Computer Vision for Autonomous Systems

Minh N. Do

Autonomous Systems (AS)

- Automobile
- Service
- Consumer
- Medical
- Entertainment
- Education
- Domestic
- Manufacturing
- Military
- Augmented Reality

Example: Toy robot

Perceptual capability in dynamic environment

- Location
- Geometry
- Semantics
- Updates

- Distance
- Dimension
- Category
- Instance

Dynamics

- Motion
- Behavior
- Interaction

Vision as sensing input

- High resolution provides details about complex scenes
- State of the art camera has 1.3-1.7 MP, running at 36FPS (47-61M per second)
- Lidar technology ~60-300k per second
- Shape vs. Appearance
- Most complex situations are defined by appearance (texture) more than shape:
- e.g. road markings, traffic signs, person identity, object instance, etc.
- Cheap and versatile in size and configuration

Computer vision

The goal of computer vision is to make computers efficiently perceive, process, and understand visual data such as images and videos. The ultimate goal is for computers to emulate the striking perceptual capability of human eyes and brains-or even to surpass and assist the human in certain ways. - [Microsoft Research]

- Single image
- Static scene
- RGB only
- Limited data
- Limited computation power
- Slow algorithms
- Video
- Dynamic scene
- Depth, IMU
- Large amount of data
- Visual computing chips
- Real-time algorithms

Lessons from bees

Srinivasan $(1997,2011)$

Localization

- Place recognition and localization
- Loop closure detection for SLAM
- Visual SLAM for mobile autonomous system

large scale image-based localization

Google Tango

HoloLens

Map based visual self-localization

Magic Leap

Depth and motion

3D scene flow

- Per-pixel dense depth and optical flow
- Algorithm complexity and efficiency
- Temporal consistency
- Semantic awareness

[Bai et al. 2016]

Avg. EPE: 1.80, Our Method, 600 Hz
(1) DIS @ 600 Hz Avg. EPE: 1.52 , Our Muethod, 300 Hz
(2) DIS @ 300Hz ang. EPE: 0.6E, Our Uethod, 10 Hz
(3) DIS @ 10 Hz

[Kroeger et al. 2016]

Recognizing people, landmarks, and objects

- Detect pedestrians, cars, motorcycles, traffic lights, etc.
- Recognize people and objects

DeepFace 97.25% accuracy vs. human 97.53% accuracy

Fast RCNN, 17fps

Perception from a moving platform

Source: Seattle Police Department

Vision + other sensing modality

1. Detection of rotation

3. Compensating eye movement

- Visual perception is crucial for autonomous systems
- Small
- Cheap
- Fast
- Key problems:
- Localization and mapping
- Object and place recognition
- Motion and dynamics
- Adding other sensing modalities (depth, IMU) significantly helps vision

