , ∇2f(x) =
7

18

 5 −4

−4 5

 .
In this instance, g is component-wise concave and supermodular. However, f is submodular.

Third, Theorem 1 does not hold in higher dimensional spaces. Consider Example 3 with P,Q

and the related Hessian matrix of f given below.

P =


−11 8 0

8 −16 5

0 5 −10

 , Q=


−7 4 0

4 −14 5

0 5 −9

 , ∇2f(x) =


−4.25 2.79 −0.01

2.79 −7.27 2.49

−0.01 2.49 −4.73

 .
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In the instance, g is L\-concave. However, f is neither supermodular nor submodular. Extending

our results to higher dimensional spaces is interesting and challenging.

Finally, the optimal solution may not be monotone or may not have a clear monotonicity pattern

even in cases in which we do have monotonicity. To see this, consider Example 3 with P,Q given

below and their related optimal solutions y(x) = [y1(x1, x2), y2(x1, x2)].

P =

−6 5

5 −6

 , Q=

−5 2

2 −1

 , y(x) =
1

28

21 −7

13 −3

x;

P =

−6 3

3 −4

 , Q=

−3 2

2 −6

 , y(x) =
1

65

 20 10

−3 44

x.
In both instances, g are supermodular. However, in the first instance, for both i= 1,2 yi(x1, x2)

are increasing in x1 but decreasing in x2. In the second instance, y1(x1, x2) is increasing in both x1

and x2 but y2(x1, x2) is increasing in x2 and decreasing in x1.

Remark 3. It is interesting to observe that if the equality constraints Ay = x in problem (1)

are replaced by Ay≤x, then the optimal solution sets do possess certain monotonicity properties.

Specifically, denote Y 1 and Y 2 as the optimal solution sets associated with x1 ≤ x2 ∈ S, respec-

tively. We can verify that Y 2 is greater than Y 1 in the so-called C-flexible set order Quah (2007).

Moreover, Proposition 3 in Quah (2007) states that the C-flexible set order is stronger than the

weak induced set order (Section 2.4, Topkis 1998). Therefore, for any y1 ∈Y 1 there exists y2 ∈Y 2

such that y1 ≤ y2, and for any y2 ∈ Y 2 there exists y1 ∈ Y 1 such that y1 ≤ y2. Note that if g is

strictly concave, then we know that the optimal solution is unique and increasing in x.

Example 4 (quadratic programs II). Consider the problem below for all [x1, x2]≥ 0:

f(x1, x2) = maximize 1
2
(y−e)′Q(y−e)

subject to α′1y≤ x1, α
′
2y≤ x2, y≥ 0,

where α1 = [1,− 1
2
], α2 = [− 1

2
,1] and Q =

−2 1

1 −2

. Let A =

α′1
α′2

 =

 1 − 1
2

− 1
2

1

. Depending on

whether each constraint α′iy≤ xi is active or not, we have

f(x1, x2) =



0, if [x1, x2]∈S0,

−(x1− 1
2
)2, if [x1, x2]∈S1,

−(x2− 1
2
)2, if [x1, x2]∈S2,

1
2

(A−1x−e)
′
Q (A−1x−e) , if x= [x1, x2]∈S3,

where S0 = {x : 2x≥ e}, Si = {[x1, x2] : 0≤ 2xi ≤ 1,3≤ 2xi + 4x3−i} for i= 1,2 and S3 = {x≥ 0 :

x 6∈ Si, i= 0,1,2}. That is, neither constraint is active when x ∈ S0, only the constraint α′iy ≤ xi

is active when x∈Si for each i= 1,2, and both constraints are active when x∈S3.
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Calculation shows that ∂2

∂x1∂x2
f(x1, x2) = − 4

3
for any interior point x ∈ S3. Hence, unlike the

linear programming problems analyzed in Zipkin (2003), f is not supermodular over x≥ 0. It also

provides another instance to demonstrate that Theorem 1 may fail without the condition A≥ 0.

3. Applications

In this section we apply results in Section 2 to three finite horizon periodic-review operational

models. In all these models, we will deal with parameterized optimization problems with the

following mathematical structure.

v(x1, x2) = maximize
y1,y2

[f(z1, z2) + v̄+(y1, y2)]

subject to y1 = x1 + z1, y2 = x2 + z2,

a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, hn(y1, y2)≤ 0, ∀ 1≤ n<M,

l1 ≤ z1 ≤ u1, l2 ≤ z2 ≤ u2, hn(z1, z2)≤ 0, ∀M ≤ n<N,

where some components li, ai could be −∞ and bi, ui could be +∞. Define

Y = {y ∈ [a,b] : hn(y)≤ 0, ∀1≤ n<M}, Z = {z ∈ [l,u] : hn(z)≤ 0, ∀M ≤ n<N},

where l= [l1, l2],u= [u1, u2],a= [a1, a2] and b= [b1, b2]. We can rewrite the above problem as

v(x) = maximize
y

{[f(y−x) + v̄+(y)] : y ∈Y ,y−x∈Z} . (3)

Note that the domain of v is X = {y−z : y ∈Y ,z ∈Z}. We have the following theorem on (3).

Theorem 2. (a) If all hn are convex and bimonotone, then Y , Z and X are convex sublattices

in <2. In addition, if v̄+ on Y and f on Z are concave and supermodular, then so is v on X.

(b) If all hn are convex and monotone, then J(Y ), J(Z) and J(X) are convex sublattices in <2.

In addition, if v̄+(Jy) on J(Y ) and f(Jz) on J(Z) are concave and supermodular, and X

also forms a sublattice, then v on X is concave and submodular.

Proof: Observe that problem (3) can be converted to the format amicable to (2) as

v(x) = maximize
y,z

{f(−z) + v̄+(y) : y+z =x,y ∈Y ,z ∈Z−} ,

where Z− = {z ∈<2 :−z ∈Z}. Part (a) follows from Theorem 1 since that conditions on hn ensure

that Y and Z− are convex sets (Theorem 4.6, Rockafellar 1970) and sublattices (Example 2.2.7,

Topkis 1998). Part (b) follows from Lemma 1 and part (a). �

If additional conditions are imposed on f and Z in problem 3, the optimal solution to problem

(3) exhibits certain monotonicity properties. Note that in the following theorem we say f(x1, x2)

is separable if it can be expressed as f1(x1) + f2(x2) for two univariate functions f1 and f2.

Theorem 3. Suppose that Z = [l,u] and f is separable in problem (3).
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(a) If v̄+ is supermodular, all hn are continuous and bimonotone, and f is concave, then there

exists an optimal solution [y1(x1, x2), y2(x1, x2)] to problem (3) such that yi(x1, x2) is increasing

in both x1 and x2 for i= 1,2.

(b) If v̄+ is submodular, all hn are continuous and monotone, and f is linear, then there exists

an optimal solution [y1(x1, x2), y2(x1, x2)] to problem (3) such that yi(x1, x2) is increasing in xi

and decreasing in xj for i, j = 1,2 and i 6= j.

The managerial interpretation and intuition of the above characterization on the optimal solution

will become clear when we talk about the concrete applications. Notice that we introduce no

concavity/convexity assumptions on v̄+ and hn in Theorem 3. However, they will be required in all

the following applications to inductively show the supermodularity/submodularity of profit-to-go

functions. Moreover, with these concavity/convexity assumptions, if ft is linear then more refined

characterization of optimal solution y(x) is possible by partitioning the space of the parameter x

into several regions, which is provided in the appendix.

3.1. Coordinated pricing and inventory control with cross-price effects

Consider a retailer who decides the ordering quantities and prices of two products over a finite

planning horizon with T periods. At the beginning of each period, the retailer observes the initial

inventory levels xi and then simultaneously decides the selling prices pi and the order-up-to-levels

yi for products i= 1,2. The demand of product i during a period is given by di(p1, p2) + εi, where

εi is a random variable with expected value 0, di(p1, p2) is the expected demand of product i

depending on the prices of both products. Denote x= [x1, x2],y = [y1, y2], p= [p1, p2], ε= [ε1, ε2]

and dε = d(p) + ε. The demand function can be time dependent but we drop the time index for

simplicity. We assume that random vectors are independent across time, there is no lead time for

delivery, unsatisfied demand is backlogged and unused inventory is carried over to the next period.

As common in the literature, the expected demand d(p) is assumed to be linear as d(p) = b−Ap
for some vector b≥ 0 and the price sensitivity coefficient matrix A= [ai,j]2,2. Suppose p ∈ [l,u],

where l≤u are lower and upper bounds on the prices such that dε ≥ 0 almost surely. For product

i, coefficients ai,i, ai,j respectively denote its own price sensitivity and the cross price sensitivity to

the other product j (j 6= i). We assume that ai,i ≥ 0, that is, the demand of a product is decreasing

in its own price. Depending on the nature of products, we focus on two cases: (a) the two products

are complements, i.e., an increase in the price of one product will decrease the demanded amount of

the other product, or equivalently ai,j ≥ 0; (b) the two products are substitutes, i.e., an increase in

the price of one product will increase the demanded amount of the other product, or equivalently

ai,j ≤ 0. In addition, we assume that the price change of one product has a stronger effect on its own

demand than on the other product’s demand, i.e., ai,i ≥ |ai,j|. Note that A is positive semi-definite
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under these assumptions. For our purpose, we assume A is positive definite. In this case, there is

a one-to-one correspondence between the expected demands and the prices.

It will be convenient to use the expected demands instead of prices as the decision variables.

Denote the realized demand vector as dε = d+ ε and the corresponding price vector as p(d) =

A−1(b−d). The expected one-period revenue is given by r(d) = d′p(d), which can be easily verified

to be concave. Moreover, in the complementary product case, r(d) is supermodular and r(Ad) is

submodular; in the substitutable product case, r(d) is submodular and r(Ad) is supermodular.

The ordering cost is proportional to the ordering quantity specified by c(z) = c′z for an ordering

quantity vector z = [z1, z2]. For an amount x= [x1, x2] of inventory carried over from one period to

the next, an inventory holding and backorder cost h(x) = h1(x1)+h2(x2) is incurred, where hi(xi),

assumed to be convex, represents the inventory holding cost when xi > 0 and the shortage penalty

cost when xi < 0. To avoid technicality, we assume that E[h(y− ε)] is strictly convex, where E is

the expectation operator corresponding to random variables ε. The objective of the retailer is to

find an ordering and pricing decision so as to maximize its expected total profit over the planning

horizon. Let vt(x) be the profit-to-go function of period t starting with an inventory level x. The

dynamic program can be formulated as

vt(x) = maximize
y,d

{r(d)− c′z+ gt(y−d)}

subject to y=x+z, 0≤ z ≤ k, l≤A−1(b−d)≤u,

where gt(x) =E[vt+1(x−ε)−h(x−ε)], the ordering quantity z is non-negative and bounded above

by k and without loss of generality, assume vT+1(x) = c′x. For any given nonsingular 2× 2 matrix

P , the above problem can be equivalently reformulated as

vt(Px) =maximize
y

{
ft(Py)− c′Py

}
+ c′Px (4a)

subject to y=x+z, 0≤ Pz ≤ k

ft(Py) =maximize
d

{
r(Pd) + gt(P x̃)

}
, (4b)

subject to y= d+ x̃, l̃≤A−1Pd≤ ũ,

where l̃=A−1b−u and ũ=A−1b− l.

Because r(d) and E[−h(y− ε)] are strictly concave, problem (4a) has unique optimal solution,

denoted by y(x) = [y1(x1, x2), y2(x1, x2)], when P is the identity matrix. We have the following

proposition. It is worth mentioning that Proposition 3 remains valid if all functions (e.g., r and h),

system inputs (e.g., l and u) except A, and the random variables ε are time-dependent.

Proposition 3. In all periods, vt and ft are concave.

(a) In the complementary product case, vt(x) and ft(y) are supermodular, vt(Ax) and ft(Ay) are

submodular, and yi(x1, x2) is increasing in either x1 or x2.
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(b) In the substitutable product case, vt(x) and ft(y) are submodular, vt(Ax) and ft(Ay) are

supermodular, and yi(x1, x2) is increasing in xi and decreasing in xj for i, j = 1,2 and i 6= j.

Proof: Let L be the collection of all 2× 2 matrices L= [`i,j]2,2 such that `i,1`i,2 ≤ 0 for i= 1,2.

Notice that if P,A−1P ∈ L, then sets {z : 0 ≤ Pz ≤ k} and {d : l̃ ≤ A−1Pd ≤ ũ} are sublattices

(Example 2.2.7, Topkis 1998); moreover, −h(Px) is concave and supermodular in x ( Lemma 2.6.2,

Topkis 1998). We next verify these statements by selecting proper matrices P .

(a) Let P be the identity matrix and AJ in (4), respectively. It is straightforward to see P,A−1P ∈L
and r(Pd) is concave and supermodular. Since vT+1 is linear as assumed, we can inductively

prove that in all periods vt(Px) and ft(Py) are concave and supermodular by Theorem 2.

That is, vt(x), ft(y), vt(AJx) and ft(AJy) are concave and supermodular. We then conclude

the properties of vt and ft by Lemma 1. In addition, Theorem 3(a) implies that yi(x1, x2) is

increasing in either x1 or x2.

(b) Let P = J and A in (4), respectively. Similarly by Theorem 2 and Lemma 1, we can verify prop-

erties of vt and ft. In addition, Theorem 3(a) implies that Jy(Jx) = [y1(x1,−x2),−y2(x1,−x2)]

is increasing in [x1, x2], that is, yi(x1, x2) is increasing in xi and decreasing in xj for i 6= j. �

The above proposition implies that in the complementary product case, the optimal order-up-

to-levels are increasing in the initial inventory levels of both products, and in the substitutable

product case, the optimal order-up-to-level of a product is increasing in its own initial inventory

level while decreasing in the other product’s initial inventory level.

A simpler version of our model was analyzed by Zhu and Thonemann (2009), which deals with

only the substitutable product case without the constraint z ≤ k. Song and Xue (2007) consider

a more general setting with more than two substitutable products and derive structural results

of the optimal order-up-to levels similar to Zhu and Thonemann (2009) for the two product case.

Ceryan et al. (2009) extend Zhu and Thonemann (2009) by introducing the constraint z ≤ k and

an additional resource capacity constraint z1 +z2 ≤ k0. Notice that for Ceryan et al. (2009)’s model,

we can characterize functions vt, ft and optimal solutions y(x) as the same as Proposition 3(b)

by using the similar argument. It is appropriate to point out that all the structure results on the

optimal inventory decision in these papers can be easily derived by our approach (we present in

Figure 3 in the appendix to illustrate the structure of y(x) for Ceryan et al. (2009)’s model).

Compared with these three papers, we deal with both the complementary product case and

the substitutable product case in a unified framework. We are not aware of any paper which

analyzes integrated inventory and pricing models with complementary products. Moreover, in the

substitutable product case, we prove the supermodularity of vt(Ax), which is new in the literature.

Even though these three papers present results on vt(x) almost identical to Proposition 3, our

approach is significantly simpler. In fact, all these papers establish the submodularity of vt(x)

recursively by analyzing the first-order optimality condition (the KKT condition) of problem (3).
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Their approaches can only handle simple feasible set and require some technical conditions on the

objective functions (e.g., smoothness almost everywhere). And all three papers ignore the bound

constraints p∈ [l,u] on prices, though such constraints are imposed in their models. For example,

Zhu and Thonemann (2009) discuss the range of optimal prices after deriving their structural

results. Song and Xue (2007) mention that the price vector p belongs to some compact set in their

introduction section but does not explicitly analyze it when proving the related theorem.

Remark 4. In general, the optimal prices may not be monotone as illustrated in Zhu and

Thonemann (2009). However, when the matrix A is symmetric, Ceryan et al. (2009) and Zhu and

Thonemann (2009) prove that p(x) is decreasing in x (again by analyzing the KKT condition and

ignoring the bound constraints on prices).

Remark 5. Proposition 3 could fail when demand follows the multiplicative model dε = b−Aεp,

where entries of the price sensitivity coefficient matrix Aε are random variables. To see it, consider

a special case when c= 0, h(x) = 0 and vt+1(x) = l0(x)−x′Bx in (4b) for some linear term l0(x).

Here the quadratic term x′Bx in vt+1 can be treated as a perturbation which is relatively small

comparing to l0(x). Suppose EAε =A for some positive definite A and E(Aε−A)B(Aε−A) =Q.

Let d= b−Ap be the decision variable. In this case problem (4b) becomes

ft(y) = maximize
d

−d′(A−1 +A−1QA−1)d− (y−d)′B(y−d) + l(y,d)

subject to l≤A−1(b−d)≤u,

where l(y,d) is some linear function in terms of y and d. Let us consider the instance

A−1 =

0.54 0

0 0.98

 , B =

0.97 0.07

0.07 0.98

 , Aε =A+ ε

 0.54 −0.48

−0.48 0.64

 ,
where ε is some random variable with the expected value 0 and variance 1. It is no hard to see the

objective is quadratic and strictly concave. Moreover, by properly selecting l and u one can expect

that the constraint is inactive when y belongs to some nonempty open subset of <2. For these y

the above problem reduces to a special case of Example 3. In this situation calculation shows that

∇2vt+1(x) =−2B =

−1.94 −0.14

−0.14 −1.96

 , ∇2ft(y) =

−0.38 0.05

0.05 −0.59

 .
In this example, vt+1 is submodular but ft is not.

3.2. Two-stage inventory control

Consider a two-stage coordinated dynamic pricing and inventory control problem with random

supply and demand over a finite planning horizon. At the beginning of each period, the firm observes

the initial raw material inventory level x0
1 and the finished product inventory level x2, and then

decides the amount z01 of raw material to be purchased (i.e., z01 ≥ 0) or sold (i.e., z01 ≤ 0). Assume the
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is no lead time for delivery. With x0
1 + z01 amount of raw material on hand, the firm simultaneously

determines the amount z2 of raw material to be converted into finished product, and the selling

price p of the finished product in the period. Suppose one unit of the finished product consumes

one unit of the raw material and 0≤ z2 ≤ x0
1 +z01 . Right after the production, the inventory level of

raw material becomes x0
1 + z01− z2 and that of finished product becomes x2 + z2. By the end of this

period, an additional amount ε01 of raw material arrives and brings the raw material inventory level

up to x0
1 + z01 − z2 + ε01, where ε01 is a non-negative random variable. Moreover, an amount d(p)− ε2

of demand for the finished product arrives and brings its inventory level down to x2 +z2−d(p)+ε2,

where unsatisfied demand is backlogged, ε2 is a random variable independent on ε01 with expected

value 0 and d(p) denotes the expected demand given the price p. Assume that d(p) is strictly

deceasing in p, which implies that there is a one-to-one correspondence between expected demand

and selling price. For convenience, we use d= d(p) as the decision variable and denote the selling

price by p= p(d), where d∈ [l, u] for some 0≤ l≤ u with p(u)≥ 0.

Following the literature (e.g., Zipkin 2000), we use echelon inventory levels x= [x1, x2] as system

states, where x1 = x0
1 + x2 is the total inventory of raw material and finished product. Suppose

it incurs the costs c1(z
0
1), c2(z2), h1(x

0
1) and h2(x2) if z01 units of raw material is purchased/sold,

z2 units of the finished product is produced, x0
1 units of raw material inventory and x2 units of

product inventory are carried over to the next period, where h2(x2) is to be understood as the

shortage penalty cost if x2 < 0. To avoid technicality, we assume that the expected one-period

revenue r(d) = dp(d) is strictly concave, and c1(z1)+ c2(z2) and E[h1(x1−x2 +ε01)+h2(x2 +ε2)] are

strictly convex, where E denotes the expectation operator corresponding to ε01 and ε2. The firm’s

objective is to maximize the expected total profit over the T -period planning horizon.

Let vT+1(x1, x2) = 0 and vt(x1, x2) be the profit-to-go functions with respect to the echelon

inventory levels [x1, x2] at the beginning of period t= 1, · · · , T . We can formulate the problem as

vt(x1, x2) = maximize
y1,y2,d

[r(d)− c1(z1)− c2(z2) + gt(y1− d, y2− d)]

subject to y1 = x1 + z1, y2 = x2 + z2, y2 ≤ y1, z2 ≥ 0, l≤ d≤ u

where [y1, y2] denotes the echelon inventory levels right after the production, the constraint y1 ≤ y2
indicates that the amount of finished product produced from raw material can not exceed the

amount of on-hand raw material, and

gt(x1, x2) =E[vt+1(x1 + ε01 + ε2, x2 + ε2)−h1(x1−x2 + ε01)−h2(x2 + ε2)].

Note that system inputs can be time-dependent which will not affect our later analysis.

The problem can be equivalently reformulated as

vt(x1, x2) =maximize
y1,y2

[ft(y1, y2)− c1(z1)− c2(z2)] , (5a)
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subject to y1 = x1 + z1, y2 = x2 + z2, y2 ≤ y1, z2 ≥ 0

ft(y1, y2) =maximize
d∈[l,u]

[r(d) + gt(y1− d, y2− d)] , (5b)

Since functions r(d),−c1(z1),−c2(z2),−h1(z
0
1) and −h2(z2) are strictly concave as assumed, there

exist unique optimal solutions [y1(x1, x2), y2(x1, x2)] and d(y1, y2) respectively to problems (5a) and

(5b). Observe that the both problems are special cases of problem (3). We have the following

proposition from Theorems 2 and 3.

Proposition 4. In all periods, vt and ft are L\-concave, and yi(x1, x2) are increasing in x1 and

x2 for i= 1,2. Moreover, d(y1, y2)≤ d(y1 + δ, y2 + δ)≤ d(y1, y2) + δ for any δ≥ 0.

Proof: Suppose vt+1 is L\-concave, which is true in the last period t= T . By

gt(x1− ξ,x2− ξ) =E[vt+1(x1− ξ,x2− ξ)−h1(x1−x2)−h2(x2− ξ)],

where h1, h2 are convex as assumed, one can easily verify the L\-concavity of gt. Because (5b) is

a special case of (2), it is no hard to see from Corollary 3(a) that ft(y), ft(J1y) and ft(J2y) are

supermodular. Therefore ft is L\-concave by Lemma 2, and so is vt by Corollary 3(c).

The monotonicity of yi(x1, x2) follows from Theorem 3(a). To characterize d(y1, y2), we need

the results of Lemma 3 in Zipkin (2008), which claims that there exists d0(y1, y2) solving the

unconstrained problem maxd [r(d) + gt(y1− d, y2− d)] such that for any δ≥ 0,

d0(y1, y2)≤ d0(y1 + δ, y2 + δ)≤ d0(y1, y2) + δ.

Observe that d(y1, y2) = max{l,min [d0(y1, y2), u]} and

max{l,min [d0 + δ,u] = max{l− δ,min [d0, u− δ] + δ.

We then conclude the inequality on d(y1, y2). �

Remark 6. Though Zipkin (2008) uses a slightly different definition of L\-concavity by restrict-

ing ξ ≤ 0, one can exactly follow his proof to see Lemma 3, Zipkin (2008) holds under our definition.

The structure of y(x) is consistent with the intuition that higher initial inventory level leads to

higher order-up-to-levels. Moreover, the two inequalities of d(y1, y2) imply that lower price should

be charged so as to reduce the inventory level of finished product; however, the reduction has

bounded sensitivity. Furthermore, when c1 and c2 are linear, refined structure of y(x1, x2) can

derived as the problem 3. For simplicity, we omit the details here.

Yang (2004) considers a similar problem without pricing. He assumes that c1(z1) is either strictly

convex or linear, and c2(z2) is linear. Different from our model in which the echelon inventory levels

play the role of system states, he models the minus cost-to-go function vt as below in the inventory

levels of raw material and finished product.

vt(x
0
1, x2) = maximize

y1,y2

[−c1(z01 + z2)− c2(z2) +Egt(y1 + ε01, y2− ε2)]

subject to y1 = x1 + z1, y2 = x2 + z2, y1 ≥ 0, z2 ≥ 0,
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where gt(x1, x2) = −h1(x
0
1) − h2(x2) + vt+1(x1, x2). Yang (2004) then analyzes the related KKT

conditions and inductively prove that all vt are concave, supermodular and their Hessian matrices

are diagonal dominant. Since that L\-concavity implies concavity and the diagonal dominance

property for smooth functions, our results immediately lead to the same concavity and diagonal

dominance properties on vt as Yang (2004). In addition, because c1(z
0
1 +z2)+c2(z2) is supermodular

in [z01 , z2], the supermodularity of vt can also be obtained from Theorem 2.

3.3. Inventory control with self-financing

Consider a self-financing retailer who sells a single product over a finite planning horizon with the

operational decisions limited by its cash flow. At the beginning of each period, the retailer observes

the initial inventory level x1 of the product and his/her capital level s on hand, and then places

an order of size z1 to raise the inventory level up to y1 = x1 + z1. The order is received right away

which incurs an ordering cost c per unit. We assume that the total ordering cost cz1 can not exceed

the available capital s. Unused capital s− cz1 is deposited to a savings account and the earning is

r(s− cz1) at the end of the period, where r≥ 1 and r− 1 is the interest rate. A demand dε arrives

during the period. The retailer fills the demand from his/her available inventory with a unit price

p and receives a revenue pmin{y1, dε} from sales. The revenue increases to rpmin{y1, dε} at the

end of the period. Unused inventory is carried over to the next period and unsatisfied demand is

lost, which incurs the inventory holding and shortage penalty cost h(y1 − dε). Assume that h is

convex and p≥ c (i.e., profit increases as the amount of sold product increases).

Define x2 = s+px1 as the current capital plus the revenue if all inventory on hand is sold out. It

will be convenient to use [x1, x2] as system states. Under this setting, the state [x̃1, x̃2] in the next

period satisfies x̃1 = (y1− dε)+ and x̃2 = r(y2− px̃1), where y2 = s− cz1 + py1 = x2 + pz1− cz1.

Let vT+1(x1, x2) = 0 and vt(x1, x2) be the profit-to-go functions in period t = 1, · · · , T . The

retailer’s objective is to maximize the expected ending profit and faces the dynamic recursion

vt(x1, x2) = maximize
y1,y2

E
[
ft
(
y1− dε, ry2

)
−h(y1− dε)

]
(6)

subject to y1 = x1 + z1, y2 = x2 + z2,

py1 ≤ y2, z1 ≥ 0, z2 = (p− c)z1,

where the expectation operator E associates with random variables dε, the constraint py1 ≤ y2
corresponds to the cash flow limitation, and ft(x1, x2) = vt+1(x

+
1 , x2− px+

1 ) with x+
1 = max(x1,0).

We assume that E[h(y− ε)] is strictly convex to avoid technicality, which ensures the uniqueness

of the optimal solution, denoted by y(x) = [y1(x1, x2), y2(x1, x2)], to problem (6).

Apparently (6) is a special case of problem (3). We have the following results on problem (6).

Proposition 5. All vt(x1, x2) are decreasing in x1, increasing in x2, jointly concave and super-

modular. Moreover, the optimal solution y(x) is increasing in x.
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Proof: Suppose these statements are true in period t+ 1, which are obvious in the last period

t= T . From the definition of ft, we know ft(x1, x2) is decreasing in x1 and increasing in x2. Then

one can verify the monotonicity of vt from the expression (6).

By Corollary 1, vt+1(x1, x2− px1) is concave and supermodular, which together with the mono-

tonicity of vt+1 implies that ft(x1, x2) is concave and supermodular. Because (p− c)z1 is increasing

in z1, properties on vt and y(x) follow from Theorems 2 and 3. �

In Proposition 5, The monotonicity of vt(x1, x2) obeys the intuition that lower initial inventory

level x1 for higher initial total value x2 = s+px1 brings more flexibility for retailer’s operations and

hence leads to higher ending profit. Moreover, though omitted here, one can obtain some refined

characterization of y(x) by similar arguments as problem (3).

A simpler version of the problem without the inventory holding and shortage penalty cost is

analysed by Chao et al. (2008), where all parameters (including the cumulative distribution function

of demand) are time-independent. The major difference between our model and the one in Chao

et al. (2008) is the definition of system states. Chao et al. (2008) model the profit-to-go functions

v0(x1, s) in terms of the initial inventory level x1 and capital s. Unlike our results, they only prove

that v0(x1, s) is jointly concave and increasing in s, and characterize the structure of optimal

solution under some specific conditions.

4. Conclusion

In this paper we study a class of two dimensional parameterized optimization problems, and estab-

lish the preservation of supermodularity together with concavity, where the constraint set may not

be a lattice and may not be mapped to become one by a variable transformation. We also present

several variations in Section 2 including the preservation of supermodularity together with the

component-wise concavity, submodularity together with concavity and L\-concavity.

Our results include several results in the literature as special cases. They significantly simplify

the proofs of several operational models, some of which have not been treated rigorously, and shed

new insights on these models. We believe our results can be applied in many other models.

Our results also bring up several interesting issues that need further research. First, as we

comment in Example 3, our results can not be directly extended to higher dimensional space. A

natural question is under what conditions the preservation of supermodularity in problem (1) holds

when we have more than two parameters.

The second question is whether we can say anything about the structure of the optimal solution

to problem (1). As we notice in Example 3, the optimal solution may fail to be monotone in general.

It would be interesting to identify conditions under which the optimal solution is monotone.
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Appendix

Proof of Proposition 1

Apparently the concavity of g in term of y implies that f(x1, x2) is concave in x2. Rewrite the

problem as below, which is a special case of (1) with [1,0] being the first row of the matrix A.

f(x1, x2) = maximize
(y1,y)∈D

{g(y1,y) : y1 = x1, a1y1 +α′y= x2}.
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For any y+ = (y1,y), ỹ+ = (ỹ1, ỹ)∈D, note that (Ay+)∧ (Aỹ+) =A(y+∧ ỹ+). Following the same

proof of Theorem 1, we define a from any two x, x̃. It is easy to verify that a = [a1, a2] and

x∧ x̃= [s1, s2] satisfy a1 = s1. Hence the concavity of f(x1, x2) in x2 completes the proof, too.

Proof of Corollary 1

The basic idea is to de composite P as P =LU for some triangle matrices L and U , then sequentially

discuss g1(x) = g(Lx) and g2(x) = g1(Ux) = g(Px). The statement is straightforward when both

diagonal entries of P are zero. Without loss of generality we assume that the first diagonal entry

of P is 1. Two cases are considered respectively depending on the sign of |P |.

If |P | ≥ 0 then we can express P =LU as below:

P =

 1 −p
−p̄ p2

=

 1 0

−p̄ 1

 ×
1 −p

0 |P |

=LU,

where p, p̄ and p2 are some non-negative real numbers. Denote g1(x) = g(Lx), i.e., g1(x1, x2) =

g(x1, x2− p̄x1). Apparently g1 is component-wise concave. Moreover, we have

g1(x1, x2) = maximize {g(x1, y) : p̄x1 + y= x2, [x1, y]∈D}.

Therefore g1 is supermodular on {x :Lx∈S} by Proposition 1. Following a similar argument, we

can verify the component-wise concavity and supermodularity of g2(x) = g1(Ux) on {x :LUx∈S},
i.e., g(Px) on {x : Px∈S}.

If |P |< 0, consider g(PJ0x) for the linear transformation J0 mapping a vector [x1, x2] to [x2, x1].

Because |PJ0|=−|P |> 0, and that g(Px) on {x : Px∈S} is component-wise concave and super-

modular if and only of so is g(PJ0x) on {x : PJ0x∈S}, we conclude this proof immediately.

Proof of Proposition 2

Recall that B′B has non-negative diagonal entries and non-positive off-diagonal entries. If B′B is

singular, then some real numbers λ1, λ2, vector v satisfy that λ1λ2 ≤ 0 and Bx= (λ1x1 + λ2x2)v

for all x = [x1, x2]. In this case f depends on x through λ1x1 + λ2x2 hence its supermodularity

follows from its concavity. It leads no loss of generality to assume B′B is non-singular.

For any x, x̃ ∈ S, let y, ỹ be the corresponding optimal solutions. Since y ∧ ỹ,y ∨ ỹ ∈D, there

exist a,b∈S such that A(y ∧ ỹ) =Ba and A(y ∨ ỹ) =Bb. By B′A≥ 0,

B′Ba=B′A(y ∧ ỹ)≤ (B′Ay)∧ (B′Aỹ) = (B′Bx)∧ (B′Bx̃).

Note that the inverse of B′B is non-negative. We know a≤x∧ x̃ and in a similar way, x∨ x̃≤ b.
By the same remaining part of the proof of Theorem 1, f is concave and supermodular on S.
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Proof of Lemma 2

At first we show (a) and (d) are equivalent. Let ψ(x1, x2, ξ) = f(x1 − ξ,x2 − ξ) and observe that

f(J1[x1 − ξ,x2 − ξ]) = ψ(x1, ξ, x2) and f(J2[x1 − ξ,x2 − ξ]) = ψ(ξ,x2, x1). On one hand from the

definition we know f is L\-concave if and only if ψ is supermodular. On the other hand, all the

three functions are supermodular if and only if ψ is supermodular in any two of its variables with

the other one fixed. We then conclude the equivalence between (a) and (d) by Theorems 2.6.1 and

2.6.2 in Topkis (1998).

By the equivalence between (a) and (d), we know that f(J1x) is L\-concave if and only if

f(J1x), f(J2
1x) = f(x) and f(J2J1x) are supermodular. Observe that J2J1 = J0J2 where J0 is

the linear transformation mapping a vector [x1, x2] to [x2, x1], and that a function g(x1, x2) is

supermodular if and only if so is g(x2, x1). Therefore f(J2J1x) is supermodular if and only if

so is f(J2x). We then conclude the equivalence between (b) and (d). Similarly, (c) and (d) are

equivalent, too.

Proof of Theorem 3

(a) Since f is separable, we can rewrite (3) as

maximize
y=[y1,y2]

{[f1(y1−x1) + f2(y2−x2) + v̄+(y)] : y ∈Y ,y−x∈ [l,u]} ,

where the objective, regarded as a function of x and y, is supermodular (Lemma 2.6.2, Topkis

1998) and the set {(x,y) : l≤ y−x≤u} forms a sublattice (Example 2.2.7, Topkis 1998). The

monotonicity of y(x) follows from Theorem 2.8.1, Topkis (1998).

(b) Note that Jy(Jx) solves the problem

maximize
y

{f(Jy) + v̄+(Jy) : y ∈ J(Y (Jx))} ,

where the objective is supermodular by Lemma 1, and J(Y (Jx)) forms a sublattice by Example

2.2.7, Topkis (1998) and that all hn are monotone. Therefore Jy(Jx) is increasing in x as we

proved in part(a). The monotonicity of y(x) then follows.

Characterization of the optimal solution to problem (3) for linear ft

Recall the definition of function v(y) in the proof of Theorem 3, which is concave and supermodular

(submodular) if vt+1 is concave and supermodular (submodular). Suppose y0(x) maximizes v(y)

over Y . Notice that y(x) = y0(x) if z0(x)∈Z, where z0(x) = y0(x)−x. Otherwise z(x) = y(x)−x
belongs to the boundary of Z. We only need to characterize y(x) for the latter case z0(x) 6∈Z.

We start from Z = [l,u]. When z(x) = [z1(x1, x2), z2(x1, x2)] belongs to the boundary of Z, there

are four possible cases: z1(x1, x2) = l1, z2(x1, x2) = l2, z1(x1, x2) = u1 and z2(x1, x2) = u2. We focus
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on the first case; the others can be discussed by similar arguments. If z1(x1, x2) = l1 or equivalently

y1(x1, x2) = x1 + l1, y2(x1, x2) must solve the problem

maximize {v(x1 + l1, y2) : [x1 + l1, y2]∈Y , x2 + l2 ≤ y2 ≤ x2 +u2}.

Relax the constraint x2 + l2 ≤ y2 ≤ x2 + u2 and denote ȳ2(x1) as the related optimal solution.

Because this is a concave maximization problem,

y2(x1, x2) = max{x2 + l2,min[ȳ2(x1), x2 +u2]}.

Let γ1(x1) = ȳ2(x1)− l2 and γ2(x1) = ȳ2(y1)− u2, which are increasing (decreasing) functions by

Theorem 3 if v is supermodular (submodular) and all hn are bimonotone (monotone) in problem

(3). Partition the state space of x by curves x2 = γ1(x1) and x2 = γ2(x1). Then it is optimal to

let y2 = x2 + l2 when x lies above the curve x2 = γ1(x1), y2 = x2 + u2 when x lies below the curve

x2 = γ2(x1), and y2 = ȳ2(x1) otherwise.

The structure of y(x) is conceptually illustrated in Figure 2 when Z = [l,u]. The space of x is

partitioned into nine areas by four curves x2 = γk(x1), 1≤ k≤ 4, where all functions γk are increas-

ing (decreasing) if vt+1 is supermodular (submodular) and all hn are bimonotone (monotone). The

S2,2

S2,1

S2,3

S1,2S1,1

S1,3

S3,2S3,1

S3,3

x2 = γ1(x1) x2 = γ2(x1)

x2 = γ3(x1)

x2 = γ4(x1)

S2,2

S2,3

S2,1

S1,2 S1,3

S1,1

S3,2 S3,3
S3,1

x2 = γ2(x1)x2 = γ1(x1)

x2 = γ3(x1)

x2 = γ4(x1)

Figure 2 Structure of y(x) when ft is linear and Z = [l,u]. The left side corresponds to supermodular v̄+ and

bimonotone hn, the right side corresponds to submodular v̄+ and monotone hn

structure of y(x) is described as below:

1. If x= [x1, x2] lies above the curve x2 = γ3(x1), then the constraint y2−x2 ≥ l2 is active hence

y2(x1, x2) = x2 + l2. If x lies below the curve x2 = γ4(x1), then the constraint y2 − x2 ≤ u2 is

active hence y2(x1, x2) = x2 + u2. If x lies between the two curves, then it leads no loss of

optimality to remove constraints l2 ≤ y2−x2 ≤ u2.

2. If x= [x1, x2] lies on the left side of the curve x2 = γ1(x1), then the constraint y1 − x1 ≤ u1

is active hence y1(x1, x2) = x1 + u1. If x lies on the right side of the curve x2 = γ2(x1), then

the constraint y1−x1 ≥ l1 is active hence y1(x1, x2) = x1 + l1. If x lies between the two curves,

then it leads no loss of optimality to remove constraints l1 ≤ y1−x1 ≤ u1.
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We can characterize y(x) for x in each area. For example, if x∈S1,2, i.e., x lies above x2 = γ3(x1)

and between x2 = γ1(x1) and x2 = γ2(x1), then only the constraint y2 − x2 ≥ l2 is active. It is

optimal to let y2(x1, x2) = x2 + l2 and y1(x1, x2) maximizes v(y1, x2 + l2) over Y . If x ∈ S2,2, then

it leads no loss of generality to remove the constraint y−x∈ [l,u]. If x∈S3,2, only the constraint

y2−x2 ≤ u2 is active therefore y2(x1, x2) = x2 +u2 and y1(x1, x2) maximizes v(y1, x2 +u2) over Y .

Similar arguments can be made when x falls into other areas.

Next we consider Z = {z ∈ [l,u] : h(z)≤ 0} for some convex h. Let ȳ(x) be the optimal solution

associated with Z = [l,u], and z̄(x) = ȳ(x)− x. If h(z̄(x))≤ 0, then y(x) = ȳ(x). Therefore we

only needs to discuss these x∈Ω = {x : h(z̄(x))≥ 0}.

Observe that h(z(x)) = 0 for all x∈Ω. If h is bimonotone (monotone) then h(z1, z2) = 0 deter-

mines some increasing (decreasing) function z2 = α(z1). Let a= [l0, α(l0)] and b= [u0, α(u0)] be the

intersection points of the curve h(z) = 0 and the boundary of [l,u]. Then

y(x) = arg max{v(y) : y ∈Y ,y−x= [ξ,α(ξ)], l0 ≤ ξ ≤ u0} .

Recall that y0(x) maximizes v over y and z0(x) = y0(x) − x. Again, because it is a concave

maximization problem, we can further partition the set Ω into three parts depending on whether

z0(x)< ξ, ξ ≤ z0(x)≤ α(ξ) or z0(x)>α(ξ).

Figure 3 conceptually illustrates how the addition constraint influences the structure of optimal

solutions, where the left hand side shows the structure of ȳ(x), the optimal solution associated

with Z = [l,u], and the right side shows that of y(x), the optimal solution associated with Z =

{z ∈ [l,u] : h(z)≤ 0} for some linear h(z1, z2) = z1 + z2− k0. Specifically, we partition the space of

x by some curve x2 = γ̄(x1) such that the additional constraint is active if and only if x ∈Ω =

{[x1, x2] : x2 ≤ γ̄(x1)}. Ω is further partitioned into three parts Ωm,m= 1,2,3, by two curves such

that z = b when x∈Ω1, the constraint z ∈ [l,u] is inactive when x∈Ω2, and z = a when x∈Ω3.

When x 6∈Ω, the characterization of y(x) is similar as ȳ(x).

When more constraints of the form hn(z) ≤ 0 are involved in the expression of Z, we can

repeat the above discussions by adding constraints step by step, then characterize y(x) by further

partitioning the space of x.
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Figure 3 Structure of y(x) for linear ft, submodular v̄+ and monotone linear h: The left side corresponds to

Z = [l,u] and the right side corresponds to Z = {z ∈ [l,u] : h(z)≥ 0}.
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