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Abstract—Though many tasks in computer vision can be formulated elegantly as pixel-labeling problems, a typical challenge

discouraging such a discrete formulation is often due to computational efficiency. Recent studies on fast cost volume filtering based on

efficient edge-aware filters provide a fast alternative to solve discrete labeling problems, with the complexity independent of the support

window size. However, these methods still have to step through the entire cost volume exhaustively, which makes the solution speed

scale linearly with the label space size. When the label space is huge or even infinite, which is often the case for (subpixel-accurate)

stereo and optical flow estimation, their computational complexity becomes quickly unacceptable. Developed to search approximate

nearest neighbors rapidly, the PatchMatch method can significantly reduce the complexity dependency on the search space size.

But, its pixel-wise randomized search and fragmented data access within the 3D cost volume seriously hinder the application of

efficient cost slice filtering. This paper presents a generic and fast computational framework for general multi-labeling problems called

PatchMatch Filter (PMF). We explore effective and efficient strategies to weave together these two fundamental techniques developed

in isolation, i.e., PatchMatch-based randomized search and efficient edge-aware image filtering. By decompositing an image into

compact superpixels, we also propose superpixel-based novel search strategies that generalize and improve the original PatchMatch

method. Further motivated to improve the regularization strength, we propose a simple yet effective cross-scale consistency constraint,

which handles labeling estimation for large low-textured regions more reliably than a single-scale PMF algorithm. Focusing on dense

correspondence field estimation in this paper, we demonstrate PMF’s applications in stereo and optical flow. Our PMF methods achieve

top-tier correspondence accuracy but run much faster than other related competing methods, often giving over 10-100 times speedup.

Index Terms—Approximate nearest neighbor, edge-aware filtering, stereo matching, optical flow

✦

1 INTRODUCTION

MANY computer vision tasks such as stereo, optical
flow and dense image alignment [24] can be for-

mulated elegantly as pixel-labeling problems. In general,
the common goal is to find a labeling solution that
is spatially smooth and discontinuity-preserving, while
matching the observed data/label cost at the same time.
To achieve this goal, a Markov Random Field (MRF)-
based energy function is often employed which involves
a data term and a pairwise smoothness term [38]. How-
ever, a serious challenge posed to this discrete optimiza-
tion framework is computational complexity, as global
energy minimization algorithms such as graph cut or
belief propagation become very slow when the image
resolution is high or the label space is large. Recently,
edge-aware filtering (EAF) of the cost volume [34], [25]
has emerged as a competitive and fast alternative to
energy-based global approaches. Though simple, cost
volume filtering techniques can achieve high-quality la-
beling results efficiently. However, despite their runtime
being independent of the filter kernel size, EAF-based
methods do not scale well to large label spaces.
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Almost concurrently, computing approximate nearest-
neighbor field (ANNF) has been advanced remarkably
by the recent PatchMatch method [6] and methods im-
proving it [7], [20], [16]. The goal of ANNF computation
is to find for each image patch P centered at pixel p
one or k closest neighbors in appearance from another
image. In the energy minimization context, ANNF’s
sole objective is to search for one or k patches that
minimize the dissimilarity or the data term with a given
query patch, but the spatial smoothness constraint is not
enforced at all. This fact is consistent with ANNF’s desire
of mapping incoherence [20] that is crucial for image recon-
struction quality. The complexity of ANNF methods is
only marginally affected by the label space size i.e., the
number of correspondence candidates, which is vital for
interactive image editing tasks [6].

Then a motivating question that follows is – whether
these two independently developed fast algorithms, i.e.,
PatchMatch-based randomized search and EAF, can be
seamlessly woven together to address the curse of large
label spaces very efficiently, while still maintaining or
even improving the solution quality. For the very first
time, this paper is positioned to solve this interesting
yet challenging problem of general applicability to many
vision tasks. However, this goal is nontrivial. First, these
two algorithms have different objective functions to op-
timize for. As shown in Fig. 1(c, d), ANNF estimated by
PatchMatch [6] is very “noisy” and dramatically inferior
to the desired true flow map. Second, their computation



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

and memory access patterns are significantly disparate.
In fact, the random and fragmented data access strategy
within the cost volume effected by PatchMatch is dras-
tically opposed to the highly regular and deterministic
computing style of EAF methods.

Our main contribution is to propose a generic and
fast computational framework for general multi-labeling
problems called PatchMatch Filter (PMF). We take com-
pact superpixels and subimages parsimoniously contain-
ing them as the atomic data units, and perform random
search, label propagation and efficient cost aggregation
collaboratively for them. This enables the proposed
PMF framework to benefit from the complementary
advantages of PatchMatch and EAF while keeping the
overhead at a minimum. PMF’s run-time complexity is
independent of the aggregation kernel size and only
proportional to the logarithm of the search range [6]. We
further propose superpixel-based efficient search strate-
gies that generalize and improve the original PatchMatch
method [6]. Though not limited to the correspondence
field estimation, PMF’s applications in stereo match-
ing and optical flow estimation are instantiated and
evaluated in this paper. The label space considered is
often huge or even infinite due to e.g., two-dimensional
motion search space, displacement in subpixel accuracy,
or over-parameterized surface or motion modeling [9].
Experiments show our PMF methods achieve top-tier
correspondence accuracy also with a superior advantage
of over 10-100x speedup over other competing methods.

An early version of this work was published in
CVPR’13 [26]. The current paper presents this technique
in more depth and detail. In addition, we propose
a computationally efficient cross-scale labeling consis-
tency constraint, which brings noticeable quality im-
provements for challenging low-textured image regions
while maintaining the advantages of the original PMF
method [26]. Furthermore, we also evaluate the pro-
posed algorithm on the challenging MPI Sintel optical
flow datasets [12], and report its performance compar-
ison with other leading methods. Based on these eval-
uations, some distinctive features of the PMF algorithm
can be summarized. First, PMF is able to achieve top-tier
performance on a few image matching tasks, even com-
pared with the leading task-specific approaches, such
as DeepFlow [41] and PPM [46] for the Sintel optical
flow, and PM-Huber [18] and PM-PM [43] for subpixel
accurate stereo. Second, PMF has an easy-to-implement
workflow without involving complex energy terms or
optimization. Compared to other recent MRF inference
methods [8], [39] only tested on a single matching task,
PMF shows its strong results on both continuous stereo
matching and large displacement optical flow, while
running two orders of magnitude faster than [8], [39].

2 RELATED WORK

Here we review the work most related to our method.
Cost-volume filtering and EAF. Though the MRF-

based energy minimization formulation for discrete la-
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Fig. 1. Problems with PatchMatch [6] and CostFilter [34] for
correspondence field estimation. (a,b) Input images. (c) ANNF
of PatchMatch (with the same color coding for optical flow). (d)
Ground-truth flow [1]. (e) Flow map of CostFilter [34]. (f) Flow
map of our PMF method, running 10-times faster than [34] under
fair settings. Average endpoint error of (e) 0.0837 and (f) 0.0825.

beling problems is elegant [38], the energy minimization
process is still time-consuming even with modern global
optimization algorithms. Leveraging the significant re-
cent advance in edge-aware image filtering, e.g. [40],
[30], [17], several methods have been proposed for fast
cost-volume filtering [34], [25]. They often achieve label-
ing results as good as those obtained by global energy-
based approaches but at much faster speed, with the
complexity typically independent of the filter kernel
size. However, filtering each cost slice individually, albeit
allowing straightforward application of various efficient
EAF techniques, makes the runtime scale linearly with
the label space size. This makes discrete approaches very
slow in the case of large label spaces.

ANNF computation and PatchMatch. As explained
before, computing ANNF for every patch in a given
image with another image is computationally challeng-
ing, due to the large search space. Recent years have
witnessed significant progress in accelerating this com-
putation, which is key to non-parametric patch sam-
pling used in many vision and graphics tasks. Moti-
vated by the coherent natural structure in images, the
PatchMatch method [6], [7] devised a very efficient
randomized search and nearest-neighbor propagation
approach, achieving substantial improvements in speed
and memory efficiency over the prior arts. Inspired by
PatchMatch, a few faster algorithms [20], [16] have been
proposed which in one way or another allow efficient
propagation from patches similar in appearance. How-
ever, with its objective to find the nearest neighbors,
the computed ANNF is very different from the true
visual correspondence field which is spatially smooth
and discontinuity-preserving.

PatchMatch-based correspondence field estimation.
Realizing PatchMatch’s power in efficient search,
Bleyer et al. [9] proposed to overparameterize disparity
by estimating an individual 3D plane at each pixel. They
showed that this method can deal with slanted surfaces
much better than previous methods and achieved lead-
ing subpixel disparity accuracy. This idea has also been
integrated into a global optimization framework to accel-
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erate the message passing speed [8]. To handle disparity
discontinuities, adaptive-weight cost aggregation [48] in
35 × 35 windows is used in [9]. Though PatchMatch
can significantly reduce the complexity dependency on
the label space size, such a brute-force adaptive-weight
summation has a linear complexity dependent on the
window size and it slows down the overall runtime
greatly. In addition, other challenging dense correspon-
dence problems such as optical flow are not addressed
in these methods [9], [8]. It is also worth noting that
the histogram-based disparity prefiltering scheme [29]
was proposed to reduce the complexity caused by large
label spaces down to processing only e.g. 10% plausible
disparities detected for each pixel. But this reduction is
not as aggressive as in PatchMatch, and also efficient
local cost aggregation was not supported.

Since the publication of our early work [26], other
interesting works have also been proposed to leverage
the PatchMatch idea for visual correspondence field esti-
mation. For instance, Heise et al. [18] applied the Huber
regularization to the PatchMatch stereo approach [9] and
solved it using a convex optimization. Recently, Xu et
al. [43] proposed a convex formulation of the multi-
label Potts Model with [9] as well. Though both tech-
niques demonstrated very competitive results in sub-
pixel accurate stereo reconstruction, they are still much
slower than the proposed PMF method. It is explicitly
discussed in [43] that accelerating the cost aggregation
step (e.g. using a window of 41 × 41) through a PMF-
like algorithm remains as a future work. In addition
to stereo matching, PatchMatch or ANNF techniques
have also been used in recent optical flow estimation
algorithms. For instance, Chen et al. [14] designed a
complex motion segmentation pipeline together with
continuous flow refinement, which computes NNF to
generate initial motion matches. Though achieving a
high estimation accuracy, this method is still too slow
for practical applications. Bao et al. [5] used a local
PatchMatch-like data aggregation with a coarse-to-fine
framework, but this method tends to lose fine-grained
motion details and also has difficulties in handling large
textureless regions. Based on a simple and more general-
purpose computational framework, the proposed PMF
algorithm demonstrates strong estimation results and
fast runtimes on both subpixel stereo matching and large
displacement optical flow benchmark datasets.

3 COST VOLUME FILTERING

We briefly present a general framework and notations of
cost volume filtering-based methods for discrete labeling
problems, and focus particularly on visual correspon-
dence field estimation. As in [34], given a pair of images
I and I ′, the goal is to assign each pixel p = (xp, yp) a
label l from the label set L = {0, 1, ..., L − 1}. L denotes
the label space size. For general pixel-labeling problems,
the label l to be assigned can represent different local
quantity [38]. For stereo and optical flow problems con-
sidered here, l = (u, v), where u and v correspond to the

displacement in x and y directions. Stereo degenerates
to assigning a disparity d (u = d) to pixel p, where v = 0.

Unlike global optimization-based discrete meth-
ods [38], local window-based methods stress reliable
cost aggregation from the neighborhood and evaluate
exhaustively every single hypothetical label l ∈ L. The
final label lp for each pixel p is decided with a Winner-
Takes-All (WTA) scheme. To achieve spatially smooth
yet discontinuity-preserving labeling results, edge-aware
smoothing filters have been adopted in the local cost
aggregation step of several leading local methods [34],
[25]. Given the raw cost slice C(l) computed for a label
l, we denote its edge-aware filtered output as C̃(l). Then
the filtered cost value at pixel p is given as:

C̃p(l) =
∑

q∈Wp(r)

ωq,p(I)Cq(l) . (1)

Wp(r) is the local aggregation window centered at p with
a filter kernel radius r. ωq,p(I) is the normalized adaptive
weight of a support pixel q, which is defined based on
the structures of the image I . Various EAF methods [40],
[30], [17], [25] can be applied here, and they differ
primarily in the ways of defining and evaluating ωq,p(I).

Though EAF is very efficient, the linear complexity
dependency on the label space size L requires repeated
filtering of C(l) as in Eq. (1), and C(l) is of the same size
of I . This makes the runtime unacceptably slow when L
is large. To largely remove this complexity dependency,
recent techniques such as PatchMatch [6] appear helpful
conceptually. However, it can be discerned that Patch-
Match’s randomized label space visit pattern for each
individual pixel p is very incompatible with the regular
image-wise cost filtering routine that is essential to the
efficiency of EAF-based methods.

4 PATCHMATCH FILTER USING SUPERPIXELS

This section proposes a superpixel-based computational
framework for fast correspondence field estimation by
exploiting PatchMatch-like random search and EAF-
based cost aggregation synergistically. Our key motiva-
tion draws from the observation that labeling solutions
for natural images are often spatially smooth with dis-
continuities aligned with image edges, in contrast to the
very “noisy” ANNF (see Fig. 1). The very nature of spa-
tially coherent ground-truth labeling solutions actually
advocates a collaborative label search and propagation
strategy for similar pixels covered in the same compact
superpixel, without necessarily going to the pixel-wise
fine granularity in PatchMatch [6].

Another key motivation from a computing perspective
is that the efficiency of EAF essentially comes from the
high computational redundancy or the vast opportunity
for shared computation reuse among neighboring pixels
when filtering an image or cost slice. However, Patch-
Match processes each pixel with its random set of label
candidates individually in raster scan order. This renders
EAF techniques not applicable and the cost aggregation
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Fig. 2. (a) SLIC superpixels of approximate size 64, 256 and
1024 pixels. Fig. courtesy from [3]. (b) Bounding-box B(ck)
containing the superpixel S(k) centered at pixel ck and r-pixel
extended subimage R(ck).

runtime to grow linearly with the filter kernel size
m = (2r+1)2 [9], resulting in heavy computational loads.

Based on the above analysis, we propose to partition
the input image into non-overlapping superpixels, and
use them as the basic units for performing random
search, propagation and subimage-based efficient cost
aggregation collaboratively. As a spatially regularized
labeling solution is favored, such a superpixel-based
strategy, adapting to the underlying image structures,
is more consistent with the goal of correspondence field
estimation than its pixel-based counterpart. Compared
to the propagation from the immediate causal pixels [6],
taking superpixels as the basic primitive also effectively
extends the propagation range and ameliorates the is-
sue of being trapped in local optimum. More impor-
tantly, superpixel-based collaborative processing creates
desired chances for computation reuse and speedup.

4.1 Superpixel-Based Image Representation

As a key building block to many computer vision al-
gorithms, superpixel decomposition of a given image
has been actively studied. In this paper, we choose the
recently proposed SLIC superpixel algorithm [3] to de-
compose an input color image I into K non-overlapping

superpixels or segments, i.e., S = {S(k)|
⋃K

k=1 S(k) =
I and ∀k 6= l, S(k)∩S(l) = ∅}. Compared to other graph-
based superpixel algorithms e.g. [15], the SLIC method
yields state-of-the-art adherence to image boundaries,
while having a faster runtime linear in the number of
pixels M . Another important advantage is that SLIC
superpixels are compact and of more regular shapes
and sizes (M/K on average), giving a low overhead
when their bounding-boxes are sought as discussed later.
Spatial compactness also assures that the pixels from
the same superpixels are more likely to share similar
optimal labels. Fig. 2(a) shows SLIC superpixels gen-
erated with different parameters. For the convenience
of presentation, we also define two additional variables.
As shown in Fig. 2(b), for a given segment S(k), B(ck)
represents its minimum bounding-box centered at pixel ck
and B(ck) ∈ I . We use R(ck) to denote the subimage that
contains B(ck), but with its borders extended outwards
by r pixels while being restricted to remain within I .

4.2 PatchMatch Filter Algorithm

Now we present the PatchMatch filter (PMF) – a general
computational framework to efficiently address discrete
labeling problems, exploiting superpixel-based Patch-
Match search and efficient edge-aware cost filtering. The
PMF framework is general and allows the integration
of various ANNF and EAF techniques. We will present
improved superpixel-based search strategies in Sect. 4.3.

Unlike the regular image grid that has a default neigh-
bor system, an adjacency (or affinity) graph is first built
for an input image decomposed into K superpixels in a
preprocessing step. We use a simple graph construction
scheme here: every segment serves as a graph node,
and an edge is placed between two segments if their
boundaries have an overlap. Similar to PatchMatch [6],
a random label is then assigned to each node. After this
initialization, we process each superpixel S(k) roughly
in scan order. The PMF algorithm iterates two search
strategies in an interleaved manner, i.e., neighborhood
propagation and random search.

First, for a current segment S(k), we denote its set
of spatially adjacent neighbors as N (k) = {S(i)}. A
candidate pixel t ∈ S(i) is then randomly sampled from
every neighboring segment, totaling a number of |N (k)|.
As a result, a set of current best labels Lt = {lt} assigned
to the sampled pixel set {t} can be retrieved, and they are
propagated to the superpixel S(k) under consideration.
Given this set of propagated labels Lt, EAF-based cost
aggregation in Eq. (1) is then performed for the subimage
R(ck) defined for S(k), but the filtering result is used
only for the pixels in B(ck). The reason is that pixels in
R(ck)\B(ck) are not supplied with all possible support
pixels needed for a reliable full-kernel filtering, and also
they tend to have a lower chance of sharing similar labels
with pixels in S(k). We denote such a subimage-based
cost filtering process over a selected set of labels with a
function f , which is defined as follows,

f : C (R(ck), {l ∈ Lt}) 7→ C̃ (B(ck), {l ∈ Lt}) , (2)

where C and C̃ represent the raw and filtered cost
volume of cross-section size of |R(ck)| and |B(ck)|, re-
spectively. For any pixel p ∈ B(ck), its current best label
lp is updated by a new label l ∈ Lt if C̃(p, l) < C̃(p, lp).

After the preceding propagation step, a center-biased
random search as in PatchMatch [6] is performed for the
current segment S(k). It evaluates a sequence of random
labels Lr sampled around the current best label l∗ at
an exponentially decreasing distance. We set the fixed
ratio α between two consecutive search scopes [6] to
1/2. Different ways exist to define l∗. Here we randomly
pick a reference pixel s ∈ S(k) to promote the label
propagation within a segment. We set l∗ = ls, where
ls is the current best label for s. The function f is then
applied again to filter those cost subimages specified by
Lr by substituting for Lt in Eq. (2).

To remove unnecessary computation, a list recording
the labels that have been visited for each segment S(k)
is maintained. Therefore, no subimage filtering will be
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Fig. 3. Generalized affinity graph and improved strategies:
superpixel-induced enrichment and initialization.

needed if a candidate label has been visited before. It
is also clear from Fig. 2(b) that compact superpixels
S(k) are favored in our PMF algorithm, as the filtering
overhead incurred by the stretched sizes of R(ck) and
B(ck) will be kept low.

Discussion. Note that prior stereo or optical flow
methods [49], [21] often take segments as the matching
units and infer a single displacement for each segment.
To achieve pixel-wise accuracy, further (continuous) opti-
mization is still required that makes them even slower. In
contrast, our PMF method works like other cost-volume
filtering methods [34]. It directly estimates and decides
the optimal label for each pixel independently, while
leveraging their shared spatial neighbors and plausible
label candidates for fast computation. Also, the common
weakness of segmentation-based methods, i.e., they can-
not recover from segmentation errors, does not apply.

To be emphasized is that the proposed superpixel-
based PatchMatch method does not reduce the num-
ber of label evaluations performed for each pixel per
iteration, when compared to the original pixel-based
PatchMatch methods [6], [9]. The main difference is that
our PMF method performs EAF-based cost aggregation
collaboratively for all pixels contained in a superpixel
together over a set of shared label candidates, while a
pixel-based PatchMatch method [9] evaluates the label
candidates generated for each pixel individually. With
our more densely connected graph edges (involving
causal and non-causal spatial neighbors plus non-local
appearance neighbors to be presented shortly), the num-
ber of label candidates attempted per graph node (i.e.
each superpixel) in one iteration actually increases. More
importantly, a superpixel-based PatchMatch scheme can
take advantage of image segmentation to implicitly pro-
mote more (long-range) spatial regularization, and allow
plausible label candidates to be propagated over dis-
tance effectively. The performance gain brought by our
superpixel-based algorithm over pixel-based PatchMatch
methods will be shown in Sect. 6.

4.3 Superpixel-Induced Efficient Search Strategies

For the clarity sake, we presented the proposed PMF
framework in Sect. 4.2 based on a baseline search and
propagation strategy conceptually close to the origi-
nal PatchMatch principle [6]. We further propose some
improved search strategies induced by the superpixel-
based image representation (see Fig. 3). Compared to the

baseline PatchMatch method [6], the new strategies are
more effective and efficient in finding and propagating
plausible candidates.

Enrichment. First, we generalize the adjacency graph
in Sect. 4.2 to add at most κ new appearance neighbors
to every node or segment. Specifically, given a segment
S(k), we search within a predefined window the top κ
segments N a(k) = {Sa(j), j = 1, 2, ..., κ} most similar
to S(k). Due to arbitrary shapes and uneven sizes of
different segments, we use a loose form to define the
inter-segment similarity H(S(k), S(j)) as follows,

H(S(k), S(j))=
∑

s∈S(k),t∈S(j)

exp

(

−
‖s−t‖2

σ2
s

−
‖Is−It‖

2

σ2
r

)

.

(3)
s and t denote pixels randomly sampled from segment
S(k) and S(j), respectively. We repeat this random pair
sampling for a fixed number of times, e.g. 10% of the
average superpixel size. σs and σr control the spatial
and color similarity. Picking the top κ segments {Sa(j)}
closest to S(k) and also above a similarity threshold,
N a(k) augments the original spatial neighbor set N (k)
for S(k) by non-local neighbors similar in appearance.
We set κ = 3 and σs=∞ here. This enrichment scheme
allows effective and fast propagation of plausible label
candidates from similar segments. Note that other meth-
ods such as color histograms can also be used to evaluate
the similarity between two superpixels in Eq. (3).

Initialization. As image representation in superpixels
greatly reduces the graph complexity, this motivates us
to design a better label initialization strategy than the
random initialization [6]. The basic idea is to assign a
potentially good candidate label rather than a random
label to each segment S(k). Given the maximum label
search range W , we select for segment S(k) in image I a
closest segment S′(j) from the target image I ′ within a
slightly enlarged range. The similarity between segments
is evaluated as in Eq. (3), but with σs decreased to 100 to
favor spatially close segments. The displacement vector
between the centroids of S(k) and S′(j) is used as the
initial label for S(k). Such a preprocessing method of
low complexity makes PMF converge faster and tackles
small objects with large displacements better.

4.4 Adaptive Cross-Scale Consistency Constraint

Up to this point, the PMF technique is designed as
a fast labeling algorithm that takes advantage of EAF
for cost aggregation and randomized label search and
refinement. Though it works quite well as a significantly
accelerated alternative to cost volume filtering, PMF
still faces the same challenge when dealing with large
textureless regions (see Fig. 4). This is largely due to the
limited labeling regularization power provided by local
cost aggregation, where a global smoothness constraint
is not explicitly enforced. With the aim of tackling this
challenge in a computationally efficient way, we propose
a cost-effective approach to improve the matching accu-
racy of the PMF algorithm, which is termed fPMF.
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The key idea originates from a general observation
that correspondences estimated at a coarse image scale
tend to be more reliable for weakly-textured regions,
where a stronger regularization helps resolving ambigu-
ous visual matches. However, on the other hand, visual
correspondences estimated at a fine image scale localize
and preserve structure or motion details much better.
With the goal of estimating a high-quality correspon-
dence field with both coherence and details ultimately
at the full image scale, we propose to incorporate a
spatially adaptive, cross-scale consistency constraint into
a hierarchical image matching workflow. Basically, we
construct an image pyramid for each image of a given
pair, and then apply a slightly modified PMF algorithm
to each image scale, allowing pixels on a fine scale to
integrate the “guidance” from the labeling results of their
parents estimated at a coarse scale.

Specifically, for a fine scale of the constructed image
pyramid (we empirically set the number of image scales
to 2 in this paper), an approximate texture and texture-
less region classification map Υ is quickly computed at
first. The binary classification map Υ = {Υp}: Z

2 7→
{0, 1} classifies a pixel p as either from a textured region
(Υp = 1) or from a textureless region (Υp = 0). The key
motivation is that for textureless regions, label estimation
from a coarse layer should enforce a stronger smooth-
ness constraint over the corresponding child nodes at
an adjacent fine scale; while for the textured regions,
this constraint should be attenuated to favor detail-
preserving estimation results from the fine layers.

Based on this guideline, given a pixel p and a can-
didate label l1, we slightly modify the aggregated cost
C̃p(l) by adding a cross-scale consistency cost

Ĉp(l) = C̃p(l) + λp ·
∥

∥l − l∗pa

∥

∥

1
, (4)

where pa denotes the pixel p’s parent node in the coarse
scale and the label assigned to it is l∗pa

. The weighting
parameter λp is adaptively decided as follows:

λp = Υp · λ1 + (1−Υp) · λ2 . (5)

The two constants λ1 and λ2 (with λ1 ≪ λ2) are set
to control the parent-child label regularization strength
adaptively for pixels in the textured and textureless
regions, respectively. From Eq. (4), it is easy to see the
computation of Ĉp(l) incurs only a minimal complexity
overhead over computing C̃p(l), based on a precom-
puted classification map Υ. When this cross-scale con-
sistency constraint is turned on, for any pixel p at a fine
image scale, the new cost Ĉp(l) rather than C̃p(l) is used
in the label update process with the WTA scheme.

Now we turn to the task of precomputing the classifi-
cation map Υ for the input image I . In fact, it is not nec-
essary to compute an exact texture/textureless classifica-
tion map, because the imprecise smoothness constraint
caused by small misclassified regions is insufficient to

1. For simplicity, the converted disparity is used instead of the plane
parameters for the L1 distance in Eq. (4) in our slanted-surface stereo.

(a

)
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Strength of the cross-scale consistency constraint in
matching large low-textured regions. (a, b) Input Baby2 stereo
image pair. (c) Ground-truth depth map. (d, e) Depth map and
error map of the PMF algorithm (without post-processing). (f)
Depth map of the PMBP method [8] with a strong regularization
weight b (When b = 0, the resulting PM-stereo method [9]
struggles with the low-textured regions.). (g, h) Depth map and
error map of the fPMF algorithm (without post-processing). (i)
The binary classification map Υ superimposed on the left input
image (green pixels denote the classified textureless regions,
otherwise textured regions). It is generated to adaptively adjust
the cross-scale consistency constraint in fPMF.

make a wrong label to be favored. The reason is that
such misclassifications (if any) often occur near object
boundaries, where a highly reliable aggregated cost C̃p(l)
providing a strong discriminative power is usually avail-
able. This means the side effect of inappropriately using
a soft consistency constraint is typically not on par with
the strong matching evidence collectively contributed
by neighboring pixels within a local support window.
Moreover, our post-processing steps such as weighted
median filtering presented in Sect. 5 is particularly good
at correcting this kind of outliers. Therefore, we use a
simple method to calculate {Υp} efficiently. First, we
evaluate the density of the Canny edge pixels [13] in
a local neighborhood window (3 × 3) for each pixel. A
hard thresholding is then applied to classify pixels with a
high edge density as pixels from textured regions, while
the rest of the image as textureless regions.

It is worth noting that our cross-scale consistency
constraint differs a lot from the conventional practice
of applying a coarse-to-fine estimation procedure [11],
[21], [24], [5], which has well-known issues such as loss
of structure/motion details and difficulty in capturing
small objects undergoing large displacements [42]. In-
stead of strictly committing to a local neighborhood
search based on label results from a coarse level, the
cross-scale constraint in Eq. (4) actually allows for a full-
range label search at a fine scale while taking sensible
consideration of the coarse-scale label assignment. We
notice such a cross-scale regularization scheme is some-
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TABLE 1

Complexity comparison of three different techniques

CostFilter [34] PatchMatch [9] PMF

Complexity O(ML) O(mM logL) O(M logL)

Memory O(M) O(M) O(M)

what similar to the inter-layer motion smoothness term
used in a global optimization formulation [19]. However,
our cross-scale regularization constraint is adjusted in
a content-sensitive manner for different image regions,
and also it is cheap to compute and well compatible with
the fast PMF routine. We also make a distinction from
a very recent work improving EpicFlow [33] for optical
flow estimation [4], where a hierarchical correspondence
search strategy is proposed. Though their purpose [4] is
to propagate potentially good flow values from non-local
pixels (due to the subsampled neighborhood structures
at coarse image levels) as a data term issue, our design
focuses on improving the end labeling coherence of the
proposed PMF as a general discrete labeling approach.

4.5 Overall Algorithm and Complexity

The PMF algorithm integrated with the cross-scale con-
sistency constraint is summarized in Algorithm 1.

Next, we discuss the complexity of the single-scale
PMF algorithm. Given an image of size M , the label
space size L and the superpixel number K, we fur-
ther denote the total area size of subimages by R̃ =
∑K

k=1 |R(ck)|. Enabling the integration of linear-time
EAF techniques for cost filtering, our PMF approach
removes the complexity dependency on the matching
window size m, in contrast to the PatchMatch meth-
ods [6], [9]. Consequently the complexity of our PMF
is O(K2 + R̃ logL), with O(K2) accounting for the com-
plexity upper bound of the new initialization strategy in
Sect. 4.3. This overhead is negligible, because searching
for similar segments can be well constrained in a pre-
defined search window. The dominant part of PMF is
then O(R̃ logL)≈O(M logL), as R̃ is larger than M by
a factor of a small leading constant. Table 1 gives the
comparison, where the logL terms (thanks to the use of
PatchMatch) were discussed in its original paper [6].

The memory complexity of the PMF method is O(M+
K logL). O(M) is used to hold the filtered cost associated
with the current best label at each pixel. Much less than
O(M), O(K logL) records the list of the labels that have
been visited for each segment S(k). In our implementa-
tion, we pre-organize all the subimages {R(ck)} of the
input image I into an array of compact 2D buffers, which
facilitates cost computation and filtering next.

5 APPLICATIONS

We present two applications of the proposed PMF
framework: stereo matching and optical flow estima-
tion. As for the EAF techniques, we use the guided
filter (GF) [17] and the zero-order cross-based local mul-
tipoint filter (CLMF-0) [25] in this paper, though other

Algorithm 1: The PMF algorithm for a given scale

Input: (1) A pair of images I and I ′ for dense
correspondence estimation. (2) The label map
estimated with PMF from the immediate coarse
scale, when the cross-scale consistency constraint
(Sect. 4.4) is turned on.

Discrete label search space: L = {0, 1, ..., L− 1}.
Output: The estimated pixel-wise label map L = {l(p)}.

/* Initialization */
1: Partition I into a set of disjoint K segments
I = {S(k), k = 1, 2, ...,K} and build adjacency graph G.
2: Assign a random label lk to each segment S(k). For
each pixel p ∈ S(k), set lp = lk. (Optionally, the improved
initialization scheme in Sect. 4.3 can be applied.)
3: if the cross-scale consistency constraint is turned on & the
current scale is not the coarsest scale then

Estimate a binary map Υ to classify pixels into
textured or textureless regions for I .

/* Iterative label search and optimization */
repeat

for k = 1 : K do
4: Propagate a set of labels Lt randomly sampled
from neighboring segments to the segment S(k).
(The enrichment scheme in Sect. 4.3 can be
optionally applied here to augment Lt with
plausible label candidates.)
for l ∈ Lt do

5: Evaluate the raw matching cost Cq(l) for
each pixel q ∈ R(ck) with Eq. (7) (or Eq. (8)) .
6: Compute the aggregated cost C̃p(l) for each
pixel p ∈ B(ck) with Eq. (1).
7: if the cross-scale consistency constraint is
turned on & the current scale is not the coarsest
scale then

Compute Ĉp(l) with Eq. (4).
C̃p(l)←− Ĉp(l).

8: if C̃p(l) < C̃p(lp), ∀p ∈ B(ck) then
lp ←− l.

9: Decide for S(k) a representative label l∗k and
generate a set of random labels Lr around l∗k.
10: Perform random label candidates evaluation
and update by following Step 5–8 for l ∈ Lr .

until convergence or the maximum iteration number.

methods can be easily employed in our framework as
well. Both techniques have a linear time complexity to
compute Eq. (1), depending only on the image size M
but not on the filter kernel size m.

5.1 Subpixel Stereo with Slanted Support Windows

We present two different PMF-based stereo methods
that model the scene disparity and parameterize the
corresponding label space differently. Like most stereo
methods [34], [25], the first approach makes an assump-
tion of fronto-parallel local support windows, whereby
pixels inside are matched to pixels in another view at a
constant (integer) disparity. We call this method PMF-C.
Similar to [9], the second approach attempts to estimate
a 3D plane Qp at each pixel p, so pixels lying on the
same slanted surfaces can then be used for reliable cost
aggregation with high subpixel precision. This method
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is called PMF-S. Both methods can benefit from the PMF
technique, as the disparity search range can be quite
large due to high-resolution stereo images or an infinite
number of possible 3D planes. Since PMF-S solves a
more generalized and challenging labeling problem than
PMF-C, we focus on presenting and evaluating PMF-S.

Slanted surface modeling. For each pixel p, we search
for a 3D plane Qp defined by a three-parameter vector
lp = (ap, bp, cp). Given such a plane, a support pixel q =
(xq, yq) in p’s neighborhood Wp(r) in the left view I will
be projected to q′ = (xq′ , yq′) in the right view I ′ as:

xq′ = xq − dq = xq − lp · (xq, yq, 1)
⊤ , and yq′ = yq . (6)

In Eq. (6) dq is computed from the plane equation whose
value exists in a continuous domain. This enables PMF-S
to handle slanted scene objects much better than PMF-C
by avoiding discretization of disparities.

Raw matching cost. For PMF-C and PMF-S, we com-
pute the raw matching cost between a pair of hypothet-
ical matching pixels q and q′ in the similar way as [34]:

Cq(l) = (1− β) · min
(
∥

∥Iq − I ′q′
∥

∥ , γ1
)

+ β · min
(∥

∥∇Iq −∇I ′q′
∥

∥ , γ2
)

.
(7)

For PMF-C, the label l represents a disparity candidate
d, while l corresponds to the three parameters (ap, bp, cp)
of a plane evaluated for the center pixel p in PMF-S.
For stereo, ∇ evaluates only the gradient in x direction
in Eq. (7). The color and gradient dissimilarity is com-
bined using a user-specified parameter β. γ1 and γ2 are
truncation thresholds. Since q′ generally takes fractional
x-coordinates in PMF-S, linear interpolation is used to
derive its color and gradient.

PMF-based cost aggregation. We apply the PMF al-
gorithm described in Sect. 4.2 to perform superpixel-
based collaborative random search, propagation and cost
subimage filtering. The implementation of cost aggrega-
tion for PMF-C is straightforward, whereas more care
needs to be taken for the random plane initialization and
iterative random search steps in PMF-S2. To this end, we
adopt the approach presented in [9], and use a random
unit normal vector (nx, ny, nz) plus a random disparity
value sampled from the allowed continuous range as
proxy for the plane representation. View propagation [9]
is also used in PMF-S to propagate the plane parameters
of the matching pixels.

Post-processing. After deciding an initial disparity
map using a WTA strategy, we detect unreliable dispar-
ity estimates by conducting a left-right cross-checking.
Then, these unreliable pixels are filled by background
disparity extension [34] in PMF-C, and plane extrapo-
lation [9] in PMF-S. Finally, a weighted median filter is
applied to refine the resulting disparity map.

5.2 Optical Flow

We now present a PMF-based optical flow method
named PMF-OF. Its main work flow closely resembles

2. Our improved strategies are not used for fair comparison with [9].

that of PMF-C, but a label l represents a displacement
vector (u, v) in x and y directions. The label space for
optical flow is therefore often much larger than typical
label spaces tackled in stereo matching. Based on a dis-
crete labeling formulation, PMF-OF solves for subpixel
accurate flow vectors by upscaling the label dimension
to allow fractional displacements along both x and y
directions. As in [34], an upscaling factor of 8 is used
in this paper, and the pixel colors at subpixel locations
are obtained from bicubic interpolation. To tackle more
challenging photometric variations and large occlusion
regions between the two given images seen in the MPI
Sintel datasets [12], we present additional improvements
for the raw cost evaluation, cost aggregation, and post-
processing modules, respectively.

Raw matching cost. Given a candidate label l, a pixel
q in image I is matched to the pixel q′ = q+(u, v) in
the second image I ′. We compute the raw matching
cost between two pixels q and q′ using both an absolute
distance (AD) and Census transform [27] as:

Cq(l) = ρ(CAD
q (l), τad) + ρ(Ccensus

q (l), τcs) . (8)

ρ(C, τ) = 1 − exp(−C/τ) is a robust function. In our
experiments, we set τad = 60 and τcs = 30. The window
used in the Census transform is 11× 11.

PMF-based cost aggregation. The PMF-based label
search and cost filtering algorithm is then applied in
a manner similar to PMF-C, but PMF-OF includes the
improved strategies presented in Sect. 4.3 to more effec-
tively tackle the huge motion search space.

Quadratic optimization-based post-processing. After
estimating the bidirectional flow fields between two
images with a WTA strategy, we detect occluded regions
through the cross-checking [34] between two fields. A
simple extrapolation used in PMF-C and PMF-S is not
so effective when the occluded region is big due to a
large displacement optical flow. Thus, we proposed to
perform a post-processing step based on a quadratic
optimization, in which an objective is defined using
reliable estimates and is then efficiently minimized by a
sparse matrix solver (e.g. [28]). Interestingly, this method
is also similar to the non-local disparity refinement used
in [47] in spirit, though more principled.

We define an objective function consisting of the data
term Ep and the smoothness term Epq as follows,

E =
∑

p

Ep(lp) +
∑

p

∑

q∈Np

Epq(lp, lq) , (9)

where Np represents a set of pairwise neighbors for pixel
p. Similar to [31], [47], we define the data term using the
initial flow vector l∗p and the occlusion map computed
from the cross-checking technique:

Ep(lp) =

{

‖lp − l∗p‖
2
2, p is visible,

0, otherwise.
(10)

When the pixel p is occluded, the cost value Ep(lp) is
always zero. Thus, its output is determined by flow
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Fig. 5. Time-accuracy trade-off study of PMF methods.

vectors of reliable neighboring pixels by taking into
account the following smoothness term:

Epq(lp, lq) = θpq‖lp − lq‖
2
2 , (11)

where θpq is an adaptive weight defined by the color
similarity between neighboring pixels p and q. The objec-
tive function E holds a quadratic form, and its solution
is easily obtained by solving a linear system based on
a large sparse matrix. We perform this post-processing
independently for u and v. Solving the linear system can
help propagate the flow vectors from visible pixels to
occluded pixels depending on their color similarities.

6 EXPERIMENTAL RESULTS

We implemented the PMF algorithm in C++, and GF [17]
and CLMF-0 [25] used for EAF in Eq. (1). The following
same parameter settings are used across all stereo and
optical flow datasets: {r, σr, β, γ1} = {9, 0.1, 0.9, 0.039}.
As [34], γ2 = 0.008 (0.016) in Eq. (7) is used for
stereo (optical flow). We set the smoothness parameter
ǫ = 0.012 in GF, and the inlier threshold τ = 0.1 in
CLMF-0. The segment number K is set to 500.

When the cross-scale consistency constraint is enabled,
we set λ1 = 0.01 and λ2 = 0.1 in Eq. (5). We also fix
the number of image scales to 2 in our experiments.
The coarse scale image is downscaled from the original
images (fine scale) by reducing each side length by
half. For the coarse scale correspondence estimation,
the number of superpixels used and the search range
along each spatial axis are also reduced by half, while
all the other parameters are kept the same. All of our
experiments were run on an Intel Core i5 2.5GHz CPU
with a single-core implementation.

6.1 Time-Accuracy Trade-off Evaluation of PMF

First, we present a time-accuracy trade-off study of
our PMF approaches in Fig. 5. Two test image pairs
RubberWhale and Reindeer from the Middlebury optical
flow/stereo datasets [2], [1] are used to evaluate the

TABLE 2

Middlebury stereo evaluation [2] for error threshold = 0.5. ∗ use

GPU. o We used the source C++ code provided by the authors

of [8]. For [9], we report the runtime after setting the

regularization weight to zero in PMBP [8]. [captured on

29/07/2015]

Algorithm Avg. Rank Avg. Error Runtime (s)
GC+LSL [39] 6.2 6.63 400∗

PM-PM [43] 8.5 7.58 34∗

PM-Huber [18] 8.6 7.33 52∗

PMF-S 12.5 7.69 20
PMBP [8] 19.8 8.77 3100o

PatchMatch [9] 28.4 9.91 1005o

TABLE 3

Stereo evaluation results for Teddy and Cones when error

threshold = 0.5 [captured on 29/07/2015]

Algorithm
Teddy Cones

nocc all disc nocc all disc

GC+LSL [39] 4.201 7.122 12.93 3.778 9.169 10.412

PM-PM [43] 5.216 11.911 15.98 3.517 8.867 9.587

PM-Huber [18] 5.538 9.365 15.99 2.701 7.902 7.771

PMF-S 4.453 9.447 13.74 2.892 8.313 8.222

PMBP [8] 5.609 12.012 15.56 3.486 8.888 9.416

PatchMatch [9] 5.6610 11.810 16.510 3.809 10.211 10.210

PMF-OF and PMF-S methods (using CLMF-0), respec-
tively. It can be observed that for a reasonable range
of K settings, optical flow or stereo results have almost
always converged after 8-10 iterations. This also holds
true for other images tested with GF not shown here.
Fig. 6 shows the optical flow estimation results after each
iteration (without applying any post-processing) for a
pair of RubberWhale images. In addition, Fig. 5(a1) shows
that our improved search strategies in Sect. 4.3 lead to
a faster convergence speed than the baseline method,
especially for the first few iterations. For the same it-
eration number, choosing a larger K (namely a smaller
superpixel size) gives a better gain in accuracy on optical
flow estimation than stereo, due to intrinsically more
complex 2D motions. However, this is at a price of a
longer runtime per iteration caused by the increased
adjacency graph size and increased subimage processing
overhead. In general, we find that K = 500 gives a good
balance between the complexity of each iteration and the
iteration number for a target accuracy level.

6.2 Sub-Pixel Stereo Reconstruction Results

We first focus on evaluating the proposed PMF-S stereo
method combined with the GF filtering technique [17],
using the Middlebury standard stereo benchmark [2]
in Table 2. (GF is found to perform slightly better
than CLMF-0 [25] in the subpixel-accurate stereo task
in [26]). For this evaluation, we report those leading
stereo algorithms designed specifically to tackle slanted
surfaces with subpixel precision, and set the Middlebury
error threshold to 0.5. Table 2 shows that our PMF-S
method performs better than PatchMatch stereo [9] and
PMBP [8], while the latter uses belief propagation for
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Fig. 6. After applying PMF for a few iterations, optical flow estimation for the RubberWhale images quickly converges.

Fig. 7. Visual results. Top row (left to right): Segmented
Teddy image, PMF-S (w/ CLMF-0) result and close-up compar-
ison. Middle row (left to right): Segmented Cones image, PMF-
S (w/ GF) result and close-up comparison. Bottom row (left to
right): Synthesized novel-view images with PMF-C and PMF-S.

TABLE 4

Quantitative stereo result evaluation (w/o post-processing) on

seven Middleburry 2006 datasets with error threshold 0.5.

Dataset M [9] PMBP [8] PMF-S fPMF-S
Baby2 18.80 16.85 12.42 8.94
Books 31.52 27.58 21.17 20.31
Bowling2 15.01 15.10 11.41 10.86
Lampshade1 31.67 30.22 27.46 28.60
Laundry 31.97 33.90 24.86 22.44
Moebius 22.92 25.08 20.35 18.28
Reindeer 21.54 21.57 14.29 15.18
Mean 24.78 24.33 18.85 17.80

global optimization. The performance of PMF-S is also
close to that of recent PatchMatch-based stereo methods,
i.e., PM-PM [43] and PM-Huber [18]. In particular, our
PMF-S methods ranks high in performance on the more
complex datasets of Teddy and Cones among all top
Middlebury stereo methods as shown in Table 3.

In terms of runtime speed, Table 2 shows that PMF-
S achieves about 50 − 100 times speedup over Patch-
Match stereo [9] and PMBP [8], when measured on the
same CPU. PMF-S is also much faster than other top
algorithms [39], [43], [18] which use GPUs for accelera-
tion. For visual examination, Fig. 7 shows the disparity
maps estimated by our PMF-S methods, which preserve
depth discontinuities while generating spatially smooth
disparities with high subpixel accuracy. Compared to the
fronto-parallel version i.e., PMF-C, PMF-S reconstructs
the slanted surfaces at much higher quality, as shown

by the rendered novel views.
Next, we use some Middlebury 2006 stereo datasets

to demonstrate the effectiveness of integrating the cross-
scale consistency constraint presented in Sect. 4.4, our
new strategy called fPMF-S in dealing with large texture-
less regions. Table 4 shows the numerical comparisons
of PatchMatch Stereo (PM) [9], PMBP [8], PMF-S [26],
and fPMF-S. The comparisons are done by setting the
disparity error threshold to 0.5 and evaluating the results
without post-processing. Overall, fPMF-S obtains the
lowest average stereo estimation error among all the
four methods. Particularly, it shows better performance
over PMF-S on the datasets containing large textureless
regions. The visual comparisons of two such examples
(Baby2 and Bowling2) are shown in Fig. 8. Note that
the single-scale, local aggregation-based methods i.e.,
PM and PMF-S struggle at flat regions on Baby2’s book
and Bowling2’s ball while fPMF-S can overcome this
limitation. Our fPMF-S also performs better than the
global belief propagation based method PMBP [8]. As
we will show later, the computational overhead of fPMF
over PMF is very minor.

6.3 Optical Flow Results on the Middlebury Datasets

We first evaluate our PMF-OF methods (with GF filter-
ing) using the Middlebury flow benchmark [1]. In the
following tests, we have fixed the motion search range
to [−40, 40]2×82 (about 410,000 labels) and the number of
iterations to 10. Following [34], [26], the raw matching
cost is computed as given in Eq. (7). Table 5 lists the
average ranks of a few competing methods also based
on discrete optimization as well as the top-performing
MDP-Flow2 [42] and NN-Field [14] measured in the
average endpoint error (AEE). PMF-OF, though simple
and free of a large number of parameters, has a very
competitive ranking out of over 110 methods. In partic-
ular, it outperforms CostFilter [34] (see also Fig. 1), even
though image-wise cost filtering has been exhaustively
performed for every single label in [34]. This very fact of
a label space subsampling method giving better results
was also observed and explained from the information
representation perspective in [29]. Also, using compact
superpixels as the atomic units tends to have better
spatial regularization than [34], without compromising
the accuracy along motion discontinuities. Table 5 shows
that PMF-OF performs quite well for the three challeng-
ing scenes with fine details and strong motion disconti-
nuities. In Fig. 9, we compare visually the flow maps
estimated by PMF-OF and other competing methods.
Our method preserves fine motion details and strong
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Left view Ground truth PM PMBP PMF-S fPMF-S

Fig. 8. Visual comparison of the stereo results estimated by PatchMatch Stereo (PM) [9], PMBP [8], PMF-S [26], and fPMF-S for
Bowling2 (top) and Baby2 (bottom) that contain large textureless regions.

Fig. 9. Results on Schefflera, Teddy and HumanEva by a) PMF-OF b) CostFilter [34] c) DPOF [21] d) MDP-Flow2 [42].

TABLE 5

Middlebury quantitative flow evaluation results measured with

average endpoint error (AEE) for three challenging scenes. In

brackets are the ranks for (all, disc, untext). Runtime is given for

the Urban sequence. ∗use GPU. [captured on 01/08/2015]

Algorithm µRank Schefflera Grove Teddy sec

MDP-Flow2 [42] 9.7 (5,5,2) (19,19,20) (6,5,6) 342

NN-Field [14] 10.3 (3,4,7) (1,1,1) (3,8,1) 362

PMF-OF 34.2 (11,11,14) (11,11,5) (7,3,13) 35

EPPM [5] 39.6 (29,34,14) (19,19,9) (15,18,18) 2.5∗

CostFilter [34] 41.7 (10,10,14) (13,16,7) (17,30,15) 55∗

DPOF [21] 51.8 (14,12,46) (25,29,16) (32,30,9) 287

discontinuities, and handles nonrigid large-displacement
flow without changing any parameters. Fig. 10 verifies
the strength of our superpixel-induced initialization and
search strategies over the baseline approach.

As shown in Table 5, our PMF method has a significant
runtime advantage and often gives an order of magni-
tude speedup over the previous methods. Tested on the
same CPU, PMF-OF runs even over 30-times faster than
CostFilter [34] on the Urban sequence, thanks to slashing
the complexity dependency on the huge label space size.

6.4 Optical Flow Results on the MPI Sintel Datasets

Now we focus on evaluating large-displacement optical
flow estimation results obtained by the proposed algo-
rithms including PMF-OF, fPMF-OF, and fPMF-OF (with
global post-processing) on the MPI Sintel dataset [12], a
modern and challenging optical flow evaluation bench-
mark containing large displacement flow vectors and
more complex non-rigid motions. Note that in this

��� ��� �� ���

���

��

Fig. 10. Advantages of our improved search strategies pro-
posed in Sect. 4.3. a) Better initialization. b) Non-local neighbor
propagation (# iteration = 3).

TABLE 6

Evaluation of different PMF-based approaches on the MPI

Sintel training dataset. Average end point errors (EPE) are

reported. “QO” indicates the quadratic optimization presented

in Sect. 5.2 is applied.

Algorithm PMF-OF fPMF-OF fPMF-OF (w/ QO)

Clean pass 3.373 3.094 2.728

Final pass 4.768 4.739 4.210

Runtime (s) 29 37 39

section we compute the raw matching cost by using
ADCensus in Eq. (8) in all our methods in Table 6, and
we use CLMF-0 [25] for cost aggregation, which is found
to provide the optimal accuracy-complexity trade-off on
the Sintel’s resolution. The prefix ’f’ indicates the cross-
scale smoothness constraint presented in Sect. 4.4 is used.
We fixed the search range of flow vectors to [−200, 200]2.
The floating precision of flow vectors was set to 1

8 for
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Fig. 11. Visual and EPE comparison of the optical flow results
by PMF-OF, fPMF-OF, and fPMF-OF (w/ QO).

TABLE 7

Optical flow performance on the MPI Sintel Dataset. For those

methods without providing public code, we report their time on

KITTI. *use GPU. [captured on 12/08/2015]

Method Clean Final Runtime(s)
EpicFlow [33] 4.115 6.285 17
PH-Flow [46] 4.388 7.423 800
DeepFlow [41] 5.377 7.212 19
fPMF-OF 5.378 7.630 39
LocalLayering [36] 5.820 8.043 -
MDP-Flow2 [42] 5.837 8.445 754
EPPM [5] 6.494 8.377 0.95*
S2D-Matching [22] 6.510 7.872 2000
Classic+NLP [37] 6.731 8.291 688
Channel-Flow [35] 7.023 8.835 >10000
LDOF [10] 7.563 9.116 30

both x and y directions. This results in a huge label space
with over 10 million labels.

Table 6 shows the comparison of the three PMF-based
methods on the Sintel training set. It is clear that our
new strategy with the cross-scale constraint (i.e., fPMF-
OF) obtains lower optical flow estimation errors than the
original single-scale PMF-OF method, incurring only a
relatively marginal runtime overhead. Our global opti-
mization based post-processing (i.e., fPMF-OF (w/ QO))
leads to further accuracy improvements. Fig. 11 shows
two example cases in the Sintel training set. Compared
to PMF-OF and fPMF-OF, fPMF-OF (w/ QO) handles
large motion and large occlusions better both visually
and quantitatively. Therefore, in the rest of this section,
we use fPMF-OF to simply denote our best PMF variant
with the quadratic optimization-based post-processing.

Next, we move on to test on the MPI Sintel test
dataset. Table 7 shows the quantitative comparison of
several published optical flow methods with our fPMF-
OF method. Without being specially tailored for this
correspondence task, the proposed fPMF-OF achieves a
very competitive standing on the MPI Sintel benchmark
evaluation. The visual comparison of our fPMF-OF with
other popular optical flow methods (using the authors’

public source code) is provided in Fig. 12. Our results are
visually close to the results of EpicFlow [33], a leading
optical flow method on the MPI Sintel benchmark, while
others have problems in handling large motions. Note
that EpicFlow is a specially designed, multi-pass method
for optical flow that involves both dense interpolation
and variational energy minimization, while our PMF is
based on a general framework for discrete labeling prob-
lems. The advantage of fPMF-OF over EPPM [5] is also
quite obvious: though EPPM uses a local PatchMatch-
like data aggregation with a coarse-to-fine framework,
it tends to lose fine-grained motion details and still has
difficulties in handling large textureless regions.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed a generic PMF framework of solv-
ing discrete multi-labeling problems efficiently. We have
particularly demonstrated its effectiveness in estimating
smoothly varying yet discontinuity-preserving subpixel-
accurate stereo and optical flow maps. Additionally, we
proposed a hierarchical matching scheme to extend the
PMF approach, which incorporates a cross-scale con-
sistency constraint in a spatially adaptive manner. We
justified its effectiveness in handling large textureless
regions, while keeping the strength of the original single-
scale PMF that effectively captures fine-grained details.

Future work broadly include the following aspects.
First, a theoretic study on approximate inference tech-
niques for continuous MRFs either with a local or
global optimization approach [8], [23], to best exploit
particle sampling and cost aggregation, is very inter-
esting. Second, we plan to apply and optimize the
PMF algorithm also for other tasks or datasets, such as
the KITTI dataset featuring more structured rigid road
scenes. Yamaguchi et al. [44] presented a well-designed
pipeline specifically for this dataset and achieved excel-
lent results. It will be interesting to evaluate whether
MotionSLIC proposed in [44] can be used similarly to
initialize our label estimates. In addition, our recent
work [45] based on the PMF framework shows some
initial success in tackling general scene matching. Lastly,
optimizing the PMF algorithm on GPUs or a multi-core
CPU for further speedups will be helpful, for which
several acceleration possibilities exist [6], [7], [32].
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