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Introduction

Depth upsampling and motion interpolation are often
required to generate a dense, high-quality, and high
resolution depth map or optical flow field.

Low-res & noisy High-res. color guidance High-res. depth
depth (ToF) s — e

1088 X 1376

.................

Depth upsampling (color guided)
Input TOF depth: noisy, low resolution, regularly distributed



Introduction

Depth upsampling and motion interpolation are often
required to generate a dense, high-quality, and high
resolution depth map or optical flow field.

Color frame and sparse matches from DM Dense optical flow field
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Data density < 1%

Motion interpolation
Input matches: typically reliable, but highly scattered, varying density

[DM: Weinzaepfel et al., "DeepFlow: Large displacement optical flow with deep matching, ICCV 2013.]



Motivation

Existing methods are often tailored to one specific task:

JBF [Kopf et al. 2007], MRF+nlm [Park et al. 2011], TGV
Depth upsampling [Ferstl et al. 2013], JGU [Liu et al. 2013], AR [Yang et al.
2014], Data-driven [Kwon et al. 2015], etc

EpicFlow [Revaud et al. 2015], [Drayer and Brox 2015],

Motion interpolation [Leordeanu et al. 2013], etc

The common objective for both tasks is to densify a set of
sparse data points, either regularly distributed or scattered, to
a full image grid through a 2D guided interpolation process.

Our approach: Fast Guided Global Interpolation (FGI)

A unified approach that casts the guided interpolation
problem into a hierarchical, global optimization framework.



Several Challenges e.g.

Istent structures

e Texture-copy artifacts due to incons

Ground truth
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e Loss of thin structures

* Complex algorithms and computationally inefficient



Single-scale WLS Method Vs. Our Method

Color guidance WLS Our result Ground truth

Optical flow

Color guidance WLS Our result Ground truth

[WLS: Farbman et al., “Edge-preserving decompositions for multi-scale tone and detail manipulation,”
SIGGRAPH 2008]
[FGS: Min et al., "Fast global image smoothing based on weighted least squares,” TIP 2014.]



Our Pipeline: Overview
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* A hierarchical (coarse-to-fine), multi-pass guided
interpolation framework

* Divide the problems into a sequence of interpolation

tasks each with smaller scale factors

e Gradually fill the large gap between the sparse

measurement and the dense data



Our Pipeline: Filtering with Alternating Guidances

Cascaded global interpolations with alternating guidances for level /
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* From the coarse level /= L-1, we upsample the signal by a
factor of 2 at each level by solving the following weighted
least square (WLS) using the recent FGS solver.

* Guided interp.: £(d,)
" The color image c¢; as the guidance

" A, is the spatially varying Laplacian matrix defined by ¢;

= (d, —d;)'M;(d, —d;) + )\ d] A_d,

[FGS: Min et al., "Fast global image smoothing based on weighted least squares," TIP 2014.]
Why FGS? 100 mis for filteirng 1MPixels RGB images on 1 CPU core. More details in our paper.



Our Pipeline: Filtering with Alternating Guidances

Cascaded global interpolations with alternating guidances for level /

Color image

¢

Sparse data

& mask

d,&m,

Eqg.(4) Eq.(6)
Guided | Interpolated Joint | Filtered data
Guidance Interp. 7 Guidance \_ filtering 7
A_/ d* df
Input v
@er}sus )
Bicubi Spatially e
! clcuic »{ interp. data {aa..- A}
interp. v
4 FORC IR
p S a0 ‘31
{se..0} e " ae
Aae-&2

e

Ifl=0
Final output
Depth
-
Optical flow

Ifl>0,
Nearest mapping to
level -1 & repeat

* Next, another WLS is solved with the output d. as
guidance and bicubic interpoplated signal as input.

* Joint filtering: £(d;) = (d; —do) " (d; — do) + Xod,' Ay d,

= The intermediate interpolated map d, as the guidance

= A, isthe spatially varying Laplacian matrix defined by d,



Our Pipeline: Consensus-Based Data Augmentation

Cascaded global interpolations with alternating guidances for level /
Eqg.(4) Eq.(6) '
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* Then, check the consistency between the output and the
bicubic upsampled data, and pick the most consistent
points to add to the data mask map m;

= The bibubic upsampled data is free from texture-copying
" Proceed in a non-overlapping patch fashion (2x2 patches)

* The entire process is repeated until the finest level (/= 0)
is reached.



1D Scanline lllustration

Ground
truth

fi

MiaS

One-pass WLS

Ground truth



1D Scanline lllustration

SIS

Ground
truth

d. d,=ourresult  One-pass WLS  Ground truth



Pipeline Validation on Depth Upsampling

Depth Upsamling Error (MAD)

o

M Single scale WLS

M +Cascaded filtering with alternating guidances - single scale (Sec. 3.1)
® +Hierarchical process

m +Consensus-based data point augmentation (Sec. 3.2)

2X 4x 8X 16x




Depth Upsampling Results

Average runtime to upsample a 272 X 344 depth to 1088 X 1376 (in seconds)

MRF+nIm TGV AR GF CLMF | FGl(ours)
170 420 900 1.3 2.4 0.6
1000x faster than AR

Average Depth Upsampling Error on ToF Synthetic Dataset (6 cases)
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Our framework also improves other edge-aware

smoothing filters, e.g. the guided filter

Depth 2% Ax 8x 16x
avg. error
Single-pass 131 154 2 .04 3.12
GF
GF in our 1.06 1.21 1.63 2.59
framework

[GF: He et al., “Guided image filtering," ECCV 2010.]




Depth Upsampling Results

ToF Synthetic Dataset 1000x faster than AR
Ground truth/Color MRF+nlm [11] JGF [8] TGV [6] AR [3] FGl(ours)

ToFMark Dataset 650x faster than TGV
JGF [8] TGV [6] Ours JGF [8] TGV [6] Ours

Depth

Error map



Motion Interpolation Results

Performance (EPE) on MPI Sintel training set

EpicFlow-NW EpicFlow-LA FGl(ours)
Clean 3.23 3.17 2.65 2.75 Close to
Final 4.68 4.55 4.10 4.14 | EPrerlow
but over
Runtime (sec) 0.21 0.80 0.94 0.39| 2xfaster

Input

Ground truth Ground truth
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(c) Extrapolation

Epic-LA
Y
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Ours

(a) Weak edge in color guidance (b) Sparsely scattered points

Performance (EPE) on the MPI Sintel testing benchmark

FlowFields[13] EpicFlow[2] PH-Flow[37] FGI (ours) Deep+R[15] SPM-BP[38] DeepFlow[14] PCA-Layers[39] MDP-Flow2[40]
Clean| 3.748 4115 4388 4.664 5.041 5.202 5.377 5.730 5.837
Final| 5.810 6.285 7.423  6.607 6.769 7.325 7.212 7.886 8.445




Conclusion

* General & versatile technique:

= Tackle both depth and motion interpolation tasks, and potentially more

= Generally applicable to other edge-aware smoothing filters, e.g. GF

* Competitive results while running much faster than task-
specific state-of-the-art methods

* Simple & effective:

= No color edge detection & variational minimization in [Revaud et al., CVPR’15]

» No domain transform filtering for post-smoothing in [Barron & Poole, ECCV’16]

* Further acceleration on GPUs and FPGA, offering a common
engine for guided interpolation

Project page (code is available):
http://publish.illinois.edu/visual-modeling-and-analytics/fast-
guided-global-interpolation/
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