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Abstract. A perennial problem in recovering 3-D models from images
is repeated structures common in modern cities. The problem can be
traced to the feature matcher which needs to match less distinctive fea-
tures (permitting wide-baselines and avoiding broken sequences), while
simultaneously avoiding incorrect matching of ambiguous repeated fea-
tures. To meet this need, we develop RepMatch, an epipolar guided (as-
sumes predominately camera motion) feature matcher that accommo-
dates both wide-baselines and repeated structures. RepMatch is based
on using RANSAC to guide the training of match consistency curves
for differentiating true and false matches. By considering the set of all
nearest-neighbor matches, RepMatch can procure very large numbers of
matches over wide baselines. This in turn lends stability to pose estima-
tion. RepMatch’s performance compares favorably on standard datasets
and enables more complete reconstructions of modern architectures.

Keywords: structure from motion, correspondence, RANSAC

1 Introduction

Structure-from-Motion or SfM is the recovery of 3-D structure from image sets.
Over the years, SfM has made remarkable progress. Current technology can
create impressively large scale reconstructions, a signature achievement being
the reconstruction of ancient Rome by leveraging the abundance of Internet
images [1]. However, SfM systems have difficulty reconstructing modern buildings
from small, user-captured datasets.

The problem stems from SfM’s dependence on feature matching from which
camera position (pose) and 3-D structure are inferred. Feature matching needs
to procure large numbers of wide-baseline matches to prevent image sequences
from splintering. Yet, it must also be robust to repetitive structures. Unfortu-
nately, modern urban environments contain both challenges in abundance. Trees
and other occluders limit available view-points, necessitating matching widely
separated images. At the same time, mass production makes repeated structures
ubiquitous in modern cities (e.g. rows of windows).
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Input Images 

(a) Visual SfM (b) Visual SfM with our matches (c) Dense reconstruction 

Fig. 1. 3-D reconstruction on modern buildings. (a) Screen shot of Visual SfM [2], a
classic 3-D reconstruction system which splinters the sequence into 4 segments. (b)
The same reconstruction system with our matches forms a complete loop. (c) The pose
estimated in (b) is sufficiently accurate for high quality dense reconstruction.

As matching ambiguous features inevitably results in some errors, vision re-
searchers typically use RANSAC [3] for outlier rejection. By using multiple pose
estimates from minimal sets of 5 to 8 matches, RANSAC is very effective at
getting a reasonable pose estimate. However, there are practical limits on the
number of wrong matches RANSAC can accommodate. As such, RANSAC is
seldom applied to the set of all nearest-neighbor matches but is itself dependent
on preemptive outlier removal. Typically this takes the form of a ratio test [4],
which unfortunately discards a large fraction of the true matches [5]. While
this framework has brought SfM much success, the quality of feature matches
in modern environments is still insufficient. This manifests itself as fragmented
reconstructions, with linkages around corners being especially brittle. An illus-
tration is shown in Fig. 1(a). Thus, we propose RepMatch, an epipolar guided
feature matcher that accommodates wide-baselines and repeated structures.

RepMatch is inspired by the highly successful guided matching framework,
where an initial estimate or assumption guides the discovery of more matches.
With the right guidance term, such formulations have proven remarkably stable.
This is illustrated by the success of SLAM [6, 7], which can reliably propagate
pose given some known 3-D points. However, finding a generic guidance term
applicable to general two-view pose estimation has proven challenging. Planar
based guidance terms have been explored in [8, 9] but are scene specific and often
incur significant formulation complexity to define number of planes or demar-
cate planar boundaries. There are also works [10, 11] which focus on epipolar
geometry guidance. While this can give very accurate solutions [10], it is hard
to determine the epipolar geometry without good correspondence, which in turn
makes performance unpredictable. This paper shows how a core-set of guidance
matches can be reliably obtained even under challenging circumstances and ex-
plains how they can guide the finding of more matches. The resultant RepMatch
algorithm is an epipolar guided matcher which, while using pose as a cue, post-
pones selecting a correct pose to a very late stage (in fact a choice need never be
made). This allows RepMatch to reliably validate the very large but noisy set of
all matches which contains many previously discarded true matches [5].
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RepMatch couples BF [5] and RANSAC outlier rejection schemes. BF com-
putes a global match consistency function from very noisy matches. These are
subsequently used to separate true and false matches. While usually accurate,
BF is vulnerable to repeated structures which can induce large sections of consis-
tently wrong matches. However, we observe that repetitive structures often con-
tain micro-textures which make it possible to obtain a (often heavily shrunken)
core-set of reliable matches through very strict BF parameters. Using RANSAC
we can procure more local matches that are geometrically consistent with the
core-set. These are used to train local BF curves with embedded epipolar con-
straints that verify geometrically consistent matches in the surrounding areas.
The resultant RepMatch framework breaks the pose and correspondance prob-
lem into a sequence of robust steps, giving overall system stability on both wide-
baselines and repetive strcutures. On standard datasets, RepMatch tolerates up
to 45◦ out-of-plane rotation for all scenes and has over 90◦ stability on some
scenes. On less controlled data, RepMatch adds a significant stability margin
to existing SfM systems, enabling complete reconstruction of modern buildings
from street-level images, something difficult with previous techniques.

1.1 Related Works

RepMatch builds on BF [5], a wide-baseline matcher which achieves high preci-
sion and recall on challenging scenes. While BF recovers many previously dis-
carded true matches, it is vulnerable to repeated structures which can induce
large sections of consistently wrong matches. Our RepMatch framework retains
BF ’s aggressive match retrieval while avoiding its vulnerability to repeated struc-
tures. This results in an effective, general purpose wide-baseline feature matcher.

RepMatch is closely related to RANSAC as they are both outlier removal
schemes. Many of the concepts on guidance and grouping used in this paper have
also been explored within the RANSAC framework. However, RANSAC has a
vulnerability as ill-conditioning of pose estimates [12] makes the minimal set es-
timation unstable. On the other hand, every match added to the minimal set ex-
ponentially increases the likelihood it contains an outlier [13]. Thus despite many
refinements such as new sampling schemes [14], local groupings/ranking [15–17]
or local pose refinements [18, 10], there are practical limits on the number of
outliers RANSAC can accommodate. In addition, because epipolar geometry is
a point-to-line constraint, even if the ground-truth pose is attained, RANSAC
often leaves some outliers which are coincident on the epipolar line. While they
may not affect the two view pose estimate, such outliers are detrimental to the
overall SfM system’s stability. RepMatch addresses this problem by adding a
BF estimator to reduce the reliance on potentially erroneous epipolar geometry
while also shielding its RANSAC model from encountering too many outliers.
This allows us to extract the true matches from the very noisy set of all nearest
neighbor matches shown in Fig. 4.

Apart from RepMatch and BF, there are other preemptive outlier removal
works [19–23]. Of these, the evaluation in [24] suggests BF provides some of the
best trade-offs in computational time and match quality. In addition, BF has a
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guaranteed global minimum. Hence, we build our RepMatch framework on BF,
though other match decision techniques may also be applicable.

There have also been many specialized solutions for repetitive structures,
wide-baselines or urban scenes [25–27, 8, 28]. These techniques utilize planar con-
straints [8] or leverage repetitions [26] to enable high quality pose and correspon-
dence. These solutions will likely provide superior performance on specific scenes
but lack generality.

Finally, we wish to acknowledge that RepMatch and the results achieved
in this paper benefit from many years of research in supporting technologies
like feature descriptor design [4, 29–31], bundle adjustment [32–35], dense recon-
struction [36, 37], RANSAC [3, 16, 17, 38–40], geometric reasoning [41, 42] and
motion coherence [43–45]. Improvements in these fields will likely benefit Rep-
Match which we hope will in turn benefit these fields.

2 Background

We approach the feature matching problem as one of reliably partitioning the set
of all matching hypotheses into true and false sets. As this is not a main-stream
approach, we provide some background to aid understanding.

(ii) Difficult modern building with repetitive structures 

Input  

pair 

(a) A-SIFT (c) RepMatch (b) BF 

(i) Scene with strong micro textures 

Input  

pair 

(a) A-SIFT (c) RepMatch (b) BF 

Fig. 2. Comparing three partitioning techniques with the same input matches. Match
pairs are shaded with the same color across two views. Results shown are post-
RANSAC. (a) A-SIFT ’s ratio-test is very unstable. (b) BF retains many previously
discarded true matches but incurs many wrong matches on modern buildings. Wrong
matches appear as color inconsistencies. (c) Our proposed RepMatch.

Using the same input match hypotheses, Fig. 2 shows the impact of different
match partitioning schemes. (a) A-SIFT [46] uses a ratio test that requires the
best match score to be at least 0.6× better than the second best match. (b) BF [5]
relaxes the 0.6 threshold to attain an initial set of noisy match hypotheses from
which it trains a partition function based on match consistency (a joint measure
of three attributes, match density, smoothness and spatial coverage). Observe
that in both (a) and (b), prior methods either retain too few matches or create
too many wrong matches on repetitive structures. (c) Our RepMatch framework
which integrates BF with RANSAC significantly enhances match stability. As
our formulation makes heavy use of BF to estimate match consistency, we will
elaborate on both BF and match consistency.
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Fig. 3. Match consistency. (a) 1-D illustration of Eq. (2)’s consistency curve, f(m).
Consistency measures two basic elements, density and spatial extent, shown in Modes 1
and 2. Note: by incorporating motion into f(m)’s domain, density encapsulates motion
smoothness. (b,c) show consistent matches. (b) Match is smooth and dense. (c) Match
is smooth. While sparse, it has wide spatial extent. (d,e) show inconsistent matches.
(d) match is not smooth. (e) Match is smooth but spatial coverage is limited.

2.1 Bilateral Functions and Match Consistency

In BF [5], matches are represented on a D = 8 dimensional bilateral domain.
Each match takes the form mi = [xi; vi; oi ]. Here, xi =

[
xi; yi

]
and vi =[

ui; vi
]

are two-dimensional vectors representing a feature point’s coordinate
(in the first image) and its corresponding motion vector, respectively; oi is a
4 × 1 vector representing the relative affine feature orientation (obtained from
the feature’s scale and rotation parameters [5]). BF learns a match consistency
curve (termed likelihood in [5]) from N training matches, {mi}, by minimizing
the convex function:

arg min
w

∑N

i=1
C(1− f(mi)) + λwTGw, (1)

where C(.) is a Huber function, w is a vector of N unknowns and G is an N×N
matrix with G(i, j) = exp(−‖mi −mj‖2/σ). f(.) is the consistency function
defined on an 8 dimensional bilateral domain. f(.) is parameterized by w in (1)
and N radial basis functions centered on the training matches:

f(m) =

N∑
i=1

w(i) exp− ‖m−mi‖
2

σ . (2)

Minimizing Eq. (1) with respect to w (and hence f(.)) provides match con-
sistency curve f(m). This allows a set of matches {mj} to be partitioned into
two subsets, T (true) and F (false), via thresholding:

mj ∈
{
T , if f(mj) > θ
F , otherwise

(3)

When minimizing Eq. (1), the local data term draws f(.) to 1 while the
regularization term wTGw pulls f(.) to zero and imposes a global smoothness
penalty [5]. This is illustrated in Fig. 3(a). The resultant f(.) can be understood
as a continuous consistency estimate, where consistency is a joint measure of two
elements, (I) Density: If a region has high point density, the data term justifies
a sharp spike even if it is not smooth, as shown in Mode 1 of Fig. 3(a); (II)
Spatial extent: Alternatively, a large region with sparsely distributed points is
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Illustration on real images. Black dots in (a) & (b) indicate wrong matches. 

Note: Common central tower belong to physically different parts of the building.  

(a) All matches (c) BF(b) Epipolar (d) RepMatch

Img1

Img2

Fig. 4. (a) The set of all matches. (b) Thresholding with ground-truth epipolar geom-
etry still leaves some wrong matches. (c) BF ’s match consistency based thresholding
is unstable as repetitive structures induce consistently wrong matches. (d) RepMatch
handles such repetitive structures well.

also consistent as a well-rounded hump over a large extent incurs low smoothness
penalty, as illustrated by Mode 2. Scattered points are considered inconsistent
as their pull cannot overcome the smoothness penalty acting on them (see Mode
3 in Fig. 3(a)). As the bilateral domain encapsulates both spatial and velocity
components, consistency on the bilateral domain encapsulates match density and
motion smoothness. Match consistency is illustrated in Fig. 3 (b-e).

Explained as match consistency, BF ’s problem with repetitive structures is
clear. Repetitive structures can induce large sections of consistent but wrong
matches, creating large falsely consistent match patches shown in Fig. 4(c).
Epipolar constraints can also remove many false matches as shown in Fig. 4(b),
but it too leaves large numbers of wrong correspondences. This leads to our
RepMatch framework for integrating epipolar and match consistency curves.

3 RepMatch

RepMatch is based around two innovations. First, RepMatch introduces a means
to reliably obtain a core-set of matches even for challenging image pairs with
significant repetitive structures. Second, RepMatch introduces a method to ro-
bustly expand this core-set by integrating BF with epipolar geometry. Thus,
RepMatch divides the pose and correspondence problem into three individually
robust steps, to give a robust overall system. Fig. 5 gives a general overview,
with a match consistency interpretation in Fig. 6.

3.1 Core-set Discovery

Core-set discovery is based on an observation. An image of a visually perfectly
repetitive pattern can be matched error-free in the absence of motion (i.e. match
the image to itself). This is due to micro gray-level differences captured by de-
scriptors. Thus, we hypothesize that the repetitive structure matching problem is
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Geometrically Inconsistent 

Inlier Set 

Final Matches 

 :  BF training and classification  

Geometrically Consistent 

: inlier 
: outlier (removed) 

(a) (b) (c) (d) 

Core-set and Local hypothesis Local match consistency 

Fig. 5. Overview: RepMatch ensures stability by dividing the problem into three in-
dividually robust steps. (a) Core matches, Score can be reliably recovered because
of strict BF thresholds. (b) Geometric verification with epipolar lines (pose). Core
matches may be quasi-degenerate and an incorrect pose estimate may discard true
positives. Thus, geometric verification uses a RANSAC search for common geometry
between core matches and each subset. This avoids discarding true positives but may
retain some false positives. (c) Local BF curves are trained to remove the remaining
false positives and discover more matches. (d) All verified matches are consolidated.
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Fig. 6. RepMatch
algorithm in Fig. 5
explained as match
consistency curves.

not due to multiple identical descriptors but the result of subtle descriptor vari-
ations being overwhelmed by image noise (induced by motion or other sources).
Due to the image’s repetitive nature, many mismatches will appear “consistent”,
causing false modes in Fig. 6. However, even on repetitive scenes, a wrong match
can be randomly assigned to many potential alternative positions, making it un-
likely that false modes will be more consistent than the original true mode. The
difference between true and false modes can be amplified by setting BF in Eq. (1)
to a very high λ. On curves like Fig. 6 it suppresses weak modes, leaving only
the strongest core-mode and its associated core-matches. These are remarkably
resilient to noise as shown in Fig. 7.

3.2 Match Expansion Scheme

Once the core-set is discovered, it is theoretically possible to recover more match
hypotheses from the epipolar geometry (pose) estimated from the core-set. How-
ever, pose estimation is notoriously vulnerable to degeneracies and an incor-
rect core-set pose may reject many true positives. Instead, core-set matches are
merged with clusters of match hypotheses for joint geometric verification. This
avoids rejecting true positives but will retain some false positives because of
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Im 1  

0 % 30 % 300 % 3000 % 
Noise  

Level 

Im 2  

Fig. 7. Core-set recovery
on a checker-board im-
age. Image 1 is matched
to a noisy version of it-
self with additive Gaus-
sian noise. Noise variance
is a percentage of im-
age contrast. The smooth
colors show the core-set
estimation on repetitive
structures is remarkably
resilient to noise.

epipolar geomtry’s weak point-to-line relationship. However, the remaining false
positives are unlikely to be consistent and can be removed by a final BF match
consistency step. The resultant framework is intrinsically robust as it avoids
both BF ’s vulnerability to false match consistencies and epipolar geometrie’s
vulnerability to ill conditioning and false positive rejection.

3.3 Algorithm

Training and classification operators: For later convenience, we first define
training and classification operators.

BF training operator is denoted as:

f ← BF t(St, Θt), (4)

where f(.) is the match consistency function defined in Eq. (2). It is learned by
minimizing Eq. (1) with training matches St and BF parameters Θt. To maintain
computational tractability, if the training set has more than 1000 matches, a
random sample of 1000 are used for computation.

BF finds true matches in a match set Sc, with the classification operator:

T ← BF c(f,Sc, Θc). (5)

This partitions Sc into true and false sets through Eq. (3), with θ ∈ Θc acting
as classification parameters. Only true matches are returned.

Similar to BF, we consider RANSAC with parameters αt as learning a clas-
sification function (camera pose) trained from a set of matches, St. This is used
to find true matches in set Sc = {mj}. The respective training and classification
operators are

pose← RANSACt(St, αt), (6)

T ← RANSACc(pose,Sc, αc), (7)

where Eq. (7) implements epipolar thresholding:

mj ∈
{
T , if distance from epipolar line < αc

F , otherwise
(8)
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Core-set, Score, fcore(.): To find the core-set of matches, we threshold the set
of all matches A, with a ratio test using threshold 0.82 (this is much weaker than
the standard 0.6 to ensure sufficient matches for training [5]) to form A0.82, a set
of noisy match hypotheses. BF match consistency curves, fcore(.), are trained
from A0.82 using very strict match consistency parameters. The core-set Score,
is defined as all matches consistent with fcore(.):

fcore ← BF t(A0.82, Θ
t
strict), Score ← BF c(fcore,A, Θc) (9)

The strict parameters Θt
strict have a large λ, making Score remarkably resistant

to repeated structures.
Local hypotheses, Skhypo: A disadvantage of BF is that it sub-samples

training sets for computation efficiency. This is good for core-set estimation but
hurts fine matching. Thus we cluster A0.82 into K = 20 disjoint subset using
K-means clustering (over-segmentation is fine)

A0.82 = {L1,L2, . . . ,LK}

and compute a local hypothesis set through

fkhypo ← BF t(Lk, Θt
strict), Skhypo ← BF c(fkhypo,A, Θc). (10)

Local match consistency, {fklocal(.)}: We next leverage the core-set to
robustly estimate local match consistency curves. Each Skhypo local hypothesis

set is merged with the core-set Score to form a mixed setMk
local. Core-set matches

are forced to make up at least 80% of Mk
local (if there are insufficient core-set

matches, they are artificially duplicated). RANSAC is performed onMk
local and

a pose hypothesis, posek is computed

posek ← RANSACt(Mk
local, α

t), (11)

This preponderance of core-set matches ensures that RANSAC need not handle
extremely noisy data and prevents it from inadvertently fitting local ambiguities
arising from repetitive structures.

Given posek, we find matches in the local matching sets, Skhypo that are
geometrically consistent with the core set

Ŝkhypo ← RANSACc(posek,Skhypo, αc). (12)

These are used to train locally focused BF functions which take into account
geometric consistency with the core-set.

fklocal ← BF t(Ŝkhypo, Θt) (13)

Wrong local match hypotheses derived from repetitive ambiguities will have
many members removed by the epipolar constraint (see Fig. 5 (b)). Correct
matches will pass the epipolar constraint and the training step in (13) will cre-
ate a local match consistency curve, fklocal(.) (see Fig. 6) that describes them,
allowing subsequent procurement of more similar matches.
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Final output pose, Ŝout: Taking the max value of fcore(.) and all local
fklocal(.) curves for each point in the bilateral domain gives

ffinal(m) = max({fcore(m), f1local(m), . . . , fKlocal(m)}).

As shown in Fig. 6, this gives an epipolar-consistency curve without the false
match consistency modes of BF. However, this is impractical on a continuous
domain. An implementation equivalent, is to define the final match consistency
derived output, Sout, as the union of all matches A, which accord any of the
match consistency functions fcore and {fklocal}

Sout = BF c(fcore,A, Θc) ∪
K⋃

k=1

BF c(fklocal,A, Θc) = Score ∪
K⋃

k=1

Sklocal (14)

A final RANSAC step is performed on Sout to estimate pose and the set of
matches geometrically consistent with it, Ŝout

pose← RANSACt(Sout, αt), Ŝout ← RANSACc(pose,Sout, αc). (15)

Implementation: This paper uses a basic implementation of RANSAC [47]
and BF (C++ re-implementation of [5] in [24]). Parameters used are detailed
below. All feature coordinates are Hartley-normalized and motion vectors mul-
tiplied by 10. For core-set discovery, the training parameters Θt

strict = {λ =
10, σ = 1, ε = 0.1}, where λ and σ refer to the parameters in Eq. (1), and ε is the
Huber function parameter in [5]. Similarly, in training local match consistency
curves, Θt = {λ = 1, σ = 1, ε = 0.1}. For BF classification, Θc = {θ = 0.6}. In
RANSAC, αt = αc = 5 pixels is the threshold for distance to epipolar lines. On
a 4-core i7 machine, our mixed MATLAB, C++ implementation of RepMatch
processes a a few hundred thousand feature matches in approximately 20 sec-
onds. Note: when passing matches to a large-scale SfM systems, skip the final
RANSAC in Eq. (15). Such systems have inbuilt RANSAC and pre-processing
matches affects frame selection. Note: BF [5] includes a bilateral affine verifica-
tion step for fine match decisions, which we retain. This verification can also be
interpreted as match consistency.

4 Experiments

The experiments focus on two aspects: quantifying the performance and base-
line gains of RepMatch vs previous algorithms in Sec. 4.1; and integration of
RepMatch into an overall SfM sysetms in Sec. 4.2.

4.1 Quantitative Evaluation

For quantitative evaluation we use Strecha et al.’s dataset [48]. To study per-
formance over a comprehensive range of baselines, we construct a test set by
pairing all images with at least 30% overlap from all 4 sequences in the dataset,
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giving a total of 619 pairs. To evaluate performance variations with baseline, we
subdivide the set according to ground truth rotational baseline.1

As pose estimators often give wildly incorrect solutions (or crash) when they
fail, average errors are less meaningful. To circumvent this, we propose to mea-
sure Success Percentage (SP):

Success Percentage(x) =
# pairs with rotation (translation) error ≤ x◦

total number of pairs
(16)

with error in ◦. By plotting SP against x, we obtain a non-decreasing curve which
gives the percentage of two view pose estimates lying below error threshold x◦.
The success percentage at 1◦ is an area of interest, as it is a commonly accepted
bound for a “good” pose estimate. Finally, as the rotation and translational
errors often follow identical trends, in less important cases, we plot SP against
Pose Error, a consolidated statistic formed by taking the max of rotational and
translational errors.

Comparisons: We begin by establishing performance baselines for a “typi-
cal” pose estimator with RANSAC and non-linear re-projection error refinement
step2. To represent RANSAC, we choose USAC 1.0 [13], a RANSAC variant
which integrates many core RANSAC innovations. As it has a PROSAC com-
ponent to take in A-SIFT match scores, USAC can potentially be applied to the
set of all nearest neighbor matches A1.00.

Fig. 8(a) compares RepMatch against USAC with bundle adjustment. USAC
was provided with feature matches filtered by three different preemptive outlier
removal schemes. The first is A1.00 with no outlier removal. As explained in the
introduction, this gives expectedly low scores with a SP of only 20% at 1◦. Using
a typical ratio-test A0.66 significantly improves pose estimates. Finally applying
BF [5] match consistency curve to A1.00 and running USAC improves results
still further. This demonstrates that preemptive outlier removal can significantly
impact RANSAC performance and explains RepMatch’s excellent performance.
Fig. 8(b) compares RepMatch against other guided matching pose estimators.
MRMS [10] has very high pose estimation accuracy while GeoAware [11] is de-
signed to handle repetitive structures. As theses algorithms are tightly coupled
to their feature descriptors, we perform system-to-system comparisons. At nar-
row baselines, with ground truth rotations less than 15◦, MRMS and GeoAware
have an advantage as they use SIFT [4] rather than the more ambiguous A-SIFT
descriptors [46]. Despite this, RepMatch’s performance is easily comparable to
them. The advantage of RepMatch’s full system is clearly evident on the set of all
pairs. While the use of different descriptors means comparisons are not strictly
fair, it suggests that RepMatch has good narrow and wide baseline capability.

Component wise evaluation: Our RepMatch framework integrates both
RANSAC and BF outlier removal schemes. In Fig. 10 we compare the perfor-
mance of RepMatch against its individual components. Note that as RepMatch

1 For fine nuances regarding experiment details and comparisons we encourage inter-
ested readers to peruse the supplementary material.

2 We thank Chin Tat-Jun for his advice on RANSAC comparison.
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Fig. 8. Left: RepMatch compared against USAC [13] with different preemptive out-
lier removal schemes. Observe that USAC ’s performance significantly improves with
better preemptive outlier removal. Right: System to system comparison. RepMatch’s
narrow baseline (Ground truth rotation ≤ 15◦) performance is easily comparable to
the highly accurate MRMS [10] system. On All pairs, the difference is even (albeit
unfairly) greater as RepMatch uses wide-baseline A-SIFT features while other systems
use narrow baseline SIFT. This demonstrates RepMatch’s baseline generality.

shields the RANSAC module from outliers, we use a modified RANSAC with a
larger minimal set of 20. All poses estimates are provided after this RASANC and
a non-linear refinement step. For comparison to a more conventional RANSAC
see Fig. 8(a). Fig. 9 shows that RepMatch preemptive outlier removal provides
consistent performance gain vs both its BF and RANSAC components. This is
especially notable on the castle sequence which has many repeated structures,
resulting in BF under-performing RANSAC with a naive ratio test.
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Fig. 9. Left: Component wise evaluation on all pairs. Observe that RepMatch con-
sistently improves its RANSAC and BF components. Right: Castle sequence which
has significant repetition. BF is too aggresive and actually under-performs RANSAC
A0.66. RepMatch avoids this performance degradation.

Finally, Fig. 10 evaluates RepMatch’s performance at different rotational
baselines. At narrower baselines (below 45◦), RepMatch is nearly perfect. It also
remains remarkably robust to wide-baselines and maintains a 60 − 70% pass
rate at a 1◦ threshold for baselines exceeding 90◦. Tab. 1 summarizes Fig. 9,
Fig. 10 and provides matching statistics. It shows RepMatch provides consistent
improvements over all scene types and baselines, with especially large gains at
wide-baselines and repetitive structures. While spectacularly wide-baselines are
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not necessarily useful in themselves, they are an indicator of very high moderate-
baseline stability in less controlled environments, investigated in the next section.
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Fig. 10. Dataset divided by rotational baseline. At narrow baselines (below 45◦), both
BF and RepMatch are nearly perfect, with close to 100% pass at a 1◦ threshold. At
wider baselines, the gap between RepMatch and BF widens. Notably, RepMatch has a
60− 70% SP at a 1◦ threshold for baselines exceeding 90◦.

4.2 Structure-from-Motion Systems

Here we explore RepMatch’s performance on less controlled modern city images
and its role in an overall SfM pipeline. Fig. 11 shows reconstruction of three
modern scenes: (i) indoor; (ii) street; (iii) walking around a block. The sparse
reconstruction system used is Visual SfM, which we provide with different feature
matches3. We show performance with RepMatch, BF and Visual SfM ’s default
matching. While none of the sequences are especially wide baselines, Visual SfM
has multiple breaks, demonstrating the difficult nature of modern city recon-
struction. Using BF correspondences reduces the breaks but the reconstructed
point clouds show serious errors with stray frames and phantom walls. RepMatch

3 We leverage RepMatch’s robust pose estimate to eliminate all triplet poses with
relative rotation consistency less than 2◦. BF was employed with the same scheme.

Table 1. Evaluation on Strecha dataset [48]. We tabulate the match precision, average
number of correct matches (“# matches”), Success Percentage (SP) at 1◦ rotation error
and 1◦ translation error. RepMatch algorithm consistently improves on its individual
components in terms of pose accuracy and match precision, with the difference increas-
ing with baseline. In terms of match numbers, RepMatch has slightly fewer matches
than BF but still maintains a substantial advantage over standard A0.66.

Algo. Basline ≤ 45◦ 45◦ < Baseline ≤ 90◦ Baseline ≥ 90◦

Preci- # SP (1◦) Preci- # SP (1◦) Preci- # SP (1◦)
sion match Rot. Trans. sion match Rot. Trans. sion match Rot. Trans.

A0.66 0.915 5845 0.953 0.939 0.556 700 0.574 0.568 0.452 293 0.429 0.452

BF 0.957 19795 0.983 0.956 0.792 5078 0.769 0.759 0.457 2185 0.214 0.287

RepMatch 0.985 17800 0.997 0.975 0.886 4612 0.876 0.870 0.709 1912 0.619 0.714
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(d) RepMatch based reconstruction 

(e) RepMatch based normal map 

(b) Visual SfM with BF matches (c) Visual SfM with RepMatch 

(a) Visual SfM 

(iii) Building scene (ii) City street scene 

Fig. 11. Three city scenes. (i) Inside of a home. RepMatch can link through many
weakly textured passages. BF also reconstructs the full flat but it creates phantom
walls. (ii) A city street. Only RepMatch does not fragment the model. (iii) A city
block. RepMatch’s reconstruction in (c) clearly shows the block outlines. This permits
high quality dense reconstruction using [37] in (d) and (e).

permits un-fragmented, high quality reconstruction. Sequence (i) is especially in-
teresting as RepMatch improves on BF even on indoor environments with few
repetitive structures. This opens the possibility image information complement-
ing current depth camera based floor plan recovery [49, 50].

5 Discussion

Apart from modern city reconstructions discussed earlier, two view pose and
correspondence estimation are potentially useful in applications like image warp-
ing [51], system calibration, photometric estimation, etc. However, the chronic
instability of two view pose estimates has limited their practical usefulness and
caused a gradual decline in interest. RepMatch’s results suggests such pessimism
may be unwarranted and the basic pose estimation problem deserves more atten-
tion. Perhaps with further research, reliable two view pose and correspondence
estimates will be something future vision and robotic systems take for granted.
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