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Abstract— Localizing, identifying and extracting humans with
consistent appearance jointly from a personal photo stream is
an important problem and has wide applications. The strong
variations in foreground and background and irregularly occur-
ring foreground humans make this realistic problem challenging.
Inspired by the advance in object detection, scene understanding
and image cosegmentation, in this paper we explore explicit
constraints to label and segment human objects rather than other
non-human objects and “stuff”’. We refer to such a problem as
Multiple Human Identification and Cosegmentation (MHIC). To
identify specific human subjects, we propose an efficient human
instance detector by combining an extended color line model with
a poselet-based human detector. Moreover, to capture high level
human shape information, a novel soft shape cue is proposed. It is
initialized by the human detector, then further enhanced through
a generalized geodesic distance transform, and refined finally with
a joint bilateral filter. We also propose to capture the rich feature
context around each pixel by using an adaptive cross region
data structure, which gives a higher discriminative power than
a single pixel-based estimation. The high-level object cues from
the detector and the shape are then integrated with the low-level
pixel cues and mid-level contour cues into a principled conditional
random field (CRF) framework, which can be efficiently solved
by using fast graph cut algorithms. We evaluate our method
over a newly created NTU-MHIC human dataset, which contains
351 images with manually annotated ground-truth segmentation.
Both visual and quantitative results demonstrate that our method
achieves state-of-the-art performance for the MHIC task.

I. INTRODUCTION

HE popularity of digital cameras and smart phones allows

people to record their daily life in visually rich way
with ease. Human activity understanding [1]—[3]] has become
a core task to manage and exploit this large volume of photo
streams which often focus on humans. Toward such high level
understanding, accurate human recognition and pixel wise
segmentation can add potential to many related applications.
For example, action recognition can be improved by recov-
ering human shapes and structures [1]], [4]]; users can also
group their photos based on consistent appearance patterns of
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the persons-of-interest or propagate editing operations across
intended human instances. Many other exciting multimedia
applications can be further developed. Moreover, most photos
are not captured in isolation, but they come as an album
that records an event for certain moments. Therefore, this
paper focuses on the problem of localizing, identifying and
segmenting multiple humans jointly in a personal photo album,
which we refer to as a Multiple Human Identification and
Cosegmentation (MHIC) problem.

The MHIC problem is challenging due to its unique ir-
regular object-occurring patterns, strong variations in fore-
ground/background and feature sharing among different
classes, which inherit from a similar Multiple Foreground
Cosegmentation (MFC) problem [3]]. It is actually very dif-
ferent from the classic cosegmentation task studied by many
existing algorithms [6]—[13]], which assume object-of-interests
to appear in all input images. Although some recent works [J5]],
[14], [15] achieve certain progress in the MFC scenario, their
performance for the “human” class is still far from satisfactory
due to the large variation of human bodies, self-occlusion, etc.

Inspired by the impressive recent advances in scene under-
standing [[16]-[18]], human detection [19]], [20], tracking [21]
and segmentation [1], [22], [23]], we solve the MHIC prob-
lem with a conditional random fields (CRFs) framework in
a principled manner. At the heart of our approach is the
integration of the human notion into a probabilistic CRF
model, which is implemented with a few innovative human
object cues proposed in this paper. Our key observation is
that the essential goal of MHIC is to segment out and annotate
“humans” rather than other objects or “stuff” (e.g. sky, grass).
Such a human-centric constraint has not been explored in the
previous cosegmentation works [5], [14]], [[15]], and we propose
an effective and efficient framework to address the MHIC task
with significantly improved performance. Similar ideas of in-
corporating object-like proposals [24]] or object detectors [20],
[25] in a conventional CRF framework have been successfully
applied before to other visual computing tasks such as large-
scale image segmentation [[12], [[13]], scene understanding [26]
and co-segmentation [15]], [27] according to a recent survey
by Zhu et al. [28]]. However, the MHIC task considered here is
unique and very challenging — the user only gives a minimal
amount of annotations on just a few example photos, while
possible geometric and photometric variations that irregularly
occurring human instances exhibit across the photo set can be
quite large. This paper is hence triggered to answer how far
we can achieve for the challenging MHIC task, by employing
recent advances from human detection and tracking [[19], [21]



and robust higher-order CRFs inference [18§].

In this paper, we make the following contributions to
address the MHIC problem systematically and effectively:
1) We extend the CRF framework of our earlier MFRC
work [15] to the MHIC problem by incorporating the hu-
man cues which greatly improve the performance for the
‘human’ class, where only a small fraction of input images
are weakly labelled with bounding boxes. Specifically, 2)
we propose an efficient human instance detector to localize
human instances by extending a previously proposed multi-
class color line model [15] with the poselet-based human part
detector [[19]. 3) We also propose to capture a long range
feature context by introducing adaptive cross regions [29] as
basic spatial supports for the first time to evaluate dense pixel
wise histogram features, which has proved its effectiveness
in other visual computing tasks such as stereo matching and
saliency detection. 4) To capture human shape information,
we propose an effective high-level edge-aware human shape
cue by enhancing the detector response map with the help
of recently proposed geodesic distance transform [30] and
joint bilateral filtering [31]. The shape cue is further used to
weight the detector’s higher-order potential, which improves
visual results and inference speed. 5) We create a novel NTU-
MHIC dataset to facilitate benchmarking the performance of
various algorithms on the MHIC task. This dataset consists of
22 subsets and 351 images with pixel wise ground-truth for
human instance labelling, featuring multiple human instances
in the MHIC scenario with various poses and scale change.
We will make the dataset publicly available in the near future.

II. RELATED WORKS

Human Detection and Segmentation: Human detection
and grouping is a fundamental task with many real appli-
cations. The tree-structured pictorial framework [20], [32]]
is well-known for human detection and achieves leading
performance on several PASCAL VOC challenges. However,
this framework is not good at handling fore-shortening and
partial occlusion. Bourdev et al’s work [19] eschewed the
pictorial structure by learning poselets for human parts which
are tightly clustered in the appearance and configuration space
and achieved more accurate localization. It also provides
richer information from training data, e.g. by transferring the
binary segmentation mask from the training data to the test
image, so it can generate a rough, aggregated belief mask
which indicates the location of certain human parts. Using
larger spatial support, human detection is widely applied in
recent human grouping tasks [33]-[37] in image and video
tracking, and achieves better results than previous works using
features extracted from human face detection [38]]-[40]. Face
detection-based approaches still have difficulties with profile
poses and positions. However, these recent works based on
human detection do not perform any pixel wise labelling or
background modelling to boost human identification.

Human segmentation, on the other hand, intends to assign
each pixel a label to indicate whether the pixel belongs to a
human or background. Traditional semantic segmentation [[16]]
cannot be directly applied to the MHIC task as all the
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pixels will be assigned the same label “person”. Recently,
Ladicky et al. [22] and Vineet et al. [1] proposed to seg-
ment human instances from a single image or video using
conditional random filed and human detection. However, these
methods essentially made prior decisions on human hypothe-
ses, because they are initialized by human detectors and are
sensitive to false detections. Different from these methods, our
method makes a joint decision on human instances by taking
account of the cues from various levels, which is more robust
to false and duplicate human detections. Finally, they also do
not perform any identification on human instances.

Cosegmentation: There is a vast amount of prior work
on cosegmentation [S]—[10]], [41]-[43]]. Most of the existing
works focus on handling the binary cases, separating fore-
ground(s) from the background, but few of them are designed
for joint multi-class object recognition and segmentation.
The unsupervised methods such as DC [9] and Cosand [6]]
used low-level bottom-up features, so they cannot distinguish
“stuff” from “objects” in presence of background clutter and
sharing features among classes. To overcome the ill-defined
nature of unsupervised methods, some user inputs are hence
desired and also often necessary, and one notable work is
iCoseg [42].

The aforementioned methods, however, require the user to
carefully sort out a given event photo set manually to group
images containing the same objects together. Recently, Kim
and Xing [5]] propose the first method to handle irregularly
occurred multiple objects cosegmentation problem — Multiple
Foreground Cosegmentation (MFC). They used an combinato-
rial auction approach with spanning tree-based pruning, which
is an over-simplified model and produces sub-optimal results.
Ma and Latecki [14] proposed to solve the MFC problem
using a semi-supervised graph transduction framework which
enforces connectivity in the labelling result, but this method
is weak in scalability due to the reliance on dense pair-wise
image analysis. Both of the aforementioned methods did not
model the concept of “objects” explicitly, and they frequently
label regions belonging to “stuff” such as “sky” and “grass” as
foreground objects. To overcome this problem, our previous
work [15] includes higher level, non-local object cues into
a probabilistic inference and optimization framework. The
object cues derive from an object detector based on color-
line modelling without any shape information. Although our
previous work can handle objects exhibiting certain degrees of
rotation, scale, and illumination changes and produce state-of-
the-art performance for MFC tasks, it still generates unsatis-
factory results for the “human” class due to strong appearance
variations of human bodies as well as background clutters.

To detect specific human instances and better handle body
variations, we propose to tackle the challenge by extending
our previous work [[15] , and combine it with the poselet-
based human detector [[19]]. In addition, a soft shape mask
map for humans is newly generated for each input image,
which captures the spatial distribution of articulated human
bodies probabilistically. Employing a shape prior has been
proved to be very useful for scene understanding [44], but
usually a rigid shape model is used [16], [44]. Finally, we
propose to compute pixel wise features using larger spatial
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Fig. 1: Overview of our MHIC algorithm. Given a set of event photos, a user annotates only a few of them to indicate human
instances of interest with bounding-boxes in different colors. Our algorithm then jointly localizes, identifies and segments out
all the human instances for the given image set. It tackles the MHIC task by integrating object-level cues with mid-level
and low-level cues in a probabilistic CRF framework. The proposed algorithm yields the segmentation of human instances of
interest in each image, and identifies them by taking on the same color annotated earlier for the corresponding human class.

supports provided by the cross region structure [29], [45]],
which have been successfully applied to dense stereo and
saliency detection tasks , achieving robustness to noise and
providing a better discriminative power. Beyond these novel al-
gorithmic designs, this paper also has the scalability and long-
range object modelling advantages of our previous work [13],
but greatly advances its performance in differentiating human
classes from other non-human objects and “stuff”.

Scene Understanding: The last few years have seen im-
pressive progress in combining multi-class object segmenta-
tion and recognition techniques to address the grand challenge
of complete scene understanding [16]], [26]. Ladicky ez al.
proposed to incorporate object detector-induced potentials into
a CRF energy optimization framework as a soft constraint,
which clearly improved the standard object class segmentation
models that tend to under-perform on the “things” classes for
complex scenes. Recently, Tighe and Lazebnik utilized
the rigid shape information transferred by Exemplar SVM
in scene understanding tasks, which achieved state-of-the-art
performance. Inspired by these nice existing techniques, our
work, however, also differs from them in several aspects. First
of all, as argued in our previous work [15]], the MHIC task
is very unique and challenging due to the high variability
of foreground objects across the given set of photos and the
minimal supervision that is available. Second, geared towards
this MHIC task, our algorithm is designed with some novel
and critical technical modules that explicitly model and han-
dle “human” classes, whose non-rigid motions and complex
interactions among them and also with the background create
several real challenges.

III. PROBLEM FORMULATION

Given a set of N input images Z = {1, ..., In}, assume m
(m< N) of them Z, = {I},...,I/*} C T are annotated with
bounding boxes or polylines to delineate the spatial extents
of certain humans of interest. Each image from this training
set Z; contains a subset of annotated humans belonging to
K different humans H = {Hj, ..., Hx}. Each human H; is
associated with a label [; € £ = {0, 1, ..., K'}, where 0 is used
to denote the background. The MHIC problem is formulated
in terms of a global energy function defined on a conditional
random field (CRF), for which the goal is to assign a random
variable x; for each pixel ¢ in each image a label from £. Our
framework learns hierarchical, complementary “human” cues
from the trained adaptive spatial support classifier, contour
detectors and the human detectors. The proposed framework
is generic and flexible, and also allows to integrate other multi-
class object detectors and classifiers.

Fig. [1] illustrates the proposed framework, which consists
of two main stages and several specific modules. During
the preprocessing stage, various cues such as a cross region
based pixel classifier, a color line based human instance
detector and gPb contour are modelled and generated. Pixel
and object detectors are trained with user-drawn bounding
boxes. After all the cues are computed, we integrate them
into a global energy function which enforces the labelling
consistency between various level cues and finally produces
the solution with fast expansion/move solvers. Once the initial
segmentation is generated, our framework supports iteratively
updating the learned models and performing the recognition
and segmentation tasks to further improve the results.
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Fig. 2:

The proposed cross region based pixel wise unary potential outperforms the conventional single pixel based

counterpart for the MHIC task. (a) Two example adaptive cross regions defined at pixel p and p’. (b) A close-up view
of the adaptive cross region (2, defined at pixel p. (c) The color histograms H,. and texton histograms H, extracted from
the respective cross support regions at p and p’. (d) The conventional pixel-level classifier response map for the human class
“boy-in-blue”. (e) The proposed adaptive region-based classifier response map for the same “boy-in-blue” class. (f) The final
multi-class labelling result based on (d). (g) The final multi-class labelling result based on (e). (h) The ground truth label map.

(All the figures in this paper are best viewed electronically.)

A. Proposed CRF Framework for MHIC

To make the MHIC problem tractable, we make two practi-
cal assumptions: i) each image I,, contains a subset of human
‘H, and ii) persons with consistent appearance in terms of color
and shape should be assigned the same human identity label.
If one dresses differently in each image, it is nearly unlikely
to label them consistently across input images.

The MHIC task is formulated as a multi-labelling problem
within a CRF framework on a graph G = (V, &), where V is
the set of all image pixels of image I,,, while £ corresponds
to the set of all edges defined by an eight-connected neigh-
borhood system. The proposed energy function is:

E(x) :Zzbi(xi)—&- Z Vij (w4, 25)

% (i,5)€€ (1)
Do) + Y tda(xa) -
i€V deD

In Eq. (I), x denotes the valid label map assigned to the
random variables {x;}, which takes a value from the label set
L. We denote the set of human detections with D, which are
returned bounding boxes enclosing potential human instances.
The energy function consists of four terms: (1) the pixel-based
unary potential v;(x;), which is trained by using the features
extracted from a pixel wise adaptive cross support region [29];
(2) the pairwise smoothness potential v;;(x;,x;) based on a
gPb contour detector [48]; (3) the soft shape potential § (x;)
that evaluates the likelihood of each pixel to lie within each
potential human shape, where the shape is adapted according
to the internal image structure; (4) the object detector potential
Ya(Xq), where x4 is the clique defined at the bounding box d,
charging the label inconsistency cost robustly with the number
of variables in the bounding box not taking the detector label.
These terms collectively capture the information for human
instances in a complementary way. We will elaborate the four
terms in following sections.

IV. CROSS REGION BASED UNARY POTENTIAL

The first term ;(z;) is a unary potential defined on each
pixel which indicates its cost of being assigned a label | € L:

1/)1(11) = —Wpix IOg P(x7.|cpm7) ) (2)

where wp;,, is the weighting factor. P(xz;|Cpiz) is the normal-
ized probability evaluated by a Random Forest (RF) classifier
Cpix . Given the human class label provided in the form of
user-drawn bounding boxes, a RF classifier is typically trained
using color and texton features extracted from a single pixel,
which is also the scheme used in our previous work [I5].
However, the pixel-level features are usually too local to
capture the change of neighborhood patterns, often resulting
in a noisy and weak classifier response (see Fig. 2[d)). As
shown in Fig. f), this weak response signal leads to an
unsatisfactory segmentation result. This observation motivates
us to make use of a larger spatial context for each pixel when
training a RF classifier. Though superpixels appear to be an
option here, partitioning an image into non-overlapping local
regions suffers from the superpixel quantization artifacts. To
produce accurate pixel segmentation, Kohli et al. and
Zhu et al. formulate the multi-level superpixel cues as
higher order term, causing an increased inference cost.

Recently, pixel wise adaptive spatial supports—cross re-
gions [29]], [45]-have been successfully used in stereo match-
ing cost aggregation [43]], image filtering and saliency
detection [46], [50], which achieved more robust and accu-
rate results than single pixel or superpixel based estimation.
Another advantage of adaptive cross regions is that they can
be very efficiently computed for each pixel densely. In this
paper, we investigate incorporating this flexible data structure
to evaluate the pixel wise classification cost.

To make the manuscript self-contained, we first give a brief
introduction to the construction of cross regions, and more
technical details can be found in [29]. An adaptive cross sup-
port region is constructed with the following steps. First, for
each pixel p, four varying support arm lengths {h9, b}, h2, h3}
are decided based on the guidance image I, which is called
a cross skeleton in [45]. An improved strategy for adaptive
scale selection is proposed in [29]]. The arm lengths record
the largest up/down vertical span and the left/right horizontal
span, s.t. [I.(s) — I.(p)| < t,c € {R,G,B},s € W), where
W, is the window of size (2r 4+ 1) x (2r + 1) centered at
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Fig. 3: Parameter sensitivity analysis for (a) the color simi-
larity threshold ¢ and (b) the preset maximum arm length r.
The y-axis shows the average segmentation accuracy, which
will be detailed in Sect. [VIT]}

p, and s is the pixel on the tip of the left(/right or up/down)
arm. The influence of the color similarity threshold ¢ and the
maximum allowable arm length 7 is shown in Fig. [B[(a) and
Fig. 3[b), respectively. The findings are generally similar to
those observed in related early works [45]], [46]: the optimal
maximum arm length r typically takes values from [5,15],
and the color threshold ¢ varies in [20,40]. For our task, we
empirically set 7 = 10 and ¢ = 30. When 7 is set too small, the
performance degrades due to the insufficient spatial support
to pool discriminative features reliably. However, if r and
t are set too large, the performance also gets much worse,
because the noise from an excessively large spatial support
contaminates local feature observations.

Once a pixel wise cross skeleton is adequately decided, a
shape-adaptive full support region {2, is readily available as
an area integral of multiple horizontal segments H (q) spanned
by pixel ¢ . Specifically, @, = U,cv () H(q), where g is
a support pixel located on the vertical segment V' (p) defined
for pixel p. Two example cross regions are shown in Fig. [Ja).

With the cross map constructed, we extract a pixel wise
color histogram H. and a texton histogram H,; from the
adaptive support region around each pixel, as shown in
Fig. 2|c). The color histogram H, is generated by quantizing
each channel of L*ab to 8 bins. The texton histogram H,
is generated by convolving the image with 17-dimensional
filter banks at different scales, and then the responses are
clustered using the Euclidean-distance K-means algorithm into
T. = 92 code words. Therefore, each pixel will be represented
by a 116-dimensional feature vector. Based on these densely
computed region-level features, we train a multi-class human
classifier. An example response map (color-coded as a heat
map) for the “boy-in-blue” class is shown in Fig. fe), which
gives a much stronger and reliable response for those true
pixels covered by the boy in blue. Such an improved pixel
wise unary potential also leads to a much better identification
and segmentation result as shown in Fig. {(g).

V. CONTOUR BASED PAIRWISE SMOOTHNESS POTENTIAL

Conventional contour detectors typically capture part transi-
tions by finding local extrema, which usually produce a high-
recall but low-precision contour detection result. Recently,

Fig. 4: Comparison between the two different contrast-
sensitive smoothness measures. Left column: (a) Input color
image. (b) Ground-truth label map. Middle column: (c) Canny
edge detection map (intensity inverted) for the input image.
(d) The final labelling result based on (c). Right column: (e)
gPb contour detection map (intensity inverted) for the input
image. (f) The final labelling result based on (e). The white
dashed circles highlight three places where using a g Pb based
pairwise potential yields much better labelling results than the
Canny edge based potential.

Arbelaez et al. proposed a new method called g Pb, which
combines the local contour with the contour signal from eigen
vectors that considers the region size and contour strength.
The g Pb method achieves the state-of-the-art contour detection
results.

As the gPb contour map provides more reliable and
higher-level reasoning of salient contours, we replace the
classical color contrast based pairwise potential with a gPb
based potential v;;(z;, z;), which is defined as follows,
if Ty = Tj

3

(1= [|VC(i,)|?) otherwise .

0
Yij(@i, ;) = {w (

where w, gives the weight of the pairwise potential. VC'(4, j)
measures the g Pb signal contrast between two adjacent pixels
1 and j. We observe using gPb as the base edge map makes
the labelling snap to salient object boundaries, and an example
is demonstrated in Fig. [

VI. INCORPORATING HUMAN DETECTOR BASED CUES

The information carried by an image patch or segment by
itself is often too local and hence ambiguous, which can
be easily interfered when background contains similar local
patterns, as it is incapable to capture the global configuration
of object instances. This motivates us to address the MHIC
challenge with higher and longer range grouping cues which
have been proved to be useful in recent image summarization
and scene understanding research [17]], [18], [44]. A popular
approach is to reason about the objects of interest with the
help from rectangular bounding boxes generated by some
detection methods [19], [20], [25], [51]] or using rigid shape
templates [44]]. Both methods have limitations. Firstly, most
object detectors have little or no information of the shape
that the detected objects cover, so existing methods often
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(d)

Fig. 5: The proposed human instance detector allows to utilize the soft segmentation mask associated with each poselet
template to define a human-sensitive shape prior. (a) Input image. (b) The final detected human bounding boxes (solid boxes
in pink and blue) for different human instances. They are computed by running all the poselet detectors (three example dashed
boxes) at various positions and scales as in [19]. (c) The detection scores for the three example poselet detectors. (d) The
human class-agnostic response map computed by fusing the soft masks transferred from all poselet templates, with the fusion
weights defined by the respective poselet detection scores. (e) The human class-specific response map (four classes in this
example) by further considering the detection score evaluated by our proposed multi-class color line texton classifier.

rely on a heuristic Grabcut approach to generate the
shape mask. However, Grabcut itself is sensitive to the back-
ground/foreground color modelling when an image contains
clutter. On the other hand, the shape template previously
learned or human labelled exhibits strong rigidity: though
the high template response area can hit part of the real object,
the response map produced by this approach still does not
overlap with real object locations sufficiently well, and is also
not aligned to object boundaries due to the sliding window step
size. This section will introduce a novel technique to generate
an edge-aligned soft shape mask based on the poselet human
detector and a multi-class multiple color line model
for the MHIC task.

A. Efficient Color Line and Texton Histogram Based Poselet
Human Detector

To detect humans of a certain identity with a desired degree
of invariance to e.g. scale and rotation changes, we train two
classifiers. One is the poselet human detector trained with the
annotated H3D dataset [19], and the other is the multi-class
interactive off-line color and texton histogram based object
detector [13]], [21]).

The poselet detector is trained by finding patches with
similar key-point configurations in the training objects to
guarantee the semantic consistency of detected parts. Each
poselet comes with a soft mask by averaging all aligned
masks of training examples. In our paper, a pre-trained human
model and its associated soft masks from [19] is used in
our implementation. Example poselet soft masks are shown
in Fig. BJc).

Given a user-drawn bounding box, to train the interactive
off-line color and texton histogram based object detector, we
project all pixel colors onto a set of one-dimensional (1D)
lines in the RGB color space [15], [21]. These lines are evenly
sampled in 13 directions which pass through (128,128, 128)

and then a 1D (normalized) histogram of the projected values
is calculated on each line. Through an empirical comparison
in train/validation sets, we use eight bins for each line and
treat all 13 x 8 color bins as the final color line feature, which
can be efficiently extracted by using integral histogram [53].
To better handle background clutter, we additionally extract
a texton histogram for each bounding box as the texture
features, whose dimension is the same as the histogram used
in Sec. [V} and the final feature dimension used for training
is 196 dimensions. A JointBoosting classifier is used
to train a multi-class bounding box classifier. The details of
our learning procedure resemble closely with those described
in [I5]. The positive training samples are provided by the user
annotated bounding boxes with multi-class labels. To generate
more positive examples and also be robust to variations across
images, the same appearance perturbation scheme [[15]],
is employed, which perturbs the position and lighting scale
of the object rectangles randomly by a small amount. The
negative examples are randomly sampled around the non-
selected foreground regions using the bounding boxes of the
same size as the user-specified ones, also with simulated scale
and lighting variations.

The detection proposals are generated by first sweeping
different poselet templates in the test image and then the
activations are merged into the final bounding boxes as in [19].
Then each bounding box is evaluated by both the trained
multi-class color line texton classifier and poselet detector, the
corresponding detection scores s, and sp, are linearly combined
using an empirically set trade-off factor ¢ = 0.9 to form the
final score Ry = (1 —¢) x sL + & x s,. The parameter ¢ is
selected through grid search in the range of [0.1,0.9] with a
step-size of 0.1. We find that the performance is generally
good in the range of [0.6,0.9], with ¢ = 0.9 performing
slightly better than other settings. This can be explained by the
challenging background clutter often seen in our image dataset,
which makes the shape cue more important than the color cue.
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Fig. 6: Effects of the soft shape cue and the higher order object detector potential. (a) Input images. (b) Detected bounding boxes
for corresponding human classes. (c) The initial transferred poselet masks. (d) The enhanced shape masks using generalized
geodesic distance transform [30]]. (e) The final soft shape maps generated by using an edge-aware joint bilateral filter
to filter (d). (f) The labelling results without using soft shape cues, where the pixels with different labelling colors from the
ground truth are the labelling errors. (g) The labelling results by combining shape cues and the cross region based unary term.
(h) The results using higher order detector potentials. (i) The ground-truth label maps. By incrementally including the shape
potential and the higher order detector potential, one can observe the improvements in labelling accuracy.

The bounding boxes for each class [ are retained, which form
the final bounding boxes hypotheses set D in Eq. ().

B. Edge-Aware Soft Shape Map with GGDT and JBF

As rigid shape templates have proved to greatly improve
the performance of scene understanding tasks, it is interest-
ing to explore whether a shape template can improve the
more challenging MHIC task concerning non-rigid humans.
Since the training dataset provided by includes fore-
ground/background annotation, each poselet template ¢ comes
with a soft mask M; € [0,1] by averaging the binary segmen-
tation annotations among all example patches used for training
the respective template. Therefore, for each bounding box of
each class, we overlay the soft masks of the merged poselets
on the test image, which are weighted by their corresponding
poselet template detection score p; and then further weighted
by their corresponding bounding box score R,. Iterating over
all the detected top human bounding boxes, this process
produces a pixel wise soft belief map M! : Q@ — [0,1] for
each human class [/, where (2 is the discrete image 2D domain.
Fig. P|illustrates the process how the soft masks are generated.
Fig. [f[c) shows the rough hit maps of different human classes.

Despite that the proposed detector succeeds in eliminating
most non-object regions, the belief map M' (see Fig. Ekc))
for each class [ is still blurry and contains some mistakes
caused by sliding window offsets and false detection. Based
on this observation, we propose to use the color image’s
internal structure to refine and enhance the initial belief map.
In this paper, we apply two efficient approaches to enhance
the derived belief map M, and we explain them next.

As objects are often compactly clustered in space, such
connectivity can be captured by recent Generalized Geodesic
Distance Transform (GGDT) filter [30]. Given a guidance
image J, GGDT filtering can efficiently assign each pixel a
shortest distance Q from the non-object region defined by the
soft belief map M,

Q(m; M,VJ) = ml%(G(mv ml) + VM(m/)) ) @

m’'e
where € is the image 2D domain, and v is an amplification

parameter. The geodesic distance G(m,n) between pixels m
and n is given as:

()

G(m,n) = V1+72(VJ(s)-T'(s))2ds, (5)

inf
FGPmJ, 0
where I' is a sub-path of all the paths Pp, connecting
two points m and n. The parameter v controls the relative
importance of the spatial distance to the image gradient.

By applying the GGDT to the initial belief map M, this
weak signal is clearly enhanced, as shown in Fig. [6(d). The
reason is that most background regions tend to be more
spatially connected and homogeneous than the foreground
regions, so the distances assigned to the foreground regions
are usually larger than those on the background. This fact
effectively helps to enhance the initial shape mask map.

Despite this improvement, the obtained belief map is still
spatially inaccurate with respect to the true object locations. To
produce an edge-aware soft belief map, we propose to use an
efficient high dimensional joint bilateral filter to filter the
result produced by GGDT to yield the final soft spatial mask,
see Fig. [6fe). This result highlights the pixel wise extent of



objects. In our current formulation in Eq. (I), we choose to
integrate the soft shape mask as an additional unary potential
Pf(x;) to compete with other hypothesis evaluations. As the
belief map is produced from shapes, it is complementary to
the color and texton based cues. Denoting by M, the final soft
shape maps for all the intended human classes, we introduce

and compute the shape potential as follows,
Vi (%) = —Wshape log P(xi| M) , (6)

where wgpape is the weighting factor. With the help of such
a soft shape term, the segmentation result is significantly im-
proved. Fig.[6[f) and Fig.[6(g) provide some visual comparison
between the results with and without the shape cue.

C. Detector-Based Robust Consistency Potential

Although the proposed shape cue can greatly improve the
result, to make our system more robust, we further incorporate
higher order label consistency constraints from the detected
bounding boxes. With the help of such a higher order con-
straint, we can revolve ambiguities which would otherwise
be too hard to solve at a local level. The bounding box
proposals are designed as a kind of soft constraint which works
jointly with other hypotheses to overcome false positives and
over-counting of object instances. Given the d-th detection
bounding box with a confidence score R; belonging to a
certain class as presented in Sect. the clique potential
Ydetector(Xq) defined on the clique x4 (i.e. all the pixels
enclosed in the d-th detected bounding box) is defined as:

Nig;Ymae if Na < Qq
otherwise ,

1pdetecto’r (Xd) = { (7)

Ymazx

where Ny = >, d(z; # lg) is the number of variables in
x4 not taking the dominant label /; . The truncation parameter
Q4 = pa|x4| controls the maximum number of inconsistent
pixels in the enclosed bounding box area, where py defines
the percentage of the inconsistent pixels. The cost Y4, 1S
defined as a linear truncated function f(-):

f(xa, Rg) = wgeq|xq| max(0, Rg — R:) , (8)

where R, is a threshold. In Eq. (E[), wy defines the detector
potential weight, and €4 is the aggregation of the weights w;,
of the inconsistent pixels ¢ in x4.

The proposed object potential ¥4(x,4) can be transformed
to take the robust P" form [18], [26]:

ta(Xa)=—f(Xa, Ra)+min(f(xa, Ra), ka-Y_ who(xi # 1a))

1EX4

€))
where k; is a slope parameter defined in the same way as
in , and wzi, is the same as in €4 of Eq. . This detector-
based label consistency constraint is similar to the object de-
tector term used in for scene understanding. If Ry < R,
1Y4(xq) will be zero, therefore automatically exclude the weak
hypotheses. If a detector response is strong i.e. Rgq > R;, the
higher-order potential will charge a penalty which is increased
with the underlying inconsistent pixel number, and the penalty
is increased until the truncation threshold );. Minimizing
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(d)

Fig. 7: Ground-truth annotation for the NTU-MHIC dataset.
(a) Input image. (b) A user segments out the first human (the
green contour) and indicates him as the human of interest by
placing a red stroke. (c) The generated ground-truth label for
the first human class. (d) The second human in the image is
annotated following the same procedure. The whole process
to annotate an image takes 3 ~ 4 minutes.

the functional will amount to reducing the inconsistent pixels
and therefore encouraging as many pixels belonging to the
bounding box x4 to take the dominant bounding box label /.
Such a soft higher-order constraint produces better labelling
results than the standard P™ Potts model [55]], as the robust
potential allows a certain number of pixels within the clique
to take different labels than the others in xg .

In our previous work || the weight w; is assumed
uniform across all the pixels within the bounding box. This
uniform setting may produce visual artifacts and increase the
inference cost, because it does not model the spatial extent of
the underlying object and cannot treat the foreground human
and the background differently. Given the soft shape maps
produced in the preceding step, we reuse the maps to impose
a spatial weighting to bias the graph cut to expand the label
where it is more likely to be the potential human. The basic
idea is to sum up the background belief maps of all the human
instances My, = ZMég\\LLl € L, and then use the pixel wise
weighting map M, = 1 — M, to replace the constant wli,.

Including the detector term to a CRF model is implemented
by adding two auxiliary nodes into the graph, and the aug-
mented energy function can be efficiently minimized with the
graph cut algorithms. Interested readers are referred to [18]]
for the graph optimization details. Fig. [6{h) demonstrates the
strength of the object detector-based potential when integrated
into our CRF framework. Without using the detector-based
potential, the girl’s face in Fig. [6(g) can only be partly
segmented due to the competition between the hypotheses on
pixels and shapes. The object detector potential provides a
complementary high-level evidence, and integrating it into the
CRF model results in a more accurate result of recognizing
the missing face part.
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VII. THE NTU-MHIC DATASET

To evaluate our proposed approach and to create a new
benchmark dataset for future work, we introduce the first and
the largest multiple human foreground cosegmentation and
identification dataset — the NTU-MHIC dataset. In fact, till
now there exists no benchmark dataset to evaluate a method’s
performance for the MHIC task. The FlickiMFC dataset [5]
contains some subsets with human classes, but some of them
are not so challenging for the MHIC task. In addition, other
object classes are also mixed with the human classes in this
dataset. The CoDel dataset [33] is intended for a multiple
foreground human detection task by sampling representative
video frames in “Big Bang Theory”, but it only provides
bounding box labels.

As one of our main contributions, we create a new dataset
by collecting image subsets which match the MHIC scenario
from both the FlickrMFC and CoDel datasets. We manually
annotate the images with pixel wise class labels, which serve
as the ground-truth to evaluate various MHIC algorithms. The
obtained NTU-MHIC dataset contains 22 subsets with a total
of 351 images, and each subset includes around 10 ~ 20
images for the same event. The dataset is split into two sets.
One set is for training/validation and the other is for testing.
The training/validation set consists of 10 subsets with 166
images. The test set consists of 13 subsets with 185 images.
This dataset is challenging, because it contains both indoor
and outdoor human activities (e.g. sports, child play, and
group chat) with large viewpoint change and displacement,
background/lighting variations and occlusion, and also only a
finite number of repeating subjects are present in each image
(see Fig. [IOMI2). Figure [§] illustrates the statistics of the
percentage of the images that contain 0 ~ 5 human instances
in each test subset of the NTU-MHIC dataset. For different
image subsets, there is clearly a high diversity in terms of
the distribution of the human instance number per image.
For those subsets sampled from the CoDel dataset [33]], more
images containing at least 2 or more human instances.

Dataset Annotation: The ground-truth pixel wise labels
for each image in the dataset are generated by an annotator
using a labelling tool. To provide high-precision ground-
truth labeling maps for benchmarking different algorithms,
the human labeller first needs to delineate a closed contour
around the object-of-interest, and then a foreground stroke is
marked over the object to conduct a final object cutout. The
labelling tool allows the user to add/delete a stroke to further
refine the annotation. Fig. [7] shows the labelling process. The
average time to annotate an image is around 3 ~ 4 minutes.

We make this dataset and annotation tool publicly available
at our website http://hongyuanzhu.github.io/mhic/| to facilitate
future work.

VIII. EXPERIMENTAL RESULTS AND DISCUSSIONS

To tune the weights of our model, we apply a piecewise
training approach. We first randomly sample 20% images
of each training/validation subset as the training images as
MEC [5]] and MFRC [15]]. Then the potentials for each subset
are trained with the selected images. Finally, the weights
are manually tuned on each potential to achieve the highest
performance in the rest 80% validation images with ground
truth. These processes repeat for five times. The final estimated
weights are wp;; = 1,w, = 10,ws = 0.2,wq = 0.3, R; =
0.3, pmaz = —10g(0.8), pg = 0.2, v = 1 and v = 2.
Then the parameters are fixed across all the tests. The overall
time (including preprocessing, detection and segmentation) to
process an image is around 10 ~ 20 seconds on a laptop with
Intel Core 17 Q740 1.7GHZ and 22GB RAM.

Quantitative Results: We first compare our method with
some baselines: MFRC [[15]], MFC [5]], CoSand (COS) [6]], and
Discriminative Clustering (DC) [9]]. We adopt the procedure
introduced in MFC [3] for evaluation. For supervised methods
such as our method, MFRC and MFC’s supervised version
(MFC-S), we randomly pick 20% of the input images (2~4
images) of each subset to annotate, which covers all of the
objects-of-interest. For unsupervised MFC (MFC-U), we run it
by changing the foreground number K from two to eight, and
report the best scores for each subset. For the unsupervised
binary class methods COS [6] and DC [9], the dataset is
divided into several subgroups such that the images in each
subgroup contain the same objects of interest, and the methods
are applied to each subgroup individually.

Fig. [0 summarizes the segmentation accuracy on the 13
groups of the MHIC test dataset. We evaluate the segmen-
tation accuracy by the standard intersection-over-union metric
% The leftmost bar set presents the average segmen-
tation accuracy on 13 groups. Some interesting results can be
observed from the chart: 1) For unsupervised methods, COS
and DC’s accuracies are better than the unsupervised version
of MFC. The underlying reason is that DC and COS enforce
a strong assumption that the set of images provided must have
one common foreground in each image. 2) The methods with
some supervision from a human, such as supervised MFC,
MFRC and our proposed method are better than unsupervised
methods in most of the cases, which on one hand proves
that supervision can be beneficial for the task. 3) The higher
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accuracy of MFRC and our newly proposed method in com-
parison with supervised MFC demonstrates the clear benefits
of explicit modelling of the objectness constraint. On average,
MFRC and MHIC achieves 16% and 28% improvements over
the supervised-MFC (MFC-S). In some subset, such as bb6
(where bb stands for “Big Bang Theory”), we achieve nearly
45% improvement.

We have also evaluated the average accuracy gain con-
tributed by including the proposed shape and higher-order
detector potentials into the CRF model in Table [Il and also
compared these models with our previous MFRC method [[15]].
The MFRC method adopts the unary term which is
derived from a single pixel estimate and a higher order
term that needs multiple oversegmentations. From Table [I]
one can observe that by using a cross region-based unary
potential alone, we achieve comparable performance with our
previously proposed MFRC, which includes more complex
modelling and has a much slower inference speed. This
demonstrates that by using a more reliable and discriminative
unary term can already bring a substantial improvement than
those models which use more complex modelling. The incor-
poration of the shape cue contributes nearly 4% improvement
in accuracy, which suggests that the shape cue and the cross
region based unary term are complementary to each other. The
improvement also proves that shape template indeed improves
the human class segmentation, as suggested in recent computer
vision literature [44]). From the visual results in Fig.[6] one can
observe that such edge-aware high level shape cues greatly
resolve the ambiguity still faced by the cross region based
unary term.

While including the higher-order detector term brings an
additional 3% improvement, the small numerical gain by
the higher order detector term has also been observed in
Shotton et al. and Kohli et al. in scene understanding
research. As also indicated in [16], [I8], we observe that
including this potential often brings a pronounced increase
in perceived accuracy in boundary areas. Moreover, a similar
phenomenon can also be observed in introducing g Pb contours
and the weighted higher order term. A potential interpretation
is that most human subjects in daily event photos have enough
contrasts and the unary term provided by cross regions is
often strong, therefore the improvement in boundary areas
which is significant in visual perception is not that easy to
be reflected in quantitative measure. In addition, the inclusion
of the weighted higher order term reduces the runtime by 1~2

TABLE I: Components evaluation of the proposed MHIC algo-
rithm (column 3-5) in comparison with previous MFRC [I5].

Unary + Unary +
Subset MFRC Pairwise Pairwise + | Full Model
; (x100%) 0 Shape (x100%)
(x100%) | (. 160%)
apple 0.50 0.58 0.61 0.64
baseball 0.52 0.5 0.61 0.62
cow 0.66 0.65 0.66 0.67
bbl 0.51 0.59 0.67 0.73
bb2 0.45 0.37 0.4 0.41
bb3 0.48 0.56 0.58 0.64
bb4 0.55 0.6 0.62 0.64
bb5 0.38 0.42 0.53 0.57
bbb 0.53 0.63 0.59 0.64
bb7 0.43 0.59 0.62 0.62
bb8 0.37 0.45 0.48 0.55
bb9 041 0.42 0.44 0.51
bb10 0.5 0.53 0.57 0.62
average 0.48 0.53 0.57 0.60
precision

seconds. As a result, we choose to include these two modules
as they can benefit applications which require highly accurate
pixel wise labelling (e.g. object cutout).

On the other hand, we should also notice that introducing
the shape cue occasionally reduces the accuracy. However, this
only happens for one subset bb6, and the loss is recovered by
using the higher order term. One potential reason for such a
phenomenon is as follows. If the shape potential is derived
from a wrong human detection result, which is not consistent
with other hypotheses, our method may choose to label it as
the background. Further human intervention should improve
the result, which is left as one future direction.

Visual Results: Fig. [T0R12] show some visual results from
seven groups of the MHIC dataset. For each set, the input
images and color-coded ground-truth segmentation results are
displayed in the first two rows. We also show visual results
from supervised MFC (MFC-S) [5], MFRC and our
proposed MHIC method. The regions which are labelled with
the same color in each set indicate they belong to the same
category. The tags below each set explain the meaning of
each color. From these images, one can observe that MFC-S
produced quite obvious segmentation and human identifica-
tion errors. Its reliance on a coarse superpixel segmentation
prevents it from correcting the errors made in the initial su-
perpixel generation process. Without including human-specific
modelling (or potentials), both MFC-S and MFRC frequently



misclassified some non-human regions as human instances,
though MFRC performs much better than MFC-S due to the
inclusion of object notions/terms in the CRF model. Thanks
to the novel human-centric cues as well as our region-based
unary terms, MHIC achieves superior human segmentation and
identification quality over other competing methods for this
challenging MHIC dataset. Our method can handle irregularly
appearing humans and produce coherent and more accurate
segmentation results. The images with no foregrounds can also
be identified, e.g., the baseball dataset. On the other hand,
our current model still cannot very well handle the cases of
humans in small size or from a highly profiled view (e.g. bb3
and bb5 image sets in Fig. [II), or the cases with a great
appearance overlap between foreground and background or
the combination of these factors (e.g. the third image in the
last row of Fig. [IT] This remains as a future research direction.

IX. CONCLUSION

This paper studies the challenging problem of multiple
human identification and cosegmentation, and proposes to
solve the problem with a principled CRF framework using
a few weakly labelled images. A novel human instance
detector is proposed by combining an extended multiclass
multiple color line model [15], [21] with a poselet-based
human part detector [19]. We also proposed a more robust
unary potential based on pixel wise adaptive cross regions,
and an effective high-level human shape cue generated by
applying enhancement filtering to an initial human instance
detection response map. The proposed framework is flexible
and can be generalized to tackle other objects. The experiments
on a newly created MHIC dataset show the state-of-the-art
performance on our proposed algorithm. We have released
the MHIC dataset together with all ground-truth annotations
to the research community to facilitate more future work on
this important yet challenging topic. We also plan to explore
applying recent dense correspondence methods for non-rigid
object/human matching [56]], [57] in this MHIC task.
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