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Our VMA Vision



Holistic (Computer/Robotic) Vision

Geometric Reconstruction meets
Semantic Recognition for 3D holistic vision:
Real-time, robust, geometry-centric vision

Where: geometry, location... ’ ‘ What: semantics, action...

Real-time camera pose localization Visual place/scene recognition
3D environment mapping Object recognition, localization
Depth and motion estimation Human re-identification
Large-scale urban reconstruction Action recognition, tracking
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Multiple sensors Geometry-aware filtering Mobile cameras
Modern vehicles Fast randomized algorithms Big visual data
Moving robots Efficient inference models Rich annotations
Opportunistic scan Deep learning innovation Powerful machine
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VMA Techs for Autonomous Systems

— Dense depth & motion

— Feature matching and mapping —
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— Localizing 3D object proposals —

3D object
proposals

\ ' Using
~7 Computer

Object mapping

Image Obiject proposals  Parts Action mask  Interacted objects




Related VMA Tech



#1 Perceiving Depth & Motion for AS: Matching

A general, efficient discrete optimizer for stereo & flow & etc

b= ZEp(lpE W) + Z Z Epqg(lp,1q)

P qeEN,

v General MRF for labeling problems
v’ Superior for huge label spaces

v' 50-100x faster than [PMBP]

v’ Edge-aware filtering + PM + BP

Superpixel-level graph 4 Shared partlcle generatlon
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Pixel-level BP w/ particles

\Unary Ep Pairwise E;q )

A simple formulation w/o

= complex energy terms

= 3 separate initialization
Achieved top-tier perform.,
even when compared to
task-specific techniques
Applied on the full pixel
grid, w/o coarse-to-fine

*Y. Li et al., “SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs,” ICCV 2015 (Oral) 8
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#1 Perceiving Depth & Motion for AS: Interpolation

A unifying framework for fast guided (global) interpolation

Depth upsampling SOA 1 OOOX Slowel‘

Noisy low res. ToF depth ngh res. color guidance

Motion interpolaiion SOA
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Texture-copying
artifacts due to

AR [3] FGI (ours)

GF [1
over 2x slower

Epic-LA [2]

FGI (ours)

Depth Optical flow

inconsistent
structures across
m Od d I itieS Color guidénce Our result Ground truth ~ Color guidz;nce 7 Qur result Ground truth
Cascaded global interpolations with alternating guidances for level / g
. e - * General, versatile
Color image Guided IR Joint Filtered data ifi=0 ' >
C‘] Guidance interp. dz;a Guidance filtering 6?1 _’Finan' output Depth fo r Va rl O u S ta S kS
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Input Input . .
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7. e o omaion | FAst computation
> ﬁ & 'A J—F Nearest mapping to .
Ew=(u-D)T(u—f)+ru Au % ELEAEEH oot & repea * [FGS]in OpenCV
*Y. Li et al., “Fast Guided Global Interpolation for Depth and Motion,” ECCV 2016 (spotlight) 10

* D. Min et al., “Fast Global Image Smoothing Based on Weighted Least Squares,” TIP 2014
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#2 Wide-Baseline Matching & 3D Mapping for AS

A reliable feature matcher for pose and 3D reconstructlon
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(a) Visual StM »(b) Visual SfM with our matches  (c) Dense reconstruction

Providing a number of
matches, while having
almost no outliers

w/ RANSAC to handle
repetitive structures
Highly reliable 2-view
pose for SfM, mapping

* W.-Y. Lin et al., “RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities,” ECCV 2016 12

* W.-Y. Lin et al., “Bilateral functions for global motion modeling,” ECCV 2014




A set of multi-view images [42] Agisoft [47]: A commercial 3D reconstruction software

Visual SM [3], [43], [44], [45], [46]

Visual SfM using feature matches returned by A-SIFT w CODE

Our ADSC lab reconstructed w/ only color images



#3 Structure-First Camera Pose Estimation for AS
A unified pose estimation approach to man-made scenes

Ours AT AN 3 A o SOA

% Rt P
Standard approach: New approach:

relative pose + triangulation  structure estimation without explicit camera
pose computation

v' Using homography estimation
v’ Euclidean rigidity constraint ilrsisselngidnd

3%\9_\4:_ Tl | Reversing the std. pipeline
w » » = ¢ Nomodelselection
. s g regardless of #planes
* Significant outperformance
N [>/ F&} C T$M+°_M in stabilitY & accuracy
Zﬁ"’ o }f ‘*%1— : ++ * o Esp. for sideway motions

*N. Jiang et al., “Direct structure estimation for 3D reconstruction,” CVPR 2015 14



#4 Large Parallax Stitching & Visualization for AS
A high-quality image stitching method to handle large parallax
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* Coupled local alignment
and seam estimation

e #alignment hypotheses
significantly reduced
* Curve structure constraint
L H —mll ¢ State-of-the-art quality for
A ] N WS |
S LW Wl challenging scenes

CPW with weighted features

* K. Lin et al., “SEAGULL: Seam-guided local alignment for large parallax image stitching,” ECCV 2016 15






#5 Localizing 3D Object Proposals for AS

An online method for 3D object proposals using RGB-D videos

Initialization ‘ Depth-Based 2D Object Multi-view Fusion & Refinement for 3D
Proposal Filtering (sect. 4) Heatmap and Bounding Box Generation (Sect. 5)
| o e Horizontal 3D Heatmap 3D Point
i Soft Filts : Hard Filtering:
%D Oblﬁ‘lCt B(g Mals:i:ggin Culling Odd? - Supporting +— Genera tion & Clustering & 3D
rgats Sized Proposals Plane Removal Filtering | Bounding Box

Color Images

 RGB-D video for 3D object
proposals w/o detectors

* High precision, much more
accurate than state-of-art

* Class-independent for new
data collection on the fly

 Good for improved SLAM,
navigation, object search

] Object Proposals
ige-bo;

~ 3D Point Cloud . 3D Object Proposals

(a) Color image (b) Matched pixels (c) Weighted 2D (d) Heatmap after plane  (e) Global heatmap H3p
heatmap Hap removal Hap projected onto image plane

* R. Pahwa et al., “Locating 3D Object Proposals: A Depth-Based Online Approach,” TCSVT 2016 (minor revision)



Point cloud
UW-RGBD dataset §

Top-ranked
filtered points

Resulting 3D
object proposals

Our dataset Point cloud

Top-ranked
filtered points

Resulting 3D
- object proposals
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#6 DNN Recognition w/ Minimum Annotation Efforts

Red-bellied Woodpecker vs. Red-headed Woodpecker [zZhang et al. TIP’16]

Without human-annotated
bounding-boxes for parts
78.92% on CUB 200-2011
datasets of 200 bird species

* Without requiring
human bounding-boxes

A * On asingle-image

== * 83.23% on PASCAL VOC

A 2012 of 10 action classes

[Zhang et al. TIP 16-2]
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ADSC

Ilincis at Singapore Pte Ltd

Research

This project will focus on addressing the following fundamental challenges key to a multitude of visual
data analytics applications: 1) raw visual data cleaning; 2) visual data registration and fusion; and 3)
visual data analytics and management. The existing efforts, either from the academia or the industry,
are not capable of robustly and efficiently modeling, analyzing, and fusing continuous or discrete
visual data captured by individuals or big companies.

Grounded on the recent novel and exciting developments described in this project, we plan to extend,
generalize, and optimize them to address the aforementioned key challenges of visual modeling and
analytics for the masses using the following research directions:

1. Localization — recovering the geometric locations of the user, the camera viewpoint, or the
objects in the environment around the user;

2_Reqistration — aligning and modeling dynamically captured images and measurements of the
scene over different time and viewpoints together;

3. Inference — estimating and analyzing the semantic information of the scene from the
registered visual information and recovered geometric information.

We aim at achieving both high robustness and accuracy for the above tasks at unprecedented
processing speeds on commodity computing devices and mobile cameras, often producing more
than one or two orders of magnitude of speedup over the existing state-of-the-art solutions.

We have been working on the following clusters of research topics, and now are actively innovating in
a broader scope.

WBWIILLINOTIS

Edge-aware filtering and joint filtering

Dense stereo, optical flow and view
synthesis

Dense correspondences acCross scenes

Motion coherence and wide-baseline
matching

Structure from motion, 3D
reconstruction

Computational photography, image
enhancement

Efficient inference for continuous MRFs

Fast guided global interpolation

Saliency, recognition, cosegmentation

Hash technigues 20
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