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Everywhere Visual Correspondences

— AcCross views — Across time

[Baker et al., JCV'11]
I

Across multiple views
[Furukawa & Ponce, PAMI'09]

[Goedeme et al., CVPR’04]

— Across view & time
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Key to Many Applications

e Structure from motion, 3D reconstruction

* Robot navigation, video odometry

* Scene labeling and semantic understanding

* Depth transfer and synthesis

* Computational photography, image processing
* Image stitching, view synthesis

* Visual place recognition and object localization




Yet Another Class: Correspondence across Scenes

Correspondence at pixel level Correspondence at object level

[Scharstein et al. IJCV’°02]
[Berg et al. CVPR’05]

Correspondence at scene level

Dense correspondence;
Scene context preserved
[Liu et al., PAMI'11]




Applications of Dense (Semantic) Correspondences

CVPR 2014 Tutorial
Dense Image Correspondences for Computer Vision

Ce Liu! Michael Rubinstein! Jaechul Kim? Zhuowen Tu?

'Microsoft Research 2Amazon >UCSD

Nearest neighbors

Input image
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[Hassner ‘13] [Liu, Yuen & Torralba "11]

[Hassner&Basri ‘06a, ‘06b, 13] FMWMWV{' re,wgwbﬁ,ow

Why is this
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[Hassner, Saban & Wolf]
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[Liu, Yuen & Torralba
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Slide courtesy T. Hassner




lIndéf:d,, one of the oft-told stories 1s that when a student asked Takeo
Kanade what are the three most important problems in computer vision, his
reply was: “Alignment, alignment, alignment!”. [Aubry et al., CVPR’14]

e Image alignment

e Image registration

e Optical flow
e Stereo reconstruction

e Feature matching



A Number of Challenges .

e Large displacement
* Non-rigid motion

* Independent object motion

* Small objects

* Photometric differences (exposure, tone, sharpness)

* Weakly textured regions

e Matching across different scene contents Right inage
___________________________________________________ *\ ;
* Motion coherence vs. boundary/detail preserving a'”

* Computational load

* Memory cost

* Large hypothesis space RObUSt, dense, faSt




Focus on Two-Frame Dense Correspondences

— Across views

[Scharstein & Szeliskii, 1JCV’02]

— Across time

[Baker et al., JCV’11]

— Wide baseline & across multiple views

we d S 2
d S S §
S ) /N
= J \ &

A set of multi-view images [42]

Agisoft [47]: A commercial 3D reconstruction software

Visual SfM [3], [43], [44], [45], [46]

Visual SfM using feature matches returned by A-SIFT w CODE

Across scenes




Desired Properties? How to compute?

¢

e @General & versatile

=  Applicable for different tasks & methods
= Vs, task-specific, state-of-art methods

 Simple & competitive
" Elegant and principled
= e.g.w/o complex energy terms, descriptor
matching, coarse-to-fine, pre-processing...

e Efficient

" Fast speed and implementation advantages
"  Friendly for parallelization, embedded system

10



Desired Properties? How to compute? @
-/*f“

- Simple models are easy to justify,
understand, apply and accelerate

- Computational efficiency enables
aggressive exploration, bringing
qguality gain and simple models

11



1: SPM-BP [ICCV’15]: Discrete

Labeling Optimization for MRFs

B = ZEp(lp? W)+ Z Z Epg(lp, 1)

P qeEN,

p: pixel, Ny: 4 neighbors

2: Fast Guided Global Interpolation 1088 X 1376
[ECCV’16a]: from Sparse to Dense

Cascaded global interpolations with alternating guidances for level /
= —— -
i oin Filtered data ifl=0 J
lance: i erin d
x i
Input Input
i

Final output
Depth

r

Optical flow

ifl>0,
~_> Nearest mapping to
M, level 1 & repeat

’E(u) =(u—FHT(u-Ff)+ )\uTAu’

3: Coherence-Based Regression for
Feature Matching [ECCV’14, '16b]




1: SPM-BP [ICCV’15]: Discrete
Labeling Optimization for MRFs Croundint

B = ZEp(lp5W) + Z Z Epq(lp.1y) E>

P qeEN,

p: pixel, Ny: 4 neighbors




1: SPM-BP [ICCV’15]: Discrete

Labeling Optimization for MRFs

E=Y B W)+ Y 3 E

P qeEN,

p: pixel, Ny: 4 neighbors

Part 1: MRF-Based Dense
Correspondence Field via
Eff|C|ent Inference

Y. Li, D. Min, M. Brown, M. N. Do, and J. Lu, “SPM-BP: Sped-up PatchMatch Belief Propagation for
Continuous MRFs,” ICCV 2015. (Oral)

= J. Lu, H. Yang, D. Min, and M. N. Do, “PatchMatch Filter: Efficient Edge-Aware Filtering Meets
Randomized Search for Fast Correspondence Field Estimation,” CVPR 2013. (Oral)

= J. Ly, Y. Li, H. Yang, D. Min, W. Eng, and M. N. Do, “PatchMatch Filter: Edge-Aware Filtering Meets
Randomized Search for Correspondence Field Estimation,” TPAMI 2016.

= H. Yang, W.-Y. Lin, and J. Lu, “Daisy Filter Flow: A Generalized Discrete Approach to Dense
Correspondences,” CVPR 2014.



Discrete Pixel-Labeling Optimization on MRF

* Many computer vision tasks can be formulated as a
pixel-labeling problem on Markov Random Field (MRF)

EaE T

Segmentation Denoising Stereo Optical flow

1={B,G} | = intensity I =d | = (u,v)
b= Z By (L W) + Z Z Epg(lp, 1)
p P geEN,

p: pixel, Ny: 4 neighbors

= Simple & elegant: data term + smoothness term, MAP
= Effective: labeling coherence, discontinuity handling

= Flexible: support a broad range of energy functions

= Optimization: Graph Cut, Belief Propagation, etc



Belief Propagation (BP)

Iterative process in which o 2
neighbouring nodes “talk” (a)—= —3(1)
to each other: |

 Update message between
neighboring pixels [ ) (1) = min( By Iy L)+ Byl + 3 mizwzq))}

quﬁ
sENg\p

e Stop after T iterations, decide
the final label by picking the
smallest dis-belief @ my ,

[Bpup) —E,0)+ S md,)

qEN,

= Challenge:

When the label set L is huge or densely sampled, BP faces
prohibitively high computational challenges.




Particle Belief Propagation (PBP)

[Ihler and McAllester, “Particle Belief Propagation,” AISTATS 09]
* Solution:

(1) only store messages for K labels (particles)

LU TV DT s | (discrete label)

(2) generate new label particles with the MCMC sampling using
a Gaussian proposal distribution

= Challenge:
MCMC sampling is still inefficient and slow for continuous
label spaces (e.g. stereo with slanted surfaces). 17

> |




Patch Match Belief Propagation (PMBP)

[Besse et al, “PMBP: PatchMatch Belief Propagation for
Correspondence Field Estimation,” [JCV 2014]

e Solution:

Use Patch Match[Barnes et al., Siggraph’09]’s sampling algorithm —
augment PBP with label samples from the neighbours as proposals

* Orders of magnitude faster than PBP

@O— “/® ©

@/U

I [

18



Patch Match Belief Propagation (PMBP)

 Effectively handles large label spaces in message passing

* Successfully applied to stereo with slanted surface modeling
[Bleyer et al., BMVC’11]

Label: 3D plane normal [ = (a,, by, ¢p) | gy o AR S

[ = d (integer)

Left image Disparity map 3D reconstruction Disparity map 3D reconstruction

Image courtesy of [Bleyer et al., BMVC'11]

* Also successfully applied to optical flow [Hornaéek et al., ECCV’14]

19



Problem of PMBP

* However, it suffers from a heavy computational
load on the data cost computation

E=D>"E(y W)+ )Y Epylly.ly)
P

P q€EN,

* Many works strongly suggest to gather stronger
evidence from a local window for the data term

— Z wWpr Cr(1p)

reWw

Al §

Left view Right view Weight Raw matching cost

20



Data term is important!

e Better results with larger window sizes (2w+1)"2, but more

computational cost!

e e.g. |W| =40x40 in PMBP [ucv14], | W| = 41x41 in PM-PM [1ip'15]

reWw
cornes ambush_5
8 ‘ ‘ 7500 60 : : 10800
C R | —S=-Error i —S-Error
—~—Time —-Time
6- 5625 52¢ 18100
w=0 w=0 .
Stereo Optical Flow
S 0
4 44t p 15400 ¢
i €3 £
¢ \Q ,‘ wt/‘\" -
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Aggregated Data Term also Justified in e.g.

[Min et al., TIP’14]

Without aggregated data term

Input After 3 iter. After 10 iter.

With aggregated data term

No color bleeding
artifacts!

22




Aggregated Data Cost Computation

* Cross/joint bilateral filtering principles
Byl W) =Y wpCy(ly)

* Local discrete labeling approaches have often used O(1)-
time edge-aware filtering (EAF) methods [Rhemann et al., cvPR'11].

* O(1)-time: No dependency on window size used in EAF

Cross-based Local Multipoint Filtering

Guided Filter [He et al., ECCV 2010] (CLMF) [Lu et al., CVPR 2012]

Guided filter
)ﬁ&; W 4, =p—n l(nibl}z:(all+b—p,)2+w2 e {(1.2, m =0 A £,
a. F s — A Sl 0 1 ; —
|\ Y %“tw ap, +apls m=—1. Yc_gz\ @
i r— Linear regression A S £ \\p
input p Piodisy regation
A ggreg Z ’Q ’Yk S i k 7
2 P — P
output ¢ Zkt:peflk |Ql\| (b)
Vg, =aVl, I q=ovU.p)
— vaniite Approximation
y q =al,+b B k
uide I e ‘ Y., ~ Z"'GQP ‘Qk‘yp k
v Bilateral/joint bilateral filter does p Z ‘Q | ‘ Q,
not have this linear model keQ, k Qp 3




Why does PMBP NOT use O(1) time EAF?

* Particle sampling and data cost computation are performed
independently for each pixel

=>» Incompatible with EAF, essentially exploiting redundancy

 Observation

Labeling is often spatially smooth away from edges. This allows for shared
label proposal and data cost computation for spatially neighboring pixels.

L L\ Y L b
JU%UU%UUUUUH \ 1 uQ% %UUU

an! ()
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nVEwgOePuysan s ¢
] €0
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e R e e T

* Our solution
A superpixel based particle sampling belief propagation method,
leveraging efficient filter-based cost aggregation

Sped-up Patch Match Belief Propagation (SPIM-BP)




Sped-up Patch Match Belief Propagation

* Two-layer graph structures in SPM-BP

Superpixel-level graph

1. Shared particle generation
S(b) :> 2. Shared data cost computation

ZEP Ly W)

Pixel-level graph

+Z Z Epq(lp:1g)

P qEN,

e Scan superpixels and perform :
= Neighbourhood propagation

:> 1. Message passing
2. Particle selection

E=) Bplly W)+

'ZZ Bpy(l,1,)

P qEN,

" Random search (a.k.a. resampling based on a proposal

distribution)



Related works

Local methods

. [Rhemann et al., CVPR’11]
Pixel based MRF [Lu et al., CVPR’13]

Only rely on data term

R
-
F
-

F
-
-
F

F
-
F
-

-
-
-
-

Superpixel based MRF
[Kappes et al., IJCV’15]
[Glney & Geiger, CVPR’15]

Superpixels as graph nodes
Image courtesy of [Kappes et al., IJCV'15]

Superpixel-based MRF: each superpixel is a node in the graph and all pixels of
the superpixel are constrained to have the same label.

Our two-layer graph: superpixels are employed only for particle generation and
data cost computation, the labeling is performed for each pixel independegetly.




@ %@ % %
@ %@ % %

@ % %
@ % %

O-

Cf

PMF: Filter-based

local Inference
[Lu et al., CVPR’13]

SPM-BP: BP-based

global inference
[Li et al., ICCV’15]

o>

A
|
|
|

+y Y By,

P qgeN,

(lps1q)

p: pixel, N: 4 neighbors
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Comparison of Existing Labeling Optimizers

Data cost computation

Local labeling approaches
59pPp w/o EAF: O(|W|) | w/EAF: 0(1)

w/o PatchMatch: | Adaptive Weighting Cost Filtering
Label o(|L]) [PAMI’06] [CVPR'11]
space
handling w/ PatchMatch: PM Stereo PMF
O(log|L]) [BMVC’11] [CVPR’13]

Data cost computation

Global labeli h
abeling approaches | "o Em g T w/ EAF: O(1)

w/o PatchMatch: BP Fully-connected
Label o(IL]) [1ICV’06] CRFs [NIPS'11]
space
handling w/ PatchMatch: PMBP 5
O(log|L]) [1JCV’'14] :




Comparison of Existing Labeling Optimizers

Data cost computation

Local labeling approaches
59pPp w/o EAF: O(|W|) | w/EAF: 0(1)

w/o PatchMatch: | Adaptive Weighting Cost Filtering
Label o(|L]) [PAMI’06] [CVPR'11]
space
handling w/ PatchMatch: PM Stereo PMF
O(log|L]) [BMVC’11] [CVPR’13]

Data cost computation

Global labeli h
abeling approaches | "o Em g T w/ EAF: O(1)

w/o PatchMatch: BP Fully-connected
Label o(IL]) [1ICV’06] CRFs [NIPS'11]

space
haFr:dIing w/ PatchMatch: PMBP SPM-BP
O(log|L]) [1JCV’14] [This paper]
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Sped-up Patch Match Belief Propagation

* Two-layer graph structures in SPM-BP

Superpixel-level graph

1. Shared particle generation
S(b) :> 2. Shared data cost computation
ZEP LYY Bl 1)

Pixel-level graph P qeEN,
:> 1. Message passing
2. Particle selection

E=Y E,(l,;W)+ 'ZZ Byl 1)

P qEN,

e Scan superpixels and perform :
= Neighbourhood propagation

" Random search (a.k.a. resampling based on a proposal
distribution) 30




SPM-BP: Neighbourhood Propagation

v'Step 1. Particle propagation

1-1) Randomly select one pixel from each
neighbouring superpixel
1-2) Add the particles at these pixels into

the proposal set
O «
O : I I I > |

Label space



SPM-BP: Neighbourhood Propagation

v'Step 1. Particle propagation

1-1) Randomly select one pixel from each
neighbouring superpixel

1-2) Add the particles at these pixels into
the proposal set

K=3




SPM-BP: Neighbourhood Propagation

v'Step 2. Data cost computation

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

2-2) Compute the aggregated data cost
for each label by performing EAF on

the raw matching cost
A
E,(I) | | Ey(lp: W) = Z wWpr Cr (1)
P I I reWw
= — 4
=11
|1




SPM-BP: Neighbourhood Propagation

v'Step 2. Data cost computation

2-1) Compute the raw matching data

cost of these labels in a slightly
[ == enlarged region
| 2-2) Compute the aggregated data cost
| for each label by performing EAF on
—— _! the raw matching cost
—_—— — | B
: N =15
Ep(l) | : " Ey(lp; W) = Z wWprCr(1p)
LN—"_ =12 reW
| =11

11

L 1 1 1 (1110l > |




O(1)-time Cost Aggregation for Subimages

&

@ Current segment S(k)
@ Adjacent neighbor S(j)
°o Candidate pixel t

35



SPM-BP: Neighbourhood Propagation

v'Step 3. Message update

3-1) Perform message passing for pixels

O/,O ONONONG within the superpixel.
O OO
O
O O
O O O O

B,(l,) ) + Zm

R, qeEN,

P i I, € R,




SPM-BP: Neighbourhood Propagation

v'Step 3. Message update

3-1) Perform message passing for pixels
O within the superpixel.
3-2) Keep K particles with the smallest
disbeliefs at each pixel.

O O
O O O O

keep K particles By(ly) = Ep(l,) + Y m{P(1,)
, J qeEN,
> | p € I

NAN i

top K particles

argminK; . B, (1)




SPM-BP: Random Search

v'Step 1. Particle propagation

1-1) Randomly select one pixel in the
visiting superpixel




SPM-BP: Random Search

v'Step 1. Particle propagation

1-1) Randomly select one pixel in the
visiting superpixel

1-2) Generate new proposals around the
sampled particles

39



SPM-BP: Random Search

v'Step 2. Data cost computation

2-1) Compute the raw matching data
cost of these labels in a slightly
enlarged region

o c—

| 2-2) Compute the aggregated data cost
| for each label by performing EAF on
—— _! the raw matching cost
—_—— — | B
: N =15
Ep(l) | : " Ey(lp; W) = Z wWprCr(1p)
LN—"_ =12 reW
| =11




SPM-BP: Random Search

v'Step 3. Message update

3-1) Perform message passing for pixels

O/,O ONONONG within the superpixel.
O 0O O 3-2) Keep K particles with the smallest
o disbeliefs at each pixel.
O O :
o0 ® o argminK; ., By (1)
/
keep K particles II B,(l,) = E,(l,) + Z mé?(lp)
p 4 qEN,
Rp

| | | > | ly € R,

41



SPM-BP: Recap

Random Initialization

A4

Superpixel-level graph

St ) G
S6YFF

Iterate

(ool Lol S, /
(AL S oL SLSLSLS

(" Shared particle generation\

Pixel-level graph £ 4-F----—-———————-

(b) % (C)
[elR
S(b) P
BLG »eH)
\_ Step 1 R, (h)—Stepd )

~
Pixel-level BP w/ particles

A =] ©
Sb) g_%oq

\Unary Ep Pairwise qu )

Final labels

pixel
level



Complexity Comparison

PMF* [32]] PMBP [§] SPM-BP
Data Cost  |O(NlogL) O@KNlogL) O(K NlogL)
Message Passing - O(K*NlogL) |O(K?*NloglL)

 |W]| —local window size (e.g. 31x31 for stereo)
 K—number of particles used (small constant)

* N -—number of pixels

[ —Ilabel space size (e.g. over 10 million for flow)

*PMF stores only one best particle (K = 1) per pixel node, thus
requiring more iterations than the other two methods.



Example Applications of Our SPM-BP

 Stereo with slanted surface supports

* label: 3D plane normal [, = (a,, b,, ¢;)

 Matching features: color + gradient
 Smoothness term: deviation between two local planes

* Cross checking + post processing for occlusion

 Large-displacement optical flow

* label: 2D displacement vector 1, = (u, v)

* Matching features: color + Census transform
* Smoothness term: truncated L, distance

* Cross checking + post processing for occlusion



Convergence
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Convergence

ambush_5
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Stereo Results

e

Stereo input

PMF PMBP SPM-BP (ours)
20 sec. 3100 sec. 30 sec.

Much faster than PMBP, and much better than PMF for textureless regions 47



Stereo Results

Stereo input

PMF PMBP SPM-BP (ours)
20 sec. 3100 sec. 30 sec.
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Optical Flow Results

o ., 0

S
Optical flow input

PMF
27 sec.

S

PMBP
2103 sec.

SPM-BP (ours)
42 sec.

Much faster than PMBP, and much better than PMF for textureless regions  4°



Optical Flow Results

EPPM [5] 7 LDOF [10]

h

MDP-Flow2 [40]

50



SPM-BP Code is available online:

https://publish.illinois.edu/visual-modeling-and-
analytics/efficient-inference-for-continuous-mrfs/
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Quantitative Performance Evaluation

Middlebury Stereo 2006 Performance

Middlebury Stereo Performance (among over 160 listed methods)

Method Avg. Rank|Avg. Error| Runtime(s)
PM-PM [39] 8.2 7.58 34 (GPU)
PM-Huber [17] 8.4 7.33 52 (GPU)
SPM-BP 12.1 7.71 30
PMF [24] 12.3 7.69 20
PMBP [7] 19.8 8.77 3100

Optical Flow Performance on MPI Sintel Benchmark

(captured on 16/04/2015)

Dataset PMF [25] | PMBP [7] | SPM-BP
Baby?2 15.34 16.85 12.82
Books 22.15 27.57 22.52
Bowling?2 15.95 15.20 14.35
Flowerpots 24.59 27.97 24.80
Lampshadel 25.02 30.22 23.39
Laundry 26.77 33.90 27.32
Moebius 21.47 25.09 21.09
Reindeer 15.04 21.57 16.02
Mean 20.79 24.79 20.29
Remarks

Method EPE all ’ EPE all Runtime
Clean | Rank | Final | Rank | (Sec)
4115 1 6285 1 | 17
PH-Flow [41] 4388 | 2 17423 8 800
I_SPM-BP 5202 5 [7.325] 6 42
DeepFlow [36] 5377 71 |7.212] 4 19
LocalLayering [33] | 5.820| 13 [8.043| 13 -
MDP-Flow2 [38] 5.837| 14 (8445 | 21 754
EPPM [5] 6494 | 18 |8.377| 20 0.95%
S2D-Matching [21] | 6.510| 19 |7.872| 10 2000
Classic+NLP [34] |6.731 | 21 |8291| 19 688
Channel-Flow [32] |7.023| 24 |[8.835| 26 |>10000
LDOF [10] 7563 25 |9.116| 28 30

A simple formulation, without

complex energy terms
a separate initialization

Achieved top-tier performance

even when compared to
task-specific techniques

Applied on the full pixel grid

w/o coarse-to-fine steps




Comparison with [EpicFlow, CVPR’15]

Contours .’; \ \ @

- y % B .
sebp) | /N T [ |Edge-aware a .

First Image dense
interpolation ®1 Variational
/a minimization
Second Image e

Matching

i DN e
(DeepMatching | b= ies T/ A .
(1D M e T A

Final result
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Comparison with [EpicFlow, CVPR’15]

Plenary Speakers FIaRTESIN

Learning: What are desired?

General-purpose solvers

No tuning, no babysitting,

just work with reliability

 With a reasonable loss to a
custom solver

* Important to allow fast

Stephen P. Boyd - Stanford University

Convex Optimization with Abstract Linear Operators

Tuesday 22 March 2016, 10.20 - 11.10 (Grand Ballroom II & III)

Abstract:

Domain specific languages (DSLs) for convex optimization, such as CVX and

YALMIP and the more recent CVXPY and Convex.jl, are very widely used to rapidly §
develop, prototype, and solve convex optimization problems of modest size, say,
tens of thousands of variables, with linear operators described as sparse matrices.

These systems allow a user to specify a convex optimization problem in a very

succinct and natural way, and then solve the problem with great reliability, with no algorithm parameter tuning, and a
reasonable performance loss compared to a custom solver hand designed and tuned for the problem. In this talk we

describe recent progress toward the goal of extending these DSLs to handle large-scale problems that involve linear pro to typlng 54

operators given as abstract operators with fast transforms, such as those arising in image processing and vision, medical



Comparison with [Full Flow, CVPR’16]

* Both use no descriptor matching
* Both optimize a simple global objective

* Both apply message passing techniques to solve MRF

* [Full Flow] has a linear complexity on the label space size L,
i.e., O(L), in contrast to our O(logl)

* [Full Flow] is much slower, esp. cost volume computation
= Multi-core parallelization w hyper-threading used in [Full Flow]

* SPM-BP has proven SoA results on slanted stereo matching



SPM-BP ver 2.0 — Among Top-Performing Methods

e Performance (EPE all) on MPI Sintel test benchmark

SPM-BP v2

(w/ simple twists over

SPM-BP)

SPM-BP

Final | Clean

Clean

3.515

3.601
4.115
5.202

5.812

5.895
6.285
7.325

7 sec

~4 min
17 sec

42 sec

. P 9
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EPE all EPE matched EPE unmatched do-10 d10-60 d60-140 s0-10  s10-40 s40+
GroundTruth ['] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PGM-C @ 5591 2672 29389 4975 2340 1791 1.057 3421 33339
RicFlow @ 5620 2765 28.907 5146 2366 1679 1.088 3.364 33573
FlowFields+ 1] 5707 2684 30.356 4691 217 1793 1131 3.330 34167
DeepDiscreteFlow %! 5728 2623 31.042 5.347 2478 1,500 0.959 3072 35819
SBFlow [ 5791 2280 34.405 4.409 2024 1.471 0.975 3475 35.270
FlowFields I'! 5810 2621 31.799 4.851 2232 1.682 1.157 3739 33.890
SPMBPv2 5812 2754 30743 4736 2255 1933 1.048 3468 35118
FullFlow & 5895 2838 30793 4905 2506 1913 1136 3373 35 592
CPM-Flow I'0] 5960 2.990 30177 5038 2419 2143 1.155 3755 35.136
GlobalPatchCollider ['1] 6.040 2938 31.309 5310 2624 1.824 1.102 3580 36.455
B



Future Work (1/2)

* Applications: robust cross-scene matching, annotation
transfer, scene labeling [Liu et al., PAMI'11]

3 = 1 ‘\\ ¢ =
Q=5
\ | M O =
S e
23
e
LIS
1
2

Augmented label space: /(p) = (u, v, s, 8) for each pixel p

[Yang et al., CVPR’14]
[ = ] n
[ K A IR '
DAISY convolved I S(k) 4 {GS:O } I(I ‘ M)
orientation maps / R, seFE
precomputation Uk) 0 e[LH]
Standard upright — - ‘
DAISY descriptor B .
precomputation
pP=p+@,y) e &
¥
| wl ; e
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* H. Yang et al., “Daisy Filter Flow: A Generalized Discrete Approach to Dense Correspondences,” CVPR 2014.



e
Groundtruth |




Future Work (2/2)

* Modeling:
= More expressive MRF/CRF models with
higher-order terms [ECCV’12, 1JCV’15, CVPR'15, TMM’16]
= Joint labeling tasks in product label-spaces [Eccv’12]

* Inference:
= Efficient approaches to deal with complex models
= More theoretic study on convergence [ICML'15]

* Deep learning:

= Learned matching similarity from CNN models to deal with
illumination, shadow, or transparent objects, e.g.

v Jure Zbontar, and Yann LeCun, “Computing the Stereo Matching Cost
With a Convolutional Neural Network” [CVPR 2015]
Vo

= Research issues including efficiency & generalization

= “Geometry still lies at the heart of CV” — Stéphane Mallat
v’ Pose, viewpoint, invariance, ...
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2: Fast Guided Global Interpolation 1088 X 1376
[ECCV’16a]: from Sparse to Dense

Cascaded global il ions with alternating guidances for level /
conventio s

Color image d Ifl=0 “
Guidance Final output N
& * P Depth

& mask
d,&m, -
Ao

ff1>0, Optical flow

Nearest mapping to
level I-1 & repeat




2: Fast Guided Global Interpolation 1088 X 1376
[ECCV’16a]: from Sparse to Dense

Cascaded global interpolations with alternating guidances for level /

Eq.(4) Eq.(6)

}E(u) =(u—f) (u—f)+ )\uTAu‘

Part 2: Fast Guided Global

Interpolation for Sparse
Input Data

Y. Li, D. Min, M. N. Do, and J. Lu, “Fast Guided Global Interpolation for Depth and
Motion,” ECCV 2016. (Spotlight)

D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast Global Image Smoothing Based on
Weighted Least Squares,” TIP 2014. (Included in official OpenCV 3.1 release)
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Introduction

Depth upsampling and motion interpolation are
often required to generate a dense, high-quality, and
high resolution depth map or optical flow field.

Low-res & noisy  High-res. color guidance High-res. depth
depth (ToF) S— L

1088 X 1376

.................

Depth upsampling (color guided)
Input TOF depth: noisy, low resolution, regularly distributed



Introduction

Depth upsampling and motion interpolation are
often required to generate a dense, high-quality, and
high resolution depth map or optical flow field.

Color frame and sparse matches from DM Dense optical flow field
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DM data density < 1%

Motion interpolation
Input matches: typically reliable, but highly scattered, varying density

[DM: Weinzaepfel et al., "DeepFlow: Large displacement optical flow with deep matching, ICCV 2013.]
* General to use other low-res. /semi-dense matches as input : [FlowFields, ICCV’15], [FullFlow, CVPR’16], etc



Motivation
Existing methods are often tailored to one specific task:

JBF [Kopf et al. 2007], MRF+nlm [Park et al. 2011], TGV
Depth upsampling [Ferstl et al. 2013], JGU [Liu et al. 2013], AR [Yang et al.
2014], Data-driven [Kwon et al. 2015], etc

EpicFlow [Revaud et al. 2015], [Drayer and Brox 2015],

Motion interpolation [Leordeanu et al. 2013], etc

The common objective for both tasks is to densify a set of
sparse data points, either regularly distributed or scattered, to
a full image grid through a 2D guided interpolation process.

Our approach: Fast Guided Global Interpolation (FGI)

A unified approach that casts the guided interpolation
problem into a hierarchical, global optimization framework.



Istent structures
Ground truth
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les

tion boundar

, MISSINE MO

e Loss of thin structures

Ime-consuming

 Complex algorithms and often t



Weighted Least Square (WLS)-based Minimization

e Optimization on 2D signal (image) v No artifacts e.g. halo

Given an input image f and a guidance image g, | ¥ Various applications
a desired output u minimizes the following X Not efficient

) =3 ((upfp)2+>\ > wp?qm)(upuqf) (I+XA)u="f

qeN (p)
I: Identity matrix

A: Spatially-varying Laplacian matrix

- I+2A  u f
- Sparse data interpolation
= (H+ AA)u = Hf
[
.
B HW x HW __HE/ ;1 HE/;1

[Farbman et al., “Edge-preserving decompositions for multi-
scale tone and detail manipulation,” SIGGRAPH 2008]



Fast Global Smoother (FGS) [TIP’14, Opencv 3.1]
Quality & Applicability of Optimization + Efficiency of Local filters

* Fast O(N) edge-preserving smoothing by approximating the
solution of a large linear system with two linear sub-systems

 Efficient to solve a tridiagonal matrix with Gaussian elimination

Properties GF[8] | DT[9] | WLS[I5] | Ours Iy + A A uy fr
Runtime efficiency 0.15s 0.05s 3.3s 0.10s .
[Sec. V.C] Horizontal 1D global
smoother
Smoothing quality halo halo no halo no halo (I, + A AUy, = f, H—
[Sec. V.A]

W xW Wx1 Wxi1

L~ norm smoothing N.A. N.A N.A. Yes
0 <y <2)
[Sec. IV.D]
Using aggregated N.A. N.A. N.A. Yes
data [Sec. IVE]

. . . (lv 2 AtAv)uv =f,
* High quality smoothing, Vertical 1D global |

smoother

but 10-30x faster than SOA = WxH T ¥

* Support L,, smoothing with IRLS (iterative re-weighted LS)
e Support an aggregated (robust) data term 67



FGS Results https://sites.google.com/site/globalsmoothing/

Structu re extracti

=
i .

on from texture w/ IRLS

(a) Original (b) Noisy input

[Xu et al. SIGGRAPH'12]  FGS
3.7s 0.6s

B2 L L v’
Input

Handling imprecise sparse input

(c) Guided Filter [8] (d) RF of DT [9]

(e) Original WLS [15] (f) Proposed method


https://sites.google.com/site/globalsmoothing

Single-Scale WLS Methods Vs. Our FGI Method

Color guidance WLS Our result Ground truth

Depth

Optical flow

Color guidance WLS Our result Ground truth

[WLS: Farbman et al., “Edge-preserving decompositions for multi-scale tone and detail manipulation,”
SIGGRAPH 2008]
[FGS: Min et al., "Fast global image smoothing based on weighted least squares,” TIP 2014.]



Our FGI Pipeline: Overview

Color image

¢

Sparse data
& mask

d,&m,

Guidance

Cascaded global interpolations with alternating guidances for level /

Eqg.(4)
Guided
interp.
A
Input

Bicubic
interp.

Interpolated
data

d.

Spatially
interp. data

d.

Guidance

Eq.(6)

Joint
filtering

Filtered data

e

Ifl=0
Final output
Depth
-
Optical flow

Ifl>0,
Nearest mapping to
level -1 & repeat

* A hierarchical (coarse-to-fine), multi-pass guided
interpolation framework

* Divide the problems into a sequence of interpolation

tasks each with smaller scale factors

e Gradually fill the large gap between the sparse

measurement and the dense data



Our Pipeline: Filtering with Alternating Guidances

Cascaded global interpolations with alternating guidances for level /

Eqg.(4)
Color image Guided
Guid interp.
C, uidance - )
Sparse data e
& mask
d,&m,

A 4

Interpolated
data

d.

Guidance

Ricuhic
interp.

Spatially
interp. data

d.

Eq.(6)

Joint
filtering

Filtered data

Ifl=0
Final output

Ifl>0,

e

Depth

-

Optical flow

Nearest mapping to
level -1 & repeat

* From the coarse level /= L-1, we upsample the signal by a
factor of 2 at each level by solving the following weighted
least square (WLS) using the recent FGS solver.

* Guided interp.: £(d,)
" The color image c¢; as the guidance

" A, is the spatially varying Laplacian matrix defined by ¢;

= (d, —d;)'M;(d, —d;) + )\ d] A_d,

[FGS: Min et al., "Fast global image smoothing based on weighted least squares," TIP 2014.]
Why FGS? 100 mis for filteirng 1MPixels RGB images on 1 CPU core. More details in our paper.



Our Pipeline: Filtering with Alternating Guidances

Cascaded global interpolations with alternating guidances for level /

Color image

¢

Sparse data

& mask

d,&m,

Eqg.(4) Eq.(6)
Guided | Interpolated Joint | Filtered data
Guidance Interp. 7 Guidance \_ filtering 7
A_/ d* df
Input v
@er}sus )
Bicubi Spatially e
! clcuic »{ interp. data {aa..- A}
interp. v
4 FORC IR
p S a0 ‘31
{se..0} e " ae
Aae-&2

e

Ifl=0
Final output
Depth
-
Optical flow

Ifl>0,
Nearest mapping to
level -1 & repeat

* Next, another WLS is solved with the output d. as
guidance and bicubic interpolated signal as input.

* Joint filtering: £(d;) = (d; —do) " (d; — do) + Xod,' Ay d,

= The intermediate interpolated map d, as the guidance

= A, isthe spatially varying Laplacian matrix defined by d,



Our Pipeline: Consensus-Based Data Augmentation

Cascaded global interpolations with alternating guidances for level /
Eqg.(4) Eq.(6) '

Color image Guided Interpolated Joint | Filtered data ifl=0
C Guidance Interp. i Guidance \_ filtering 6} Final output
! A * i Depth
Sparse data e
& mask
d,&m, »

. Spatially
interp. data
interp. J

IF1>0, Optical flow

P Nearest mapping to
level -1 & repeat

* Then, check the consistency between the output and the
bicubic upsampled data, and pick the most consistent
points to add to the data mask map m;

= The bibubic upsampled data is free from texture-copying
" Proceed in a non-overlapping patch fashion (2x2 patches)

* The entire process is repeated until the finest level (/= 0)
is reached.



1D Scanline lllustration

Ground
truth

fi

MiaS

One-pass WLS

Ground truth



1D Scanline lllustration

SIS

Ground
truth

d. d,=ourresult  One-pass WLS  Ground truth



Depth Upsamling Error (MAD)

o

Pipeline Validation on Depth Upsampling

M Single scale WLS

M +Cascaded filtering with alternating guidances - single scale (Sec. 3.1)
m +Hierarchical process

m +Consensus-based data point augmentation (Sec. 3.2)

2X 4x 8X 16x




Depth Upsampling Results

Average runtime to upsample a 272 X 344 depth to 1088 X 1376 (in seconds)

MRF+nIm TGV AR GF CLMF | FGl(ours)
170 420 900 1.3 2.4 0.6
1000x faster than AR

Average Depth Upsampling Error on ToF Synthetic Dataset (6 cases)

5.00
4.50
4.00
3.50
3.00
2.50
2.00

1.50
1.00
0.50 I
0.00

MRF+nlm

TGV

WLS

CLMF

m2X m4X 8X

16X
Close to AR

AR FGI (ours)



Our framework also improves other edge-aware

smoothing filters, e.g. the guided filter

Depth 2% Ax 8x 16x
avg. error
Single-pass 131 154 2 .04 3.12
GF
GF in our 1.06 1.21 1.63 2.59
framework

[GF: He et al., “Guided image filtering," ECCV 2010.]




Depth Upsampling Results

ToF Synthetic Dataset 1000x faster than AR
Ground truth/Color MRF+nlm [11] JGF [8] TGV [6] AR [3] FGl(ours)

ToFMark Dataset 650x faster than TGV
JGF [8] TGV [6] Ours JGF [8] TGV [6] Ours

Depth

Error map



Motion Interpolation Results

Performance (EPE) on MPI Sintel training set

WLS/FGS EpicFlow-NW EpicFlow-LA FGl(ours)
Clean 3.23 3.17 2.65 2.75 | Close to
. Epi
Final 4.68 4.55 4.10 4.14 | EPIcrlow
but over
Runtime (sec) 0.21 0.80 0.94 0.39 | 2xfaster
=
g. 'JJ:-':
- Ground truth Ground truth | % '":. : | ¢
< > >
- B
- p |
: * 2
(a) Weak edge in color guidance (b) Sparsely scattered points (c) Extrapolation
Performance (EPE) on the MPI Sintel testing benchmark
FlowFields[13] EpicFlow[2] PH-Flow[37] FGI (ours) Deep+R[15] SPM-BP[38] DeepFlow[14] PCA-Layers[39] MDP-Flow2[40]
Clean| 3.748 4.115 4.388 4.664 5.041 5.202 5.377 5.730 5.837
Final 5.810 6.285 7.423 6.607 6.769 7.325 7.212 7.886 8.445




Comparison with [EpicFlow, CVPR’15]

EpicFlow [CVPR’15]

— l
Contours o @
: (SED B | Edge-aware
First Image dense -
interpolation ® Variational
minimization
Second Image
p™ Matching
_—
(DeepMatching
(1D ‘

Final result

* Nadaraya-Watson:

\ P Pi

simple average of nearest matches
WE|ghtEd b‘y’ t.:,—{h-\‘._JJ:II'IIIIIIJII'.-\]c:I:IJ,_IJ{:I

In EpicFlow, interpolation at pixel p using either:

* Local affine fit: (best for rotations &
homographies)

\ Z”iﬂ;fci‘es
P,

o,
KE. Jr Pi

1"'“""--,

we solve a simple least-square problem
(the match weight is the same than at left)

81



Comparison with [EpicFlow, CVPR’15]

Need not state-of-art contour detection first
Need not approximate geodesic distance comp.

Need not variational minimization as post-proc.

Fist Image
A unified framework for motion & depth & etc

Second Image Our
2 N Matchin .
' J FGIy | &
(DeepMatching
E8)

Final result

Fast Guided Global Interpolation 1088 X 1376

[ECCV’16a]: from Sparse to Dense

AAAAAA

7:l;7(‘1 e\
Sparse data
& mask
d am
ul
&

——¥ Nearest mapping to
feei:8) 2387 levell-1 & repeat

E(u)=(u—f)T(u—f)+Au'Au] \

g

82




Comparison with [The Bilateral Solver, ECCV’16]

* FGI does not need extra “domain transform to smooth out the
blocky artifacts introduced by the simplified bilateral grid”

* Very close depth super-resolution results (below), but FGI also
has proven strong performance for optical flow interpolation

* FGI (& FGS), using similar recursive computations as Domain
Transform (@21ms, implemented in Halide) —> easy to speed up

Method Art Books Moebius Avg.|Time (sec)
A) Nearest Neighbor 6.55 7.41 8.87 11.24/6.16 6.32 6.63 7.36|6.59 6.78 6.98 7.48|7.26| 0.003
B) Bicubic 5.32 6.00 7.15 9.35|5.00 5.17 5.46 5.98|5.34 5.52 5.66 6.07|5.91| 0.007
C)tKiechle et al.[14] 2.82 5.10 6.83 10.80|3.83 5.10 6.12 8.43|4.50 5.73 6.64 8.96|5.86 450
D) Bilinear 4.57 5.53 6.99 9.45|3.94 4.31 4.71 5.38|4.19 4.55 4.83 5.37|5.16| 0.004
E) Liuet al.[19] 4.10 5.43 7.69 11.36|3.08 3.87 4.82 6.46|3.18 4.04 5.11 6.62|5.10| 16.60
F) Shen et al. 27 3.49 4.62 6.13 8.68 |2.86 3.48 4.43 5.57|2.29 3.07 4.22 5.43|4.24| 3148
G) Diebel & Thrun [6] 3.49 441 6.24 9.11]2.06 3.00 4.06 5.13(2.13 3.10 4.14 5.12|3.98 -
H) Chan et al.[4] 3.44 438 598 8.41(2.09 2.77 3.78 5.45(2.08 2.69 3.73 5.33|3.83 3.02
I) GuidedFilter[12, 8] 3.55 4.31 5.59 8.22|2.37 2.73 3.42 4.52|2.48 2.82 3.54 4.53|3.76| 23.89
J) Min et al.[22] 3.65 4.08 5.09 7.91|2.85 2.77 2.97 3.81|3.46 3.25 3.20 3.86|3.74| 0.383
K)tLu & Forsyth[20] 4.30 5.05 6.33 7.94|2.17 2.71 3.30 4.29(2.16 2.50 3.15 4.10|3.69 20
L) Park et al.[24] 3.76 4.48 5.80 8.75|1.95 2.60 3.30 4.86|1.96 2.49 3.21 4.48|3.61| 24.05
M) Domain Transform (9] 3.95 4.76 6.14 8.49|1.80 240 3.23 4.44|1.83 2.40 3.35 4.64|3.56| 0.021
N) Maet al [21] 3.27 3.99 5.08 7.39|2.39 2.70 3.09 3.77(2.55 2.84 3.23 3.81|3.49 18
0) GuidedFilter(Matlab)[12]|3.60 4.25 5.49 7.99 |2.39 2.52 2.89 3.89|2.50 2.57 2.90 3.61|3.47| 0.434
P) Zhang et al. [33] 4.15 4.22 5.03 7.86|1.96 2.24 3.13 4.80|1.80 2.19 3.22 4.90|3.45| 1.346
Q) FastGuidedFilter[11] 3.40 4.16 546 7.972.08 2.51 3.04 3.95|2.13 2.55 3.08 3.79|3.41| 0.225
R) Yang2015[29] 3.27 415 546 7.93|2.00 2.38 3.00 4.04|2.25 2.57 3.13 4.00|3.41| 0.304
S) Yang et al 2007 [30] 3.01 3.92 4.85 7.57|1.87 2.38 2.86 4.26(1.92 2.41 2.96 4.37|3.25 -
T) Farbman et al. [7] 3.14 400 530 7.70|1.76 2.26 2.90 3.88|1.79 2.29 298 3.93(3.19| 6.11
U) JBU[1,15] 3.17 4.02 537 7.59|1.83 2.18 2.80 4.00|1.83 2.13 2.71 3.76|3.14| 1.98
V) Ferstl et al.[8] 3.19 4.06 5.08 7.61|1.52 2.21 2.47 3.54{1.47 2.03 2.58 3.50/2.93 140
W)tLi et al.[18] 3.02 3.12 443 7.43| 1.18 1.70 2.55 3.58| 1.11 1.59 2.28 3.50 2.56 700
83

X)tKwon et al.[16] 0.87 1.30 2.05 3.56| 0.51 0.75 1.14 1.88] 0.57 0.89 1.37 2.14| 1.21| 300
) BS (Ours) 293 3.79 495 7.13) 1.39 1.84 2.38 3.29| 1.38 1.80 2.38 3.23 2.70 0.234
FGI 277 374 512 791 144 186 242 339 152 191 248 328 278




Conclusion

* General & versatile technique:

= Tackle both depth and motion interpolation tasks, and potentially more

= Generally applicable to other edge-aware smoothing filters, e.g. GF

* Competitive results while running much faster than task-
specific state-of-the-art methods

* Simple & effective:

= No color edge detection & variational minimization in [Revaud et al., CVPR’15]

» No domain transform filtering for post-smoothing in [Barron & Poole, ECCV’16]

* Further acceleration on GPUs and FPGA, offering a common
engine for guided interpolation

Project page (code is available):
http://publish.illinois.edu/visual-modeling-and-analytics/

fast-guided-global-interpolation/
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3: Coherence-Based Regression for
Feature Matching [ECCV’14, "16b]




3: Coherence-Based Regression for
Feature Matching [ECCV’14, "16b]

N
arg min Z-'—1 C(1— f(m;)) + Aw’ Gw

Part 3: Bilateral Motion
Coherence Modeling for
Robust Feature Matching

=  W.-Y. Lin, M. Cheng, J. Lu, H. Yang, M. N. Do, and P. H. S. Torr, "Bilateral Functions for
Global Motion Modeling,” ECCV 2014.

= W.-Y. Lin, F. Wang, M. Cheng, S.-K. Yeung, P. Torr, M. N. Do, and J. Lu, “CODE: Coherence
Based Decision Boundaries for Feature Correspondence,” TPAMI (under review).
http://www.kind-of-works.com/CODE matching.html

= W.-Y. Lin, S. Liu, N. Jiang, M. N. Do, P. Tan, and J. Lu, “RepMatch: Robust Feature Matchmg
and Pose for Reconstructing Modern Cities, " ECCV 2016.
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Overview: Wide-Baseline Matching & 3D Mapping

A reliable feature matcher for pose and 3D reconstructlon

Y
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(a) Visual StM »(b) Visual SfM with our matches (¢) Dense reconstruction

Providing a number of
matches, while having
almost no outliers

w/ RANSAC to handle
repetitive structures
Highly reliable 2-view
pose for STM, mapping

* W.-Y. Lin et al., “RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities,” ECCV 2016 87

* W.-Y. Lin et al., “Bilateral functions for global motion modeling,” ECCV 2014




A set of multi-view images [42]

Visual SfM [3], [43], [44], [45], [46]
Visual SfM using feature matches returned by A-SIFT w CODE

Our ADSC lab reconstructed w/ only color images

Also useful for :
place recognition,
localization, multi-
frame tracking...




CODE: Coherence-Based Decision Boundaries

Set t = 0.82 to generate many Eliminate outliers Expand inliers
matches (but also a lot of outliers) - -

Coarse modeling‘
Matching likelihood modeling

E = Zil huber(1 — f(p;)) + A\¥

Fine modeling l
Affine motion modeling f(pj) > 0.5

Inlier acceptance

. 3
E = Zj=1 C(Gej — 92(Pj)) + AZ;;:l i

Fine validation

‘ (gz(P) — (z +u))? + (¢, (P) — (¥ +v))? < 0.01

Set t = 1.0 to validate more matching
hypotheses

* W.-Y. Lin et al., “CODE: Coherence Based Decision Boundaries for Feature Correspondence,” TPAMI (under review)
*W.-Y. Lin et al., “Bilateral functions for global motion modeling,” ECCV 2014




Correspondences on Non-rigid Scenes




RepMatch for Robust Matching & Pose

* Handles wide baselines & repeated structures
* CODE + Epipolar guided matching (via RANSAC)

Core-set and Local hypothesis

Local match consistency

Final Matches

Geometricallv Consistent Inlier Set !
84 ( or e ,f'/
hypo ® @ e . S4
S ® : h / ‘ . oo [> ¢ local ﬁ g”((;”,r....
. ) .
core ., S hwm / Score 4
2 hypo / e e%e S
[ ] o0 e0 / X o o(,u‘
St ® .': ™ ¥/ )./ 5‘1 ° 00’
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° : ] L] Geometrically Inconsistent ° [] .’ 0
°
Score "\.\Q ¢ ¢ local }
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S2 ® :inlier
hypo ™ .\ . . . . . ; ,
: BF training and classification o : outlier (removed)
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Repeated structures induce

false consistency modes. Only

the core mode is reliable

Core mode with epipolar constraint can
compute new local consistency curves.

Max of all consistency curves
creates an epipolar consistency
curve without the false modes

* W.-Y. Lin et al., “RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities,” ECCV 2016
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Handling Repetitive Structures

Imgl

(a) AIl matches (b) Epipolar (c) BF (d) RepMatch

Illustratlon on real images. Black dots in (a) & (b) indicate wrong matches.
Note: Common central tower belong to physically different parts of the building.

Occlusion

Input Images

GeoAware [1]

RepMatch

Scale change




1: SPM-BP [ICCV’15]: Discrete

Labeling Optimization for MRFs

b= ZEp(lp3 W)+ Z Z Epg(lp.1g)

P qeEN,

p: pixel, Ny: 4 neighbors

What if g 2: Fast Guided Global Interpolation
[ECCV’16a]: from Sparse to Dense

* SPM-BP + FGI = ?
e CODE + FGI = ?
e SPM-BP & CODE

3: Coherence-Based Regression for

Feature Matching [ECCV’14, '16b]

N
arg min Z‘__l C(1 = f(my)) + Aw’ Gw o4




Brief Intro
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Holistic (Computer/Robotic) Vision

Geometric Reconstruction meets
Semantic Recognition for 3D holistic vision:
Real-time, robust, geometry-centric vision

Where: geometry, location... ’ ‘ What: semantics, action...

Real-time camera pose localization Visual place/scene recognition
3D environment mapping Object recognition, localization
Depth and motion estimation Human re-identification
Large-scale urban reconstruction Action recognition, tracking

1

Multiple sensors Geometry-aware filtering Mobile cameras
Modern vehicles Fast randomized algorithms Big visual data
Moving robots Efficient inference models Rich annotations
Opportunistic scan Deep learning innovation Powerful machine




Key Themes and Areas for a Smart Nation
Objectives: .

J Make sense of the biggest big data — video sl

J Address urban challenges by focusing on
visual modeling and analytics

1 Develop cutting-edge technologies and
solutions for a Smart Nation

Key themes:
Real-time, robust localization and
geometry-centric computer vision

Key technologies:
] Localization for robots and AVs

3D environment mapping .\
 Visual analytics and understanding

Some example resulgg and
collaborations of our research

d Computational imaging and augmented reality



Photo refocus
Rain removal
Image stitching
Multi-scale dec.
Structure extra.
Image warping
Colorization
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Text detection
Place recogn.
Scene labeling
Action recog.

Deep learning
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/Scene structure \
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ADSC

Ilincis at Singapore Pte Ltd

Research

This project will focus on addressing the following fundamental challenges key to a multitude of visual
data analytics applications: 1) raw visual data cleaning; 2) visual data registration and fusion; and 3)
visual data analytics and management. The existing efforts, either from the academia or the industry,
are not capable of robustly and efficiently modeling, analyzing, and fusing continuous or discrete
visual data captured by individuals or big companies.

Grounded on the recent novel and exciting developments described in this project, we plan to extend,
generalize, and optimize them to address the aforementioned key challenges of visual modeling and
analytics for the masses using the following research directions:

1. Localization — recovering the geometric locations of the user, the camera viewpoint, or the
objects in the environment around the user;

2_Reqistration — aligning and modeling dynamically captured images and measurements of the
scene over different time and viewpoints together;

3. Inference — estimating and analyzing the semantic information of the scene from the
registered visual information and recovered geometric information.

We aim at achieving both high robustness and accuracy for the above tasks at unprecedented
processing speeds on commodity computing devices and mobile cameras, often producing more
than one or two orders of magnitude of speedup over the existing state-of-the-art solutions.

We have been working on the following clusters of research topics, and now are actively innovating in
a broader scope.

WBWIILLINOTIS

Edge-aware filtering and joint filtering

Dense stereo, optical flow and view
synthesis

Dense correspondences across scenes

Motion coherence and wide-baseline
matching

Structure from motion, 3D
reconstruction

Computational photography, image
enhancement

Efficient inference for continuous
MRFs

Fast guided global interpolation

Saliency, recognition, cosegmentation

Autonomous systems, robot vision

Hash technigues 100
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 ICIP’13 tutorial: Image Filtering 2.0: Efficient Edge-Aware Filtering
and Their Applications

https://sites.google.com/site/filteringtutorial/

* |CME’15 tutorial: Visual Correspondences: Taxonomy, Modern
Approaches and Ubiquitous Applications

https://sites.esoogle.com/site/icmel5tutorial/

(w/ CLMF-0)
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* Focus on 3D + Al for humans
* We’re hiring core researchers

. B AR mEEL
* Computer vision TE—R AR EELA
 Computer graphics -
* Machine learning o

* Image processing

£ (g}
%% &\

Cloudream

e jiangbo.lu AT gmail.com

jiangbo AT cloudream.com 9
BT

CimiHeRE


mailto:jiangbo.lu@gmail.com
mailto:jiangbo.lu@gmail.com
mailto:jiangbo@cloudream.com
mailto:jiangbo@cloudream.com
mailto:jiangbo@cloudream.com

