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Everywhere Visual Correspondences 

[Scharstein & Szeliskii, IJCV’02] 

Across views 

[Baker et al., IJCV’11] 

Across time 

[Goedeme et al., CVPR’04] 

Wide baseline 

Across multiple views 
[Furukawa  & Ponce, PAMI’09] 

[Engel et al., ECCV’14] [Wang et al., IJCV’13] Across video frames 

[Vedula et al., PAMI’05] 

Across view & time 
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Key to Many Applications 

• Structure from motion, 3D reconstruction 

• Robot navigation, video odometry 

• Scene labeling and semantic understanding 

• Depth transfer and synthesis 

• Computational photography, image processing 

• Image stitching, view synthesis 

• Visual place recognition and object localization 

• …. 
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Yet Another Class: Correspondence across Scenes 

[Scharstein et al. IJCV’02] 

Correspondence at pixel level 

[Berg et al. CVPR’05] 

Correspondence at object level 

Correspondence at scene level 

Dense correspondence; 
Scene context preserved 
[Liu et al., PAMI’11]  
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Applications of Dense (Semantic) Correspondences 
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Slide courtesy T. Hassner 

Why is this 
useful? 

 [Hassner&Basri ’06a, ‘06b,’13] 

Shape by-example 

[Liu, Yuen & Torralba 
’11; Rubinstein, Liu & 
Freeman ‘12 ] 

Depth transfer 

Label transfer / scene parsing  

Face recognition 

[Liu, Yuen & Torralba ’11] 

Fingerprint recognition 

[Hassner, Saban & Wolf] 

New view synthesis 

[Hassner ‘13] 

[Karsch, Liu & Kang ‘12] 6 



Correspondence, 
correspondence, 
correspondence! 

• Image alignment 

• Image registration 

• Optical flow 

• Stereo reconstruction 

• Feature matching 

• … 

[Aubry et al., CVPR’14] 
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A Number of Challenges  

• Large displacement 

• Non-rigid motion 

• Independent object motion 

• Small objects 
 

• Photometric differences (exposure, tone, sharpness) 

• Weakly textured regions 
 

• Matching across different scene contents 
 

• Motion coherence vs. boundary/detail preserving 

• Precision vs. recall, density, spatial coverage/distribution 
 

• Computational load 

• Memory cost 

• Large hypothesis space Robust, dense, fast 8 



Focus on Two-Frame Dense Correspondences 

[Scharstein & Szeliskii, IJCV’02] 

Across views 

[Baker et al., IJCV’11] 

Across time 

Wide baseline & across multiple views Across scenes 
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Desired Properties? How to compute?  

• General & versatile 
 Applicable for different tasks & methods 
 Vs. task-specific, state-of-art methods 

 
• Simple & competitive 
 Elegant and principled 
 e.g. w/o  complex energy terms, descriptor 

matching, coarse-to-fine, pre-processing… 
 

• Efficient 
 Fast speed and implementation advantages 
 Friendly for parallelization, embedded system  

 10 
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- Simple models are easy to justify, 

understand, apply and accelerate 
 

- Computational efficiency enables 
aggressive exploration, bringing 
quality gain and simple models 
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2: Fast Guided Global Interpolation 
[ECCV’16a]:  from Sparse to Dense 

1088 × 1376 68 × 86 

3: Coherence-Based Regression for 
Feature Matching [ECCV’14, ’16b] 

1: SPM-BP [ICCV’15]:  Discrete 
Labeling Optimization for MRFs 

68 × 86 

𝑝: pixel, 𝑁𝑝: 4 neighbors 
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Part 1: MRF-Based Dense 
Correspondence Field via 
Efficient Inference 
 Y. Li, D. Min, M. Brown, M. N. Do, and J. Lu, “SPM-BP: Sped-up PatchMatch Belief Propagation for 

Continuous MRFs,” ICCV 2015. (Oral) 

 J. Lu, H. Yang, D. Min, and M. N. Do, “PatchMatch Filter: Efficient Edge-Aware Filtering Meets 
Randomized Search for Fast Correspondence Field Estimation,” CVPR 2013. (Oral) 

 J. Lu, Y. Li, H. Yang, D. Min, W. Eng, and M. N. Do, “PatchMatch Filter: Edge-Aware Filtering Meets 
Randomized Search for Correspondence Field Estimation,” TPAMI 2016. 

 H. Yang, W.-Y. Lin, and J. Lu, “Daisy Filter Flow: A Generalized Discrete Approach to Dense 
Correspondences,” CVPR 2014. 
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1: SPM-BP [ICCV’15]:  Discrete 
Labeling Optimization for MRFs 

68 × 86 

𝑝: pixel, 𝑁𝑝: 4 neighbors 



Discrete Pixel-Labeling Optimization on MRF 

• Many computer vision tasks can be formulated as a 
pixel-labeling problem on Markov Random Field (MRF) 

𝑝: pixel, 𝑁𝑝: 4 neighbors 

 Simple & elegant: data term + smoothness term, MAP 

 Effective: labeling coherence, discontinuity handling 

 Flexible: support a broad range of energy functions 

 Optimization: Graph Cut, Belief Propagation, etc 

Optical flow 
l = (u,v) 

Segmentation 
l={B,G} 

Denoising  
l = intensity 

Stereo  
l = d 
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Belief Propagation (BP) 

Iterative process in which 
neighbouring nodes “talk” 
to each other: 
• Update message between 

neighboring pixels 

 

• Stop after T iterations, decide 
the final label by picking the 
smallest dis-belief 

1 
𝑚2,1

(𝑡)
 

2 

5 

4 

3 

𝑚1,2
𝑇  

𝑚4,2
𝑇  

𝑚5,2
𝑇  

𝑚3,2
𝑇  

𝐸2 

 Challenge:  

When the label set L is huge or densely sampled, BP faces 
prohibitively high computational challenges. 

2 

5 

4 1 
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𝑚4,2
(𝑡−1)

 

𝑚5,2
(𝑡−1)

 

𝑚3,2
(𝑡−1)
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Particle Belief Propagation (PBP) 

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS’09] 

• Solution:  

(1)  only store messages for K labels (particles) 

 

 

 

 

l (discrete label) 

l 

(2) generate new  label particles with the MCMC sampling using 
a Gaussian proposal distribution 

 Challenge:  
MCMC sampling is still inefficient and slow for continuous 
label spaces (e.g. stereo with slanted surfaces). 17 



Patch Match Belief Propagation (PMBP) 

2 

5 

4 1 

3 

[Besse et al, “PMBP: PatchMatch Belief Propagation for 
Correspondence Field Estimation,” IJCV 2014] 

• Solution:  

Use Patch Match[Barnes et al., Siggraph’09]’s sampling algorithm – 
augment PBP with label samples from the neighbours as proposals 

• Orders of magnitude faster than PBP 
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Disparity map 3D reconstruction 

𝑙 = 𝑑 (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 

• Effectively handles large label spaces in message passing 

• Successfully applied to stereo with slanted surface modeling 
[Bleyer et al., BMVC’11] 

    Label: 3D plane normal 𝑙 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

 

 

 

 

 

 

Patch Match Belief Propagation (PMBP) 

Left image 

• Also successfully applied to optical flow [Hornáček et al., ECCV’14] 

Disparity map 3D reconstruction 

𝑙 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

Image courtesy of [Bleyer et al., BMVC’11] 
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Problem of PMBP 

• However, it suffers from a heavy computational 
load on the data cost  computation 

 

 
 

 
• Many works strongly suggest to gather stronger 

evidence from a local window for the data term 

Left view Right view Weight Raw matching cost 

lp 
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Optical Flow 

Er
ro

r 

w 

Stereo 

Er
ro

r 

w 

Data term is important! 
• Better results with larger window sizes (2w+1)^2, but more 

computational cost!   
• e.g. |W| = 40x40 in PMBP [IJCV’14], |W| = 41x41 in PM-PM [TIP’15] 

 

w = 0 

w = 4 

w = 20 

w = 0 

w = 4 

w = 20 
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Aggregated Data Term also Justified in e.g. 
[Min et al., TIP’14] 

22 

Input After 3 iter. After 10 iter. 

No color bleeding 
artifacts! 

Without aggregated data term 

With aggregated data term 



Aggregated Data Cost Computation 

• Cross/joint bilateral filtering principles 

 
 

• Local discrete labeling approaches have often used O(1)-
time edge-aware filtering (EAF) methods [Rhemann et al., CVPR’11]. 

• O(1)-time: No dependency on window size used in EAF 

 Guided Filter [He et al., ECCV 2010]  
Cross-based Local Multipoint Filtering 

(CLMF) [Lu et al., CVPR 2012]  
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Why does PMBP NOT use O(1) time EAF? 

• Particle sampling and data cost computation are performed 
independently for each pixel 

    Incompatible with EAF, essentially exploiting redundancy 

• Observation 
Labeling is often spatially smooth away from edges. This allows for shared 
label proposal and data cost computation for spatially neighboring pixels. 

• Our solution 
A superpixel based particle sampling belief propagation method, 
leveraging efficient filter-based cost aggregation 
 

 Sped-up Patch Match Belief Propagation  (SPM-BP) 24 



Sped-up Patch Match Belief Propagation 

• Two-layer graph structures in SPM-BP 

 

• Scan superpixels and perform : 
 Neighbourhood propagation 
 Random search (a.k.a. resampling based on a proposal 

distribution) 

1. Shared particle generation 
2. Shared data cost computation 

1. Message passing 
2. Particle selection 
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Related works 

Pixel based MRF 

Local methods 
[Rhemann et al., CVPR’11] 
[Lu et al., CVPR’13] 

Only rely on data term 

Superpixel based MRF 
[Kappes et al., IJCV’15] 
[Güney & Geiger, CVPR’15] 

 
 

 

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of 
the superpixel are constrained to have the same label.  
 

Our two-layer graph: superpixels are employed only for particle generation and 
data cost computation, the labeling is performed for each pixel independently. 

Superpixels as graph nodes 
Image courtesy of [Kappes et al., IJCV’15] 
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𝑝: pixel, 𝑁𝑝: 4 neighbors 

PMF: Filter-based 

local inference 
[Lu et al., CVPR’13] 

SPM-BP: BP-based  

global inference 
[Li et al., ICCV’15] 
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Comparison of Existing Labeling Optimizers 

Local labeling approaches 
Data cost computation 

w/o EAF: O(|W|) w/ EAF: O(1) 

Label  
space 

handling  

w/o PatchMatch:  
O(|L|) 

Adaptive Weighting 
[PAMI’06] 

Cost Filtering 
[CVPR’11] 

w/ PatchMatch: 
O(log|L|) 

PM Stereo 
[BMVC’11] 

PMF 
[CVPR’13] 

Global labeling approaches 
Data cost computation 

w/o EAF: O(|W|) w/ EAF: O(1) 

Label  
space 

handling  

w/o PatchMatch:  
O(|L|) 

BP 
[IJCV’06] 

Fully-connected 
CRFs [NIPS’11] 

w/ PatchMatch: 
O(log|L|) 

PMBP 
[IJCV’14] 

SPM-BP 
[This paper] ? 
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Sped-up Patch Match Belief Propagation 

• Two-layer graph structures in SPM-BP 

 

• Scan superpixels and perform : 
 Neighbourhood propagation 
 Random search (a.k.a. resampling based on a proposal 

distribution) 

1. Shared particle generation 
2. Shared data cost computation 

1. Message passing 
2. Particle selection 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

l 

K=3 

1-1) Randomly select one pixel from each  
        neighbouring superpixel  
1-2) Add the particles at these pixels into  
        the proposal set 

Label space 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

l 

K=3 

1-1) Randomly select one pixel from each  
        neighbouring superpixel  
1-2) Add the particles at these pixels into  
        the proposal set 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l 

l = l1 
l1 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l 

l = l1 

l = l2 

l = l15 

l1 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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O(1)-time Cost Aggregation for Subimages 
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

l 

3-1) Perform message passing for pixels  
        within the superpixel.  
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SPM-BP: Neighbourhood Propagation 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 
3-1) Perform message passing for pixels  
        within the superpixel.  
3-2) Keep K particles with the smallest  
        disbeliefs at each pixel. 

l 

keep K particles 

top K particles 
37 



SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

l 

1-1) Randomly select one pixel in the  
        visiting superpixel 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

l 

1-1) Randomly select one pixel in the  
        visiting superpixel  
1-2) Generate new proposals around the  
        sampled particles 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 

p Ep(l) 

l = l1 

l = l2 

l = l15 

l 

2-1) Compute the raw matching data  
        cost of these labels in a slightly  
        enlarged region 
2-2) Compute the aggregated data cost  
        for each label by performing EAF on  
        the raw matching cost 
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SPM-BP: Random Search 

Step 1. Particle propagation  

Step 2. Data cost computation 

Step 3. Message update 

  

 
3-1) Perform message passing for pixels  
        within the superpixel.  
3-2) Keep K particles with the smallest  
        disbeliefs at each pixel. 

l 

keep K particles 

41 



SPM-BP: Recap 

Data cost 
computation 

using EAF 

Message 
passing 
at pixel 

level 

Iterate 

Superpixel 
based 

particle 
generation  

Random Initialization  

Final labels 42 



Complexity Comparison 

• |W| – local window size (e.g. 31x31 for stereo) 
• K – number of particles used (small constant) 
• N – number of pixels 
• L – label space size (e.g. over 10 million for flow) 

*PMF stores only one best particle (K = 1) per pixel node, thus 
requiring more iterations than the other two methods. 
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Example Applications of Our SPM-BP 

• Stereo with slanted surface supports 

• label: 3D plane normal 𝑙𝑝 = (𝑎𝑝, 𝑏𝑝, 𝑐𝑝) 

• Matching features: color + gradient 

• Smoothness term: deviation between two local planes 

• Cross checking + post processing for occlusion 

• Large-displacement optical flow 

• label: 2D displacement vector 𝑙𝑝 = (𝑢, 𝑣) 

• Matching features: color + Census transform  

• Smoothness term: truncated L2 distance  

• Cross checking + post processing for occlusion 
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#iteration = 5, K = 3 

K = 3 

Convergence  
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Convergence  

K = 3 
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Stereo Results 

SPM-BP (ours) 

30 sec. 
PMBP 

3100 sec. 

Stereo input 

PMF 

20 sec. 

Much faster than PMBP, and much better than PMF for textureless regions 47 



Stereo Results 

SPM-BP (ours) PMBP 

Stereo input 

PMF SPM-BP (ours) 

30 sec. 
PMBP 

3100 sec. 

PMF 

20 sec. 
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Optical Flow Results 

Optical flow input PMBP 

2103 sec. 

SPM-BP (ours) 

42 sec. 

PMF 

27 sec. 

Much faster than PMBP, and much better than PMF for textureless regions 49 



Optical Flow Results 
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SPM-BP Code is available online: 
https://publish.illinois.edu/visual-modeling-and-
analytics/efficient-inference-for-continuous-mrfs/ 

SPM-BP (ours) 



Quantitative Performance Evaluation 

Remarks 
• A simple formulation, without 

 complex energy terms  

 a separate initialization 

• Achieved top-tier performance 

 even when compared to 

task-specific techniques 

• Applied on the full pixel grid 

 w/o coarse-to-fine steps 

Middlebury Stereo Performance (among over 160 listed methods) 

Optical Flow Performance on MPI Sintel Benchmark 
(captured on  16/04/2015) 

Middlebury Stereo 2006 Performance 
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Comparison with [EpicFlow, CVPR’15] 

𝑝: pixel, 𝑁𝑝: 4 neighbors 
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Comparison with [EpicFlow, CVPR’15] 

𝑝: pixel, 𝑁𝑝: 4 neighbors 

Our SPM-BP 

Learning: What are desired? 
• General-purpose solvers 

• No tuning, no babysitting, 

just work with reliability 

• With a reasonable loss to a 

custom solver 

• Important to allow fast 

prototyping 54 



Comparison with [Full Flow, CVPR’16]  

• Both use no descriptor matching 

• Both optimize a simple global objective 

• Both apply message passing techniques to solve MRF 

 

• [Full Flow] has a linear complexity on the label space size L, 
i.e., O(L), in contrast to our O(logL) 

• [Full Flow] is much slower, esp. cost volume computation 
 Multi-core parallelization w hyper-threading used in [Full Flow] 

• SPM-BP has proven SoA results on slanted stereo matching 
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SPM-BP ver 2.0 – Among Top-Performing Methods 

56 

Clean Final Runtime 

SPM-BP v2 

(w/ simple twists over  

SPM-BP) 

3.515 5.812  7 sec 

FullFlow 3.601 5.895 ~4 min 

EpicFlow 4.115 6.285 17 sec 

SPM-BP 5.202 7.325 42 sec 

• Performance (EPE all) on MPI Sintel test benchmark 



Future Work (1/2) 

• Applications: robust cross-scene matching, annotation 
transfer, scene labeling [Liu et al., PAMI’11] 

Augmented label space:  l(p) = (u, v, s, θ) for each pixel p 
[Yang et al., CVPR’14] 

57 
* H. Yang et al., “Daisy Filter Flow: A Generalized Discrete Approach to Dense Correspondences,” CVPR 2014. 
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Future Work (2/2) 

• Modeling:  
 More expressive MRF/CRF models with  
higher-order terms [ECCV’12, IJCV’15, CVPR’15, TMM’16] 

 Joint labeling tasks in product label-spaces [ECCV’12] 

• Inference:  
 Efficient approaches to deal with complex models 
 More theoretic study on convergence [ICML’15] 

• Deep learning: 
 Learned matching similarity from CNN models to deal with 

illumination, shadow, or transparent objects, e.g. 
 Jure Žbontar, and Yann LeCun, “Computing the Stereo Matching Cost 

With a Convolutional Neural Network” [CVPR 2015] 

 …. 

 Research issues including efficiency & generalization 
 “Geometry still lies at the heart of CV” – Stéphane Mallat 

 Pose, viewpoint, invariance, … 
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2: Fast Guided Global Interpolation 
[ECCV’16a]:  from Sparse to Dense 

1088 × 1376 68 × 86 

3: Coherence-Based Regression for 
Feature Matching [ECCV’14, ’16b] 

1: SPM-BP [ICCV’15]:  Discrete 
Labeling Optimization for MRFs 

68 × 86 

𝑝: pixel, 𝑁𝑝: 4 neighbors 



Part 2: Fast Guided Global 
Interpolation for Sparse 
Input Data 
 Y. Li, D. Min, M. N. Do, and J. Lu, “Fast Guided Global Interpolation for Depth and 

Motion,” ECCV 2016. (Spotlight) 

 D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast Global Image Smoothing Based on 
Weighted Least Squares,” TIP 2014. (Included in official OpenCV 3.1 release) 
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2: Fast Guided Global Interpolation 
[ECCV’16a]:  from Sparse to Dense 

1088 × 1376 68 × 86 

http://docs.opencv.org/master/da/d17/group__ximgproc__filters.htmlgsc.tab=0
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Introduction 

Depth upsampling and motion interpolation are 
often required to generate a dense, high-quality, and 
high resolution depth map or optical flow field. 

1088 × 1376 

Low-res & noisy 
depth (ToF) 

High-res. color guidance High-res. depth 

68 × 86 

1088 × 1376 

Depth upsampling (color guided) 
Input TOF depth: noisy, low resolution, regularly distributed 



Introduction 

Depth upsampling and motion interpolation are 
often required to generate a dense, high-quality, and 
high resolution depth map or optical flow field. 

Color frame and sparse matches from DM Dense optical flow field 

Motion interpolation 
Input matches: typically reliable, but highly scattered, varying density 

DM data density < 1% 

[DM: Weinzaepfel et al., "DeepFlow: Large displacement optical flow with deep matching, ICCV 2013.] 

* General to use other low-res. /semi-dense matches as input : [FlowFields, ICCV’15], [FullFlow, CVPR’16], etc 



Motivation 
Existing methods are often tailored to one specific task: 

 

 

The common objective for both tasks is to densify a set of 
sparse data points, either regularly distributed or scattered, to 
a full image grid through a 2D guided interpolation process. 

Our approach:  Fast Guided Global Interpolation (FGI) 

A unified approach that casts the guided interpolation      
problem into a hierarchical, global optimization framework.  

Depth upsampling 
JBF [Kopf et al. 2007], MRF+nlm [Park et al. 2011], TGV 
[Ferstl et al. 2013], JGU [Liu et al. 2013], AR [Yang et al. 
2014], Data-driven [Kwon et al. 2015], etc 

Motion interpolation 
EpicFlow [Revaud et al. 2015],  [Drayer and Brox  2015] , 
[Leordeanu et al. 2013], etc 



Several Challenges, such as 
• Texture-copy artifacts due to inconsistent structures 

 

 

 

 
 

• Large occlusions, long-range propagation and extrapolation 

 

 

 

• Loss of thin structures, missing motion boundaries 

• Complex algorithms and often time-consuming 

Color guidance Simple joint filtering Ground truth 

EpicFlow 
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Weighted Least Square (WLS)-based Minimization 

Sparse data interpolation 

 

 

[Levin et al.,  SIGGRAPH 2004] 

• Optimization on 2D signal (image) 

Given an input image 𝑓 and a guidance image 𝑔, 
a desired output 𝑢 minimizes the following 

✔ No artifacts e.g. halo 

✔ Various applications 

✘ Not efficient 

𝐈: Identity matrix 
𝐀: Spatially-varying Laplacian matrix 

[Farbman et al., “Edge-preserving decompositions for multi-
scale tone and detail manipulation,” SIGGRAPH 2008] 



Fast Global Smoother (FGS) [TIP’14, OpenCV 3.1] 

• Fast O(N) edge-preserving smoothing by approximating the 
solution of a large linear system with two linear sub-systems 

• Efficient to solve a tridiagonal matrix with Gaussian elimination 
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Quality & Applicability of Optimization + Efficiency of Local filters 

• High quality smoothing,  

   but 10-30x faster than SOA 

• Support 𝐿𝛾 smoothing with IRLS  (iterative re-weighted LS) 

• Support an aggregated (robust) data term 

 



FGS Results https://sites.google.com/site/globalsmoothing/  
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Input FGS 

 0.6s 

[Xu et al. SIGGRAPH’12] 

3.7s 

Structure extraction from texture w/  IRLS 

Handling imprecise sparse input 

https://sites.google.com/site/globalsmoothing


Single-Scale WLS Methods Vs. Our FGI Method 

 

[WLS:  Farbman et al., “Edge-preserving decompositions for multi-scale tone and detail manipulation,” 
SIGGRAPH 2008] 
[FGS: Min et al., "Fast global image smoothing based on weighted least squares," TIP 2014.] 



• A hierarchical (coarse-to-fine), multi-pass guided  
interpolation framework 

• Divide the problems into a sequence of interpolation 
tasks each with smaller scale factors 

• Gradually fill the large gap between the sparse 
measurement and the dense data 

Our FGI Pipeline: Overview 



  • From the coarse level l= L-1, we upsample the signal by a 
factor of 2 at each level by solving the following weighted 
least square (WLS) using the recent FGS solver.  

• Guided interp. :  
 The color image 𝑐𝑙  as the guidance 

 𝐀𝑐𝑙 is the spatially varying Laplacian matrix defined by 𝑐𝑙   

 

 
[FGS: Min et al., "Fast global image smoothing based on weighted least squares," TIP 2014.] 
Why FGS? 100 ms for filteirng 1MPixels RGB images on 1 CPU core. More details in our paper. 

Our Pipeline: Filtering with Alternating Guidances 



  • Next, another WLS is solved with the output d* as 
guidance and bicubic interpolated signal as input. 

• Joint filtering: 

 The intermediate interpolated map 𝑑∗ as the guidance 

 𝐀𝑑∗  is the spatially varying Laplacian matrix defined by 𝑑∗ 

Our Pipeline: Filtering with Alternating Guidances 



Our Pipeline: Consensus-Based Data Augmentation 

  • Then, check the consistency between the output and the 
bicubic upsampled data, and pick the most consistent 
points to add to the data mask map 𝑚 𝑙  
 The bibubic upsampled data is free from texture-copying 
 Proceed in a non-overlapping patch fashion (2x2 patches) 

• The entire process is repeated until the finest level (l = 0) 
is reached.  



1D Scanline Illustration 

 

Ground 
truth 

One-pass WLS Ground truth 

Guidance 



1D Scanline Illustration 

 

Ground 
truth 
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      = our result 
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Pipeline Validation on Depth Upsampling 
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Single scale WLS

+Cascaded filtering with alternating guidances ‐ single scale (Sec. 3.1) 

+Hierarchical process

+Consensus‐based data point augmentation (Sec. 3.2) 



 Depth Upsampling Results  
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MRF+nlm TGV WLS CLMF JGF AR FGI (ours)

2X 4X 8X 16X

Average Depth Upsampling Error on ToF Synthetic Dataset (6 cases)  

Close to AR 

MRF+nlm TGV AR GF CLMF FGI(ours) 

170 420 900 1.3 2.4 0.6 

Average runtime to upsample a 272 × 344 depth to 1088 × 1376 (in seconds)  

1000x faster than AR 



Our framework also improves other edge-aware 
smoothing filters, e.g. the guided filter 

Depth  
avg. error 

2x 4x 8x 16x 

Single-pass 
GF 

1.31 1.54 2.04 3.12 

GF in our 
framework  

1.06 1.21 1.63 2.59 

[GF: He et al., “Guided image filtering," ECCV 2010.] 



 Depth Upsampling Results  
ToF Synthetic Dataset  
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1000x faster than AR 

650x faster than TGV 



Motion Interpolation Results 

WLS/FGS EpicFlow-NW EpicFlow-LA FGI(ours) 

Clean 3.23 3.17 2.65 2.75 

Final 4.68 4.55 4.10 4.14 

Runtime (sec) 0.21 0.80 0.94 0.39 

Close to 
EpicFlow, 
but over 
2x faster 

Performance (EPE) on MPI Sintel training set 

Performance (EPE) on the MPI Sintel testing benchmark 
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Comparison with [EpicFlow, CVPR’15] 

EpicFlow [CVPR’15] 

In EpicFlow, interpolation at pixel p using either: 
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Comparison with [EpicFlow, CVPR’15] 

• Need not state-of-art contour detection first 
• Need not approximate geodesic distance comp. 
• Need not variational minimization as post-proc. 
• A unified framework for motion & depth & etc 

Our 

FGI 



Comparison with [The Bilateral Solver, ECCV’16] 
• FGI does not need extra “domain transform to smooth out the 

blocky artifacts introduced by the simplified bilateral grid” 

• Very close depth super-resolution results (below), but FGI also 
has proven strong performance for optical flow interpolation 

• FGI (& FGS), using similar recursive computations as Domain 
Transform (@21ms, implemented in Halide) –> easy to speed up 
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Conclusion 
• General & versatile technique:  

 Tackle both depth and motion interpolation tasks, and potentially more 

 Generally applicable to other edge-aware smoothing filters, e.g. GF 

• Competitive results while running much faster than task-
specific state-of-the-art methods  

• Simple & effective:  
 No color edge detection & variational minimization in [Revaud et al., CVPR’15] 

 No domain transform filtering for post-smoothing in [Barron & Poole, ECCV’16] 

• Further acceleration on GPUs and FPGA, offering a common 
engine for guided interpolation 

Project page (code is available):  
http://publish.illinois.edu/visual-modeling-and-analytics/ 

fast-guided-global-interpolation/ 

http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
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2: Fast Guided Global Interpolation 
[ECCV’16a]:  from Sparse to Dense 

1088 × 1376 68 × 86 

3: Coherence-Based Regression for 
Feature Matching [ECCV’14, ’16b] 

1: SPM-BP [ICCV’15]:  Discrete 
Labeling Optimization for MRFs 

68 × 86 

𝑝: pixel, 𝑁𝑝: 4 neighbors 



Part 3: Bilateral Motion 
Coherence Modeling for 
Robust Feature Matching 
 W.-Y. Lin, M. Cheng, J. Lu, H. Yang, M. N. Do, and P. H. S. Torr, "Bilateral Functions for 

Global Motion Modeling,” ECCV 2014. 

 W.-Y. Lin, F. Wang, M. Cheng, S.-K. Yeung, P. Torr, M. N. Do, and J. Lu, “CODE: Coherence 
Based Decision Boundaries for Feature Correspondence,” TPAMI (under review). 
http://www.kind-of-works.com/CODE_matching.html 

 W.-Y. Lin, S. Liu, N. Jiang, M. N. Do, P. Tan, and J. Lu, “RepMatch: Robust Feature Matching 
and Pose for Reconstructing Modern Cities,” ECCV 2016. 86 

3: Coherence-Based Regression for 
Feature Matching [ECCV’14, ’16b] 

http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
http://www.kind-of-works.com/CODE_matching.html
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Overview: Wide-Baseline Matching & 3D Mapping 
A reliable feature matcher for pose and 3D reconstruction 

87 

• Providing a number of 

matches, while having 

almost no outliers 

• w/ RANSAC to handle 

repetitive structures 

• Highly reliable 2-view 

pose for SfM, mapping 
* W.-Y. Lin et al., “RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities,” ECCV 2016 
* W.-Y. Lin et al., “Bilateral functions for global motion modeling,” ECCV 2014 

A-SIFT 

A-SIFT w/ weak thre. 

Ours 

 Motion coherence modeling 
 Bilateral domain (spatial + motion) 
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Our ADSC lab reconstructed w/ only color images  

• Also useful for : 

place recognition, 

localization, multi-

frame tracking… 



Fine modeling 

CODE: Coherence-Based Decision Boundaries 

89 * W.-Y. Lin et al., “CODE: Coherence Based Decision Boundaries for Feature Correspondence,” TPAMI (under review) 
* W.-Y. Lin et al., “Bilateral functions for global motion modeling,” ECCV 2014 

Coarse modeling 

Set t = 1.0 to validate more matching 
hypotheses 

Set t = 0.82 to generate many 
matches (but also a lot of outliers) 

Matching likelihood modeling 

Affine motion modeling 

Inlier acceptance 

Fine validation 

Eliminate outliers Expand inliers 



Correspondences on Non-rigid Scenes 
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RepMatch for Robust Matching & Pose 

• Handles wide baselines & repeated structures 

• CODE + Epipolar guided matching (via RANSAC) 

92 
* W.-Y. Lin et al., “RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities,” ECCV 2016 
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Handling Repetitive Structures 
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3: Coherence-Based Regression for 
Feature Matching [ECCV’14, ’16b] 

1: SPM-BP [ICCV’15]:  Discrete 
Labeling Optimization for MRFs 

68 × 86 

𝑝: pixel, 𝑁𝑝: 4 neighbors 

2: Fast Guided Global Interpolation 
[ECCV’16a]:  from Sparse to Dense 

What if  

• SPM-BP + FGI  ? 

• CODE + FGI  ? 

• SPM-BP & CODE 
 ? 

 

 



Brief Intro 
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https://publish.illinois.edu/ 
visual-modeling-and-analytics/ 

https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/
https://publish.illinois.edu/visual-modeling-and-analytics/


 
 

• Geometry-aware filtering 
• Fast randomized algorithms 
• Efficient inference models 
• Deep learning innovation 

 

 
 

• Visual place/scene recognition 
• Object recognition, localization 
• Human re-identification 
• Action recognition, tracking 

 

How: model, solve, compute 

Holistic (Computer/Robotic) Vision 

 
 

• Real-time camera pose localization 
• 3D environment mapping 
• Depth and motion estimation 
• Large-scale urban reconstruction  

 

Reconstruction Recognition 

Key techniques 

Geometric Reconstruction meets  
Semantic Recognition for 3D holistic vision: 
Real-time, robust, geometry-centric vision 

• Multiple sensors 
• Modern vehicles 
• Moving robots 
• Opportunistic scan 

Where: geometry, location… What: semantics, action… 

• Mobile cameras 
• Big visual data 
• Rich annotations 
• Powerful machine 
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Some example results and 
collaborations of our research 

Key Themes and Areas for a Smart Nation 

 

Objectives:  

Make sense of the biggest big data – video 

 Address urban challenges by focusing on 
visual modeling and analytics 

 Develop cutting-edge technologies and 
solutions for a Smart Nation 

Key themes:  
Real-time, robust localization and 
geometry-centric computer vision 
 

Key technologies: 

 Localization for robots and AVs 

 3D environment mapping 

 Visual analytics and understanding 

 Computational imaging and augmented reality 97 



CODE [ECCV’14] 
Feature matching 

DSE [CVPR’15] 
Camera pose rec. 

SLAM-O [xyz] 
3D object prop. 

3D vision & percept. 

Fine-grained 
recog. [TIP’16] 

MHIC [WACV’14] 
Recog & Co-seg. 

PISA [CVPR’13b] 
Pixel-acc. saliency 

Recogn. & segment. 

CLMF [CVPR’12] 
Local EAF 

FGS [TIP’14] 
Global EAF 

FGI [ECCV’16] 
Sparse to dense 

Edge-aware filtering 

PMF [CVPR’13] 
Local optim. 

SPM-BP [ICCV’15] 
Global optim. 

DFF [CVPR’14] 
Generalized 

 Efficient inference 

CODE [ECCV’14, ’16] 

Feature matching 

DSE [CVPR’15] 
Camera pose rec. 

SLAM-O [TCSVT’16] 

3D object prop. 

3D vision & percept. 

Fine-grained 
recog. [TIP’16] 

MHIC [TMM’16] 
Recog & Co-seg. 

PISA [CVPR’13b] 
Pixel-acc. saliency 

Recogn. & segment. 

 
• Scene flow 
• Robust SLAM 
• Motion seg. 
 
• Text detection 
• Place recogn. 
• Scene labeling 
• Action recog. 

 
• Deep learning 

Current topics 

 
• Photo refocus 
• Rain removal 
• Image stitching 
• Multi-scale dec. 
• Structure extra. 
• Image warping 
• Colorization 

Comp. imaging 

 
• Depth enhance. 
• Slanted stereo 
• Optical flow 
• Live FG segment 
• 3D city recons. 

Scene structure 
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CODE [ECCV’14] 
Feature matching 

DSE [CVPR’15] 
Camera pose rec. 

SLAM-O [xyz] 
3D object prop. 

3D vision & percept. 

Fine-grained 
recog. [TIP’16] 

MHIC [WACV’14] 
Recog & Co-seg. 

PISA [CVPR’13b] 
Pixel-acc. saliency 

Recogn. & segment. 

 
• Scene flow 
• Robust SLAM 
• Motion seg. 
 
• Text detection 
• Place recogn. 
• Scene labeling 
• Action recog. 

 
• Deep learning 

 
• Photo refocus 
• Rain removal 
• Image stitching 
• Multi-scale dec. 
• Structure extra. 
• Image warping 
• Colorization 

CLMF [CVPR’12] 
Local EAF 

FGS [TIP’14] 
Global EAF 

FGI [ECCV’16] 
Sparse to dense 

Edge-aware filtering 

PMF [CVPR’13] 
Local optim. 

SPM-BP [ICCV’15] 
Global optim. 

DFF [CVPR’14] 
Generalized 

 Efficient inference 

CODE [ECCV’14, ’16] 

Feature matching 

DSE [CVPR’15] 
Camera pose rec. 

SLAM-O [TCSVT’16] 

3D object prop. 

3D vision & percept. 

Fine-grained 
recog. [TIP’16] 

MHIC [TMM’16] 
Recog & Co-seg. 

PISA [CVPR’13b] 
Pixel-acc. saliency 

Recogn. & segment. 

Current topics 

Comp. imaging 

 
• Depth enhance. 
• Slanted stereo 
• Optical flow 
• Live FG segment 
• 3D city recons. 

Scene structure 
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• Edge-aware filtering and joint filtering 

• Dense stereo, optical flow and view 
synthesis 

• Dense correspondences across scenes 

• Motion coherence and wide-baseline 
matching 

• Structure from motion, 3D 
reconstruction 

• Computational photography, image 
enhancement 

• Efficient inference for continuous 
MRFs 

• Fast guided global interpolation 

• Saliency, recognition, cosegmentation 

• Autonomous systems, robot vision 

• Hash techniques 100 

https://publish.illinois.edu/visual-modeling-and-analytics/research/ 

http://publish.illinois.edu/visual-modeling-and-analytics/?p=81
http://publish.illinois.edu/visual-modeling-and-analytics/?p=81
http://publish.illinois.edu/visual-modeling-and-analytics/?p=81
http://publish.illinois.edu/visual-modeling-and-analytics/research/dense-stereo-and-optical-flow/
http://publish.illinois.edu/visual-modeling-and-analytics/research/dense-stereo-and-optical-flow/
http://publish.illinois.edu/visual-modeling-and-analytics/research/dense-general-image-alignment/
http://publish.illinois.edu/visual-modeling-and-analytics/research/global-motion-modeling/
http://publish.illinois.edu/visual-modeling-and-analytics/research/global-motion-modeling/
http://publish.illinois.edu/visual-modeling-and-analytics/research/global-motion-modeling/
http://publish.illinois.edu/visual-modeling-and-analytics/research/global-motion-modeling/
http://publish.illinois.edu/visual-modeling-and-analytics/research/robust-and-efficient-structure-from-motion/
http://publish.illinois.edu/visual-modeling-and-analytics/research/robust-and-efficient-structure-from-motion/
http://publish.illinois.edu/visual-modeling-and-analytics/image-enhancement-computational-photography/
http://publish.illinois.edu/visual-modeling-and-analytics/image-enhancement-computational-photography/
http://publish.illinois.edu/visual-modeling-and-analytics/efficient-inference-for-continuous-mrfs/
http://publish.illinois.edu/visual-modeling-and-analytics/efficient-inference-for-continuous-mrfs/
http://publish.illinois.edu/visual-modeling-and-analytics/fast-guided-global-interpolation/
http://publish.illinois.edu/visual-modeling-and-analytics/research/saliency-recognition-cosegmentation/
http://publish.illinois.edu/visual-modeling-and-analytics/research/saliency-recognition-cosegmentation/
http://publish.illinois.edu/visual-modeling-and-analytics/auto-systems-robot-vision/
http://publish.illinois.edu/visual-modeling-and-analytics/research/hashing-techniques/
http://publish.illinois.edu/visual-modeling-and-analytics/research/hashing-techniques/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
https://publish.illinois.edu/visual-modeling-and-analytics/research/
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• ICIP’13 tutorial: Image Filtering 2.0: Efficient Edge-Aware Filtering 
and Their Applications 

https://sites.google.com/site/filteringtutorial/ 
 

 

 

 

 
 

 

• ICME’15 tutorial: Visual Correspondences: Taxonomy, Modern 
Approaches and Ubiquitous Applications 

https://sites.google.com/site/icme15tutorial/ 

 

 
 

 

 

 

 

 

https://sites.google.com/site/filteringtutorial/
https://sites.google.com/site/filteringtutorial/
https://sites.google.com/site/icme15tutorial/
https://sites.google.com/site/icme15tutorial/
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• Since 01/2017,  Shenzhen 

• Focus on 3D + AI for humans 

• We’re hiring core researchers  
• Computer vision 

• Computer graphics 

• Machine learning 

• Image processing 

 

•   jiangbo.lu AT gmail.com 

     jiangbo AT cloudream.com 
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Thanks 

通过人和商品数据化 
打造一站式个人形象管理平台 

mailto:jiangbo.lu@gmail.com
mailto:jiangbo.lu@gmail.com
mailto:jiangbo@cloudream.com
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mailto:jiangbo@cloudream.com

